Skip to main content
Log in

Which Mathematical Logic is the Logic of Mathematics?

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

The main tool of the arithmetization and logization of analysis in the history of nineteenth century mathematics was an informal logic of quantifiers in the guise of the “epsilon–delta” technique. Mathematicians slowly worked out the problems encountered in using it, but logicians from Frege on did not understand it let alone formalize it, and instead used an unnecessarily poor logic of quantifiers, viz. the traditional, first-order logic. This logic does not e.g. allow the definition and study of mathematicians’ uniformity concepts important in analysis. Mathematicians’ stronger logic was rediscovered around 1990 as the form of independence-friendly logic which hence is not a new logic nor a further development of ordinary first-order logic but a richer version of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Bibliographies of the original literature are found in [3, 11], and [12].

  1. Alexander A.: Duel at Dawn: Heroes, Martyrs, and the Rise of Modern Mathematics. Harvard University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Bottazzini, U.: The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass. Springer, Heidelberg/New York (1986)

  3. Bourbaki, N.: Théorie des ensembles. Hermann, Paris (1938)

  4. Brabenee, R.Z.: Resources for the Study of Real Analysis. The Mathematical Association of America, Washington, D.C. (2004)

  5. Cauchy, A.-L.: Cours d’analyse de l’Ecole Royale Polytechnique. De Bure frères, Paris (1821)

  6. Forsyth A.R.: Theory of Functions of a Complex Variable. Cambridge University Press, Cambridge (1893)

    MATH  Google Scholar 

  7. Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. L. Nebert, Halle (1879)

  8. Frege, G.: Review of H. Cohen, Das Prinzip der Infinitesimal-Methode und seine Geschichte. Zeitschrift für Philosophie und Philosophishe Kritik. 87, 324–329 (1885)

  9. Frege, G.: Grundgesetze der Arithmetik. Begriffsschriftlich abegeleitet, vol. 1. H. Pohle, Jena (1893)

  10. Gleason, A. M.: Fundamentals of Abstract Analysis. Jones and Bartlett, Boston (1991)

  11. Grabiner J.: The Origins of Cauchy’s Rigorous Calculus. MIT Press, Cambridge (1981)

    MATH  Google Scholar 

  12. Grattan-Guinness, I.: The Development of the Foundations of Mathematical Analysis from Euler to Riemann. MIT Press, Cambridge, MA (1970)

  13. Hilbert, D.: Grundlagen der Geometrie. Teubner, Leipzig (1899; many later editions)

  14. Hilbert D.: Axiomatisches Denken. Mathematische Annalen. 78, 405–415 (1918)

    Article  MathSciNet  Google Scholar 

  15. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vols. 1, 2., Springer, Heidelberg/Berlin (1936–1939)

  16. Hintikka, J.: What the bald man can tell us. In: Biletzky, A. (ed.) Hues of Philosophy: Essays in Memory of Ruth Manor. College Publications, London (2011)

  17. Hintikka, J.: On the significance of incompleteness results (forthcoming)

  18. Hintikka, J.: Kant’s theory of mathematics: What theory? What mathematics? (forthcoming)

  19. Hintikka, J.: IF logic, definitions and the Vicious Circle principle. J. Philos. Logic (forthcoming, probably 2012)

  20. Hintikka, J., Sandu, G.: Game theoretical semantics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 361–410. Elsevier, Amsterdam (1996)

  21. Moore, G.H.: Zermelo’s Axiom of Choice: Its Origins, Development and Influence. Springer, Heidelberg/New York (1982)

  22. Peirce C.S.: A review of Forsyth, Harkness and Picard. Nation. 58, 197–199 (1894)

    Google Scholar 

  23. Peirce, C.S.: In: Harstshorne, C., Weiss, P., Burk, A. (eds.) Collected Papers, vols. 1–8. Harvard University Press, Cambridge, Mass. (1931–1958) (Referred to as CP.)

  24. Pietarinen, A.-V.: Signs of Logic: Peircean Themes in the Philosophy of Logic, Springer, Dordrecht (2006)

  25. Seidel, P.L.: Note über eine Eigenschaft der Reihen, welche discontinuerliche Funktionen darstellen, in Ostwald‘s Klassiker, vol. 116, pp. 35–45 (1900; original 1948)

  26. Tulenheimo, T.: Independence-friendly logic, In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Summer 2009 Edition). URL: http://plato.stanford.edu/archives/sum2009/entries/logic-if/ (2009)

  27. Weierstrass K.T.W.: Abhandlungen aus der Functionenlehre. Springer, Berlin (1886)

    MATH  Google Scholar 

  28. Weierstrass, K.T.W.: Mathematische Werke, vols. 1–7. Mayer & Müller, Berlin (1894–1915) (reprinted: G. Olms, Hildesheim 1967)

  29. Whitaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1952)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Hintikka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hintikka, J. Which Mathematical Logic is the Logic of Mathematics?. Log. Univers. 6, 459–475 (2012). https://doi.org/10.1007/s11787-012-0065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-012-0065-6

Mathematics Subject Classification (2010)

Keywords

Navigation