
Equilibrium States in Numerical Argumentation
Networks

D. Gabbay
King’s College London,

Department of Informatics,
The Strand,

London, WC2R 2LS, UK
dov.gabbay@kcl.ac.uk

O. Rodrigues
King’s College London,

Department of Informatics,
The Strand,

London, WC2R 2LS, UK
odinaldo.rodrigues@kcl.ac.uk

Abstract

Given an argumentation network with initial values to the arguments,
we look for algorithms which can yield extensions compatible with such
initial values. We find that the best way of tackling this problem is to offer
an iteration formula that takes the initial values and the attack relation
and iterates a sequence of intermediate values that eventually converges
leading to an extension. The properties surrounding the application of
the iteration formula and its connection with other numerical and non-
numerical techniques proposed by others are thoroughly investigated in
this paper.

1 Orientation and Background

1.1 Orientation
A finite system 〈S,R〉, with R a binary relation on S, can be viewed in many
different ways; among them are

1. As an abstract argumentation framework [10], and

2. As a generator of equations [13, 14]

1

ar
X

iv
:1

40
8.

67
06

v2
 [

cs
.A

I]
 1

8
M

ar
 2

01
5

When viewed as an abstract argumentation framework, the basic concepts
studied are those of extensions (being certain subsets of S) and different se-
mantics (being sets of extensions). When studied as generators of equations,
one can generate equations in such a way that the solutions f to the equations
correspond to (complete) extensions and sets of such solutions correspond to
semantics.

This paper offers an iteration schema for finding specific solutions to the
equations responding to initial requirements and shows what these solutions
correspond to in the abstract argumentation sense.

We now explain the role iteration formulas play in general in the equational
context.

When we have a system of equations designed to model an application area1

we face two problems: 1) find any solution to the system of equations, which
will have a meaning in the application area giving rise to the equations; 2)
given boundary conditions and/or other requirements not necessarily mathe-
matical which are meaningful in the application area,2 we would like to find
a solution to the system of equations that is compatible/respects the initial
conditions/requirements.

These two problems are distinct. The first one of finding any solution is a
numerical analysis problem. There are various iteration methods in numerical
analysis to find solutions, of which one of the most known is Newton’s method.3
The second problem is totally different. It calls for an understanding of the
requirements coming from the application area and possibly the design of a
specialised iteration formula which respects the type of requirements involved.

This paper provides the Gabbay-Rodrigues Iteration Schema, for the case of
the equational approach to argumentation, seeking solutions (which we shall see
will correspond to complete extensions) respecting as much as possible initial
demands and restrictions of what arguments are in or out of the extension. We
compare what our iteration schema does with Caminada and Pigozzi’s down-
admissible and up-complete constructions [7]. Because we are dealing with
iteration formulas (involving limits) and we are comparing with set theoretical
operations (as in Caminada and Pigozzi’s paper) we have to be detailed and
precise and despite it being conceptually clear and simple, the proofs turn out
to be mathematically involved, and require some patience from our readers.
However, once we establish the properties of our iteration schema, its use and
application are straightforward and computationally simple, especially in the
context of such tools as MATHEMATICA and others like it. The reader may
wish to just glance at the technical proofs and concentrate on the examples and

1For example, equations of fluid flow in hydrodynamics or equations of particle motion
in mechanics, or equations modelling argumentation networks according to the equational
approach (to be explained later), or equations modelling a biological system of predator-prey
ecology, or some polynomial equation arising in macroeconomics.

2For example, initial conditions in the case of particle mechanics, or initial size of population
in the ecology, or arguments that we would like to be accepted.

3This method starts with an initial guess of a possible solution and uses various iteration
formulae hoping that it will converge to a solution (for an introduction on numerical analysis
see [21]).

2

discussions. Note the iteration schema idea is very general and applies to other
systems of equations possibly using other iteration formulas.

The actual technical development of the paper will start in Section 2. In
Appendix A we emphasise the distinction between the above two problems with
two detailed examples, the first modelling the dynamics of predator-prey inter-
actions and the second about merging/voting in argumentation networks. We
shall see that Newton’s method does not work in these scenarios and that there
is the need for a new type of iteration schema. Thus this paper is not just
incremental to the equational approach but constitutes a serious and necessary
conceptual extension.

1.2 Background
An abstract argumentation framework is a formalism proposed by Dung [10] and
defined in terms of a tuple 〈S,R〉, where S is a non-empty set of arguments and
R ⊆ S×S is a binary attack relation. We will refer to an abstract argumentation
framework 〈S,R〉 simply as an argumentation network. If (X,Y) ∈ R, we say
that the argument X attacks the argument Y . 〈S,R〉 can be seen as a directed
graph (see Figure 1). As informally introduced in Section 1, Att(X) will be used
to denote the set {Y ∈ S | (Y,X) ∈ R}, i.e., the set of arguments attacking the
argument X. Following graph theory convention, if X has no attackers (i.e.,
Att(X) = ∅), we say that X is a source node in 〈S,R〉. Given a set E ⊆ S, we
write E → X as a shorthand for ∃Y ∈ E, such that (Y,X) ∈ R. Furthermore,
following [4], we use E+ to denote the set {Y ∈ S | E → Y }.

X

Y Z

Figure 1: A sample argumentation network.

Given an argumentation network, one usually wants to reason about the sta-
tus of its arguments, i.e., whether an argument persists or is defeated by other
arguments. It should be clear that arguments that have no attacks on them
always persist. However, an attack from X to Y may not in itself be sufficient
to defeat Y , because X may be defeated by some argument that attacks it, and
thus one needs an evaluation process to determine the status of all arguments
systematically. In Dung’s original formulation, this was done through an ac-
ceptability semantics defining conditions for the acceptability of an argument.
The semantics can be defined in terms of extensions — subsets of S with spe-
cial properties. These subsets are based on two fundamental notions which are
explained next.

3

A set E ⊆ S is said to be conflict-free if for all elements X,Y ∈ E, we have
that (X,Y) 6∈ R. Intuitively, arguments of a conflict-free set do not attack each
other. However, this does not necessarily mean that all arguments in the set are
properly supported. Well supported sets satisfy special admissibility criteria.
We say that an argument X ∈ S is acceptable with respect to E ⊆ S, if for all
Y ∈ S, such that (Y,X) ∈ R, there is an element Z ∈ E, such that (Z, Y) ∈ R.
A set E ⊆ S is admissible if it is conflict-free and all of its elements are acceptable
with respect to itself. An admissible set E is a complete extension if and only
if E contains all arguments which are acceptable with respect to itself. E is
called a preferred extension of S, if and only if E is maximal with respect to set
inclusion amongst all complete extensions of S. Similarly, E is called a stable
extension of S if and only if E is conflict-free and for every X ∈ S\E, there is
an element Y ∈ E, such that (Y,X) ∈ R.

(R)(L)

X Y

Z

Y

X

Figure 2: Sample argumentation networks.

Now consider the argumentation networks (L) and (R) depicted in Figure 2.
According to the semantics given above, the network (L) has three extensions
E0 = ∅, E1 = {X} and E2 = {Y }. Both E1 and E2 are preferred and stable
extensions. The network (R) only has only one extension, which is empty, and
hence this is also its only preferred extension. This extension is however not
stable.

Besides Dung’s acceptability semantics, it is also possible to give meaning
to these networks through Caminada’s labelling semantics [6, 5] and through
Gabbay’s equational approach [13, 14]. These are explained next.

The labelling semantics.
The labelling semantics uses labelling functions λ : S −→ {in,out,und}

satisfying certain conditions tailored so as to obtain a complete correspondence
with Dung’s semantics.

The labelling of an argument in disagreement with Dung’s semantics is said
to be “illegal”. This is explained further as follows.

Definition 1.1 (Illegal labelling of an argument [7]) Let 〈S,R〉 be an ar-
gumentation network and λ a labelling function for S.

1. An argument X ∈ S is illegally labelled in by λ if λ(X) = in and there
exists Y ∈ Att(X) such that λ(Y) 6= out.

4

2. An argument X ∈ S is illegally labelled out by λ if λ(X) = out and there
is no Y ∈ Att(X) such that λ(Y) = in.

3. An argument X ∈ S is illegally labelled und by λ if λ(X) = und and
either for all Y ∈ Att(X), λ(Y) = out or there exists Y ∈ Att(X), such
that λ(Y) = in.

A legal (complete) labelling is a labelling in which no argument is illegally
labelled.

It is possible to have more than one legal labelling function for the same
argumentation network. Each labelling function will correspond to an extension
in Dung’s semantics. For example, for network (L), we have the three functions
λ1, λ2 and λ0 below.

λ1 ⇔ E1 = {X} λ2 ⇔ E2 = {Y } λ0 ⇔ E0 = ∅
λ1(X) = in λ2(X) = out λ0(X) = und
λ1(Y) = out λ2(Y) = in λ0(Y) = und

For the network (R), we have only the function λ such that λ(X) = λ(Y) =
λ(Z) = und. This gives the empty extension.

The equational approach.
The equational approach views an argumentation network 〈S,R〉 as a math-

ematical graph generating equations for functions in the unit interval U = [0, 1].
Any solution f to these equations conceptually corresponds to an extension. Of
course, the end result depends on how the equations are generated and we can
get different solutions for different equations. Once the equations are fixed, the
totality of the solutions to the system of equations is viewed as the totality of
extensions via an appropriate mapping. One equation schema we can possibly
use for generating equations is the Eqmax below, where V (X) is the value of a
node X ∈ S:

(Eqmax) V (X) = 1−maxYi∈Att(X){V (Yi)}

Another possibility is Eqinv:

(Eqinv) V (X) =
∏
Yi∈Att(X)(1− V (Yi))

It is easy to see that according to Eqmax the value of any source argument
will be 1 (since they have no attackers) and the value of any argument with
an attacker with value 1 will be 0. The situation is more complex with nodes
participating in cycles. Consider the network (L) again, with equations

V (X) = 1− V (Y)
V (Y) = 1− V (X)

If values are taken from the unit interval, this system of equations will accept
any solution V such that V (X) + V (Y) = 1. We can divide these solutions
between three classes: V 1(X) = 1, V 1(Y) = 0; V 2(X) = 0, V 2(Y) = 1 and
0 < V 0(X) < 1, 0 < V 0(Y) < 1 with V 0(X) + V 0(Y) = 1. These again
correspond to the three extensions E1, E2 and E0 given before.

5

In fact, Gabbay has shown that in the case of Eqmax the totality of so-
lutions to the system of equations corresponds to the totality of extensions in
Dung’s sense [14]. The correspondence is best explained in terms of the labelling
semantics, using the following correspondence:

V (X) = 1 :: λ(X) = in
V (X) = 0 :: λ(X) = out
0 < V (X) < 1 :: λ(X) = und

The advantage of the equational approach is that it allows us to think of an
argumentation network as a numeric system in which nodes are given certain
values depending on specific rules governing their interaction with their neigh-
bours. A rule may for instance require the value of a node to be 0 if the value
of any attacking node is 1. Another rule may force the value of a node to be 1 if
it has no attacking nodes. The schema Eqmax and Eqinv embed these rules, and
they agree with Dung’s semantics. A solution to the system of equations is any
combination of values of nodes satisfying the equations. Of course, since the
node values are no longer discrete we have more freedom to design rules which
are appropriate for a given application. Part of the objective of this paper is to
explore the nature of these rules.

We start by generalising some concepts a bit further. Consider the network
in Figure 3 in which Att(X) = {Y1, Y2, . . . , Yk}. To agree with Dung’s semantics,
if the value of any attacker of X is 1, we want the value of X to be 0. If all of
the attackers of X have value 0, we want the value of X to be 1. For any other
combination of values of the attackers we want the value of X to be anything
other than 0 or 1. So within the traditional semantics but taking the extended
set of values of the unit interval, we can think of a single attack by a node with
value v as the order-reversing operation which returns the value 1− v. This is
a kind of negation.4 Since a node can have multiple attacks, we also need an
operation to combine the values of the attackers. We can think of this as a type
of conjunction, which numerically can be obtained through several operations.
For instance, in fuzzy logic, the standard semantics of (weak) conjunction is
given by the operation min.

X

Y1

Y2

Yk

Figure 3: Multiple attacks on a node.
4If we make und equals 1

2
, then an attack by a single undecided node will have value 1

2
.

6

Therefore, the value of a node X can be defined as

V (X) = min
Y ∈Att(X)

{1− V (Y)}

which is equivalent to

V (X) = 1− max
Y ∈Att(X)

{V (Y)}

obtained by our now familiar schema Eqmax. Note that the conjunction oper-
ation in the schema Eqinv is product. The operations min and product are two
examples of t-norms. They are two instances of functions that are particularly
suitable for argumentation semantics. The following definition elaborates on
this further.

Definition 1.2 A function g with domain being the family of all finite sequences
of elements from U and range U is argumentation-friendly if g satisfies the
following conditions.

(T1) g(∅) = 1

(T2) g(1; ∆) = g(∆)5

(T3) g(〈x1, . . . , x, . . . , y, . . . , xn〉) = g(〈x1, . . . , y, . . . , x, . . . , xn〉)

(T4) g(∆) = 0 if and only if 0 ∈ ∆

(T5) g(∆) = 1 if and only if x = 1 for every x ∈ ∆

(T6) g is continuous as a multi-variable function6

Example 1.1 Below are some examples of argumentation-friendly functions:

1. g(∆) =

{
1, if ∆ = ∅
min{xi}, if ∆ = 〈x1, . . . , xn〉

2. g(∆) =

{
1, if ∆ = ∅
Πn

1 (1− xi), if ∆ = 〈x1, . . . , xn〉

3. gλ(∆) = (1−λ) min{ 1
2 , g(∆)}+λmax{ 1

2 , g(∆)}, for any g satisfying (T1)–
(T6).

Later on, we will see that argumentation-friendly functions will be used both
to calculate aggregation of attacks as well as for combining the value of attacks
with initial values. However, as we mentioned attack is a type of negation and
hence when operating on the attack of a node with value v, we will consider the
complement of v to 1, i.e., (1− v).

Notice that t-norms satisfy conditions (T1)–(T4) above.
5The values of g for any sequence containing the value 1 is the same as the value of g for

the subsequence without the 1.
6In fact, this condition is only needed to guarantee the existence of solutions to the equa-

tions.

7

Definition 1.3 For any assignment of values v : S 7−→ U define the sets
in(v) = {X ∈ dom v | v(X) = 1} and out(v) = {X ∈ dom v | v(X) = 0}.

Theorem 1.1 Let N = 〈S,R〉 be a network, g an argumentation-friendly func-
tion, and T a system of equations written for N , where for each node X,
V (X) = gY ∈Att(X)({1 − V (Y)}). Take any solution V to T , it follows that
in(V) is a complete extension.
Proof. Suppose that in(V) is not conflict-free. Then there are X,Y ∈ in(V),
such that (X,Y) ∈ R. Since Y ∈ in(V), then V (Y) = 1 = gW∈Att(Y)({1 −
V (W)}). But X ∈ Att(Y) and X ∈ in(V), and hence V (X) = 1. It then
follows by (T4) that g(〈. . . , 0, . . .〉) = 0 and hence 1 6= 0, a contradiction.

Now suppose that X ∈ in(V). We show that for all Y ∈ Att(X) there exists
Z ∈ in(V), such that (Z, Y) ∈ R. If V (X) = 1, then gY ∈Att(X)({1−V (Y)}) = 1
and then by (T5) it follows that 1 − V (Y) = 1, for all Y ∈ Att(X) and hence
V (Y) = 0 for all Y ∈ Att(X). Take any such Y . Since V (Y) = 0, we have by
(T4) that for some W ∈ Att(Y), V (W) = 1. It then follows that W ∈ in(V).

Theorem 1.2 Let N = 〈S,R〉 be a network, g an argumentation-friendly func-
tion, and T a system of equations written for N , where for each node X,
V (X) = gY ∈Att(X){1 − V (Y)}. Then for every preferred extension EN of N ,
there exists a solution V to T such that

(C1) If X ∈ EN , then V (X) = 1

(C2) If EN → X, then V (X) = 0

(C3) If X 6∈ EN and EN 6→ X, then 0 < V (X) < 1

Proof. Let us start by partitioning the set S using EN into three sets ∆1 = EN ,
∆0 = {X ∈ S | EN → X}, and ∆u = S\(∆0 ∪∆1). Note that the elements of
∆u are the undecided elements in S with respect to EN . Each element of ∆u is
not attacked by any element of ∆1 and its attackers cannot all come from ∆0,
i.e., at least one attacker comes from ∆u itself. Consider the argumentation
network 〈∆u, R�∆u〉. Write a system of equations Tu using g for 〈∆u, R�∆u〉.
For each X ∈ ∆u, the equation is

Vu(X) = gY ∈∆u s.t. (Y,X)∈R�∆u
{1− Vu(Y)}

By Brouwer’s theorem, the above equations have a solution Vu.7 To be clear Vu
is defined on ∆u, giving values Vu(X), such that for every X ∈ ∆u, Vu(X) =
gY ∈∆u s.t. (Y,X)∈R�∆u

{1− Vu(Y)}
We are seeking however a solution V defined for all of S = ∆0 ∪∆1 ∪∆u,

which satisfies the system of equations T for 〈S,R〉:

V (X) = gY ∈Att(X){1− V (Y)}
7The Euclidean version of the theorem states that if g is a real-valued function, defined

and continuous on a bounded closed interval I of the real line where g(x) ∈ I, for all x ∈ I,
then g has a fixed-point. In our case, there are n = |S| variables in the network 〈S,R〉, which
we can associate with the vector

−→
X . We can then see each equation as

−→
X = −→g (

−→
X), where −→g

is a continuous function on the n-dimensional space [0, 1]n (see Theorem 1.2 in [21]).

8

Furthermore, we want V to be such that V (X) = 1 for X ∈ ∆1, V (X) = 0, for
X ∈ ∆0 and V (X) ∈ (0, 1) for X ∈ ∆u. We now define such a solution V . Let

V (X) = 1, for all X ∈ ∆1

V (X) = 0, for all X ∈ ∆0

V (X) = Vu(X), for all X ∈ ∆u

We have to show now that V indeed solves the system of equations T for
〈S,R〉. Take X ∈ S:
Case 1: X ∈ ∆1. We defined V (X) = 1. We need to show that 1 = gY ∈Att(X)

{1−V (Y)}. Since X ∈ EN , then all of its attackers are in ∆0, and then V (Y) =
0 (by definition), for all Y ∈ Att(X). Therefore, gY ∈Att(X){1− V (Y)} = 1, by
(T5).

Case 2: X ∈ ∆0. We defined V (X) = 0. We need to show that 0 = gY ∈Att(X)

{1− V (Y)}. Since EN → X, then there exists Y ∈ Att(X), such that Y ∈ ∆1.
By definition, V (Y) = 1, and then gY ∈Att(X){1− V (Y)} = 0, by (T4).

case 3: X ∈ ∆u. We defined V (X) = Vu(X) = gY ∈∆u s.t. (Y,X)∈R�∆u
{1 −

Vu(Y)}. We need to show that gY ∈Att(X){1 − V (Y)} = gY ∈∆u s.t. (Y,X)∈R�∆u

{1 − Vu(Y)}. We noted above, that X ∈ ∆u implies that none of its attack-
ers belong to ∆1 and therefore any remaining attackers Z not in ∆u must be
in ∆0. By definition, V (Z) = 0, therefore 1 − 0 = 1 and by (T2), such val-
ues can be safely deleted in the calculation of gY ∈Att(X){1 − V (Y)}. There-
fore, deleting all such values will show that gY ∈∆u s.t. (Y,X)∈R�∆u

{1−Vu(Y)} =
gY ∈∆u∪∆0 s.t. (Y,X)∈R{1− Vu(Y)}.

Having shown that V above solves the system of equations T , we can use
Theorem 1.1 to show that in(V) is a complete extension. We now ask whether
any of the values Vu(X), for X ∈ ∆u can be 0 or 1. The answer is no, for if
Vu(X) = 1 for any X ∈ ∆u, then V (X) = 1 and then X ∈ in(V)\EN , which
is impossible, since EN is a preferred extension. Analogously, we can only get
V (X) = 0 for some X ∈ Deltau, if for some of its attackers Z ∈ ∆u, V (Z) = 1,
which as we mentioned is impossible. This completed the proof.

The condition of preferred extension of the Theorem 1.2 is necessary, as
shown in the example below.

Example 1.2 Consider the complete extension E = {X} of the network below.
E is not preferred, since E is a proper subset of {X,W}.

X Y W Z

The network generates the following equations.

V (X) = 1− V (Y) (1)
V (Y) = 1− V (X) (2)
V (W) = 1− V (Z) (3)
V (Z) = g({1− V (W), 1− V (Z)}) (4)

9

Since V (X) = 1, we get that V (Y) = 0 and these values satisfy equations (1)
and (2) above. However, replacing (3) in (4) gives us

V (Z) = g(V (Z), 1− V (Z))

If g is product, this gives us V (Z) = V (Z)·(1−V (Z))), and hence 1 = 1−V (Z) ∴
V (Z) = 0, and hence V (W) = 1, and therefore no solution corresponding to
E using g exists. Note that the two preferred extensions {X,W} and {Y,W}
include W . No extension can include Z.

However, with g as min, we have that (4) becomes

V (Z) = min({1− V (W), 1− V (Z)})

and for this set of equations, the values V (X) = 1, V (Y) = 0, V (W) = V (Z) =
1
2 form a solution corresponding to E.

The loop in the example above is quite elucidating. Let us analyse it in some
more detail.

Example 1.3 Consider the network with a single self-referencing loop below.

X

The network generates the equation:

V (X) = g({1− V (X)})

Notice that g({1 − V (X)}) = 1 − V (X) and hence we have that V (X) = 1 −
V (X) ∴ V (X) = 1

2 , whatever the function g is, as long as it satisfies (T1)–(T5).

Note that min satisfies (T1)–(T4). As a result, we have that:

Corollary 1.1 Let N = 〈S,R〉 be a network and T a system of equations writ-
ten for N , where for each node X, V (X) = minY ∈Att(X)({1 − V (Y)}). Take
any solution V to T . It follows that in(V) is a complete extension.

This follows from Theorem 1.1. What it means is that any solution to
the system of equations defined in terms of Eqmax can be translated into a
complete extension simply by defining that extension as the set containing the
nodes whose solution values are 1. Obviously, different solutions will give rise
to different extensions.

Proposition 1.1 Let N = 〈S,R〉 be a network and T a system of equations
written for N , where for each node X, V (X) = minY ∈Att(X)({1 − Y }). Then
for every complete extension E of N , there exists a solution V to T satisfying:

(C1) If X ∈ E, then V (X) = 1.

10

(C2) If E → X, then V (X) = 0.

(C3) If X 6∈ E and E 6→ X, then 0 < V (X) < 1.

Proof. Let E be a complete extension. Consider the following assignment of
values to the nodes in S:

• if X ∈ E, then V (X) = 1

• if E → X, then V (X) = 0

• V (X) = 1
2 , otherwise

We now show that the values above form a solution to the system of equations
T . As in Theorem 1.2, replacing the above values in the original system of
equations will reduce them to the following types.

(1) 1 = min(∆1)

(2) 0 = min(∆2)

(3) 1
2 = min(∆3)

We have seen that ∆1 = {1} and since 1 = min({1}), (1) is satisfied. Similarly,
0 ∈ ∆2 and since min({0, . . .}) = 0, so is (2). Notice that the image of V is
{0, 1/2, 1}. All values in ∆3 are greater than 0, but at least one of them is 1

2 ,
therefore min(∆3) = 1

2 , and hence the above assignment solves the equations.

So far, we have shown the basics of the equational numerical approach to
abstract argumentation frameworks. In the next section we consider two addi-
tional developments that follow naturally. Firstly, we know that solutions do
exist to the system of equations, but can we find them using some numerical
method? For example, by applying iterations given some initial guess?8 Sec-
ondly, we would like to apply our methodology to questions of merging, voting,
or any other application where a set of initial values emerges and needs to be
transformed to the “closest” extension. How can we do that? The following
section provides a method to answer these questions.

2 The Gabbay-Rodrigues Iteration Schema
Suppose we are given initial values which do not correspond to any extension
in the way that we presented them in the previous section. These values may
come attached to the nodes for different reasons. For instance, the arguments
themselves may be expressed as some proof in a fuzzy logic and the initial values
can represent the values of the conclusions of the proofs, or they can be obtained
as the result of the merging of some networks, or they may come from some
voting mechanism, etc. Whatever the reason, the initial values may or may not

8As can be done to find the square root of numbers using Newton’s method.

11

correspond to a complete extension in Dung’s sense and we seek a mechanism
that would allow us to find the “best” possible extension corresponding to them.

Consider the equation Eqmax:

(Eqmax) V (X) = 1−maxYi∈Att(X){V (Yi)}

Eqmax is satisfied when the value of the node X is legal (in Caminada and
Pigozzi’s terminology [7]). That is, if the value of X is 1 and the value of all of
X’s attackers are 0; or if the value of X is 0 and at least of one X’s attackers
has value 1; or if the value of X ∈ (0, 1) and at least one of X’s attackers has
value in (0, 1) and no attacker of X has value 1. If we aim to correct the values
of the nodes in a network iteratively, we need a mechanism that leaves legal in,
out and und node values intact, changing illegal in or out values into und.9
To make a distinction between these classes of values, we will call the values in
{0, 1} crisp and the values in (0, 1) undecided.

Now consider the following averaging function:

(1−X) ·min
{

1
2 , 1−maxY ∈Att(X) Y

}
+X ·max

{
1
2 , 1−maxY ∈Att(X) Y

}
For legal assignments of values, we have three cases to consider:

(L1) X is legally in. In this case X = 1 and all of its attackers have value 0.
We want the value of X to remain 1. We have that:

(1−X) ·min

{
1

2
, 1− max

Y ∈Att(X)
Y

}
+X ·max

{
1

2
, 1− max

Y ∈Att(X)
Y

}
=

1 ·max

{
1

2
, 1

}
=

= 1

(L2) X is legally out. In this case X = 0 and at least one of its attackers has
value 1. We want the value of X to remain 0. We have that:

1 ·min

{
1

2
, 1− max

Y ∈Att(X)
Y

}
+X ·max

{
1

2
, 1− max

Y ∈Att(X)
Y

}
=

1 ·min

{
1

2
, 0

}
+ 0 ·max

{
1

2
, 0

}
=

= 0

(L3) X is legally und. In this case 0 < X < 1, none of its attackers has value 1
and at least one of its attackers has value greater than 0. This means that
0 < maxY ∈Att(X) Y < 1 and therefore 0 < (1−maxY ∈Att(X) Y) < 1. Let
α1 = min

{
1
2 , 1−maxY ∈Att(X) Y

}
and α2 = max

{
1
2 , 1−maxY ∈Att(X) Y

}
.

It follows that 0 < α1 < 1 and 0 < α2 < 1. We want the value of X to
9We will come to the correction of illegal und nodes later.

12

remain undecided, although we are prepared to accept changes to its ini-
tial value as long as its final value remains in the interval (0, 1). We have
that:

(1−X) ·min

{
1

2
, 1− max

Y ∈Att(X)
Y

}
+X ·max

{
1

2
, 1− max

Y ∈Att(X)
Y

}
=

(1−X) · α1 +X · α2 =

α1 −X · α1 +X · α2 =

α1 −X · (α1 − α2) = κ

Notice that α1 ≤ 1
2 and α2 ≥ 1

2 , therefore α2 6< α1. If α1 = α2, then
κ = α1 and hence 0 < κ ≤ 1

2 . If α1 < α2, then 0 < α1 <
1
2 and α2 = 1

2 .
Therefore, − 1

2 < (α1 − α2) < 0. It then follows that 0 < α1 ≤ κ < 1
2 and

therefore the value of X remains in (0, 1).

What (L1)–(L3) above give us is that legal labellings are preserved.10 Later
on, we shall see that our iteration schema also eventually corrects all illegal
values. It does so in two stages. In the first stage, all illegal crisp values are
turned into undecided (this is done in t ≤ |S| iterations). In the second stage,
all remaining illegal undecided values converge to whatever legal crisp values
they should be, so that in the limit, all of the values in the sequence are legal.
Therefore, the Gabbay-Rodrigues Iteration Schema introduced below provides
a numerical iterative method to turn any initial illegal assignment of values to
arguments into its closest legal assignment.11

Definition 2.1 Let N = 〈S,R〉 be an argumentation network and V0 be an
assignment of values to the nodes in S. The Gabbay-Rodrigues Iteration Schema
is defined by the following system of equations T , where for each node X ∈ S,
the value Vi+1(X) is defined in terms of the values of the nodes in Vi as follows:

Vi+1(X) = (1− Vi(X)) ·min
{

1
2 , 1−maxY ∈Att(X) Vi(Y)

}
+

Vi(X) ·max
{

1
2 , 1−maxY ∈Att(X) Vi(Y)

} (T)

We call the system of equations for N using the above iteration schema its
GR system of equations.

We ask whether we can regard the iteration schema above as an equation
schema as in the previous section, i.e.,

X = (1−X) ·min

{
1

2
, 1− max

Y ∈Att(X)
Y

}
+X ·max

{
1

2
, 1− max

Y ∈Att(X)
Y

}
(GR)

10Legal undecided values may change, although they remain in the undecided range (by
(L3)).

11The precise definition of “closest” will be made clear in Theorem 2.9.

13

To further clarify this point, let us take an equation written with an argumen-
tation-friendly function g for a node X in terms of its attackers. The equation
would be

X = g(∪Y ∈Att(X){1− Y })

It is clear that if one of the attackers of X is 1, the value of X solves to 0, and
if all the attackers of X are 0, the value of X will solve to 1. This follows from
the properties (T1)–(T5) of an argumentation-friendly function. Now let us
compare and see what happens when we use the formula above. If the value of
one of the attackers of X is 1, the first component of the sum will be 0, whereas
the second component will be 1

2 , because the equation is implicit, we have the
equation

X =
X

2

which solves to X = 0, which is correct. If the values of all attackers of X are
0, then we get the equation

X =
(1−X)

2
+X

which solves to X = 1, which again gives a correct result. Otherwise, assume
that the values of all attackers are either 0 or 1

2 , with at least one of them being
1
2 . We get the equation

X =
(1−X)

2
+
X

2

which again solves to the correct value of X = 1
2 . By correct we mean that

the results are exactly compatible with the Caminada labelling mentioned in
Section 1, where X = 1 means X is in, X = 0 means X is out and X = 1

2
means X is und.

Therefore, the Gabbay-Rodrigues schema remains faithful to the spirit of
Dung’s semantics captured through the legal Caminada labellings just as Eqmax
does. Its advantage over Eqmax is that it can be used iteratively as we will show
in the rest of this section. 12

We start by showing some properties of the schema. The first one ensures
that the values of all nodes remain in the unit interval in all iterations.

Proposition 2.1 Let N = 〈S,R〉 be an argumentation network and V0 : S 7−→
U an assignment of initial values to the nodes in S. Let each assignment Vi,
i > 0, be calculated by the Gabbay-Rodrigues Iteration Schema for N . It follows
that Vi(X) ∈ U , for all i ≥ 0 and all X ∈ S.
Proof. The base of the induction is the initial value assignment that holds
trivially. The induction step is proven by looking at the maximum and minimum
values that the nodes can take and showing that the sum in the iterated schema

12As an equation, we can regard the expression (GR) just as another type of g, a special
eqGR.

14

is always a number in U . Now, suppose that indeed for all nodes X ∈ S,
0 ≤ Vk(X) ≤ 1, for a given iteration k. Pick any node X. It follows that

Vk+1(X) = (1− Vk(X)) ·min

{
1/2, 1− max

Y ∈Att(X)
Vk(Y)

}
+

Vk(X) ·max

{
1/2, 1− max

Y ∈Att(X)
Vk(Y)

}
So we have that Vk+1(X) = (1−α) ·x+α ·y, where 0 ≤ α ≤ 1, 0 ≤ (1−α) ≤ 1,
0 ≤ x ≤ 1/2, and 1/2 ≤ y ≤ 1.

The lowest value for Vk+1(X) is obtained with the lowest values for x and
y, when we get that Vk+1(X) = α

2 . If α = 0, then Vk+1(X) = 0 ≥ 0. If α = 1,
then we get Vk+1(X) = 1/2 ≤ 1. The highest value for Vk+1(X) is obtained with
the highest values for x and y, when we get that Vk+1(X) = (1−α)

2 +α. If α = 0,
then Vk+1(X) = 1/2 ≤ 1. If α = 1, then we get Vk+1(X) = 1 ≤ 1. In all cases,
0 ≤ Vk+1(X) ≤ 1.

We now show that a given “legal” set of initial values for the nodes in S
satisfies the equations and hence the values remain unchanged.

Proposition 2.2 Let N = 〈S,R〉 be a network and T its GR system of equa-
tions. Then for every complete extension E of N and all X ∈ S, if V0 is defined
using E by the clauses (C1)–(C3) below, we have that V1(X) = V0(X).

(C1) If X ∈ E, then V0(X) = 1

(C2) If E → X, then V0(X) = 0

(C3) If X 6∈ E and E 6→ X, then V0(X) = 1
2

Proof. Let E be a complete extension and suppose V0(X) = 1. Then X ∈ E
and hence, i) either Att(X) = ∅, or ii) for all Y ∈ Att(X), E → Y (since E is
admissible). As a result, 1−maxY ∈Att(X){V (Y)} = 1, and hence we have that

V1(X) = max

{
1

2
, 1

}
= 1 = V0(X).

If on the other hand, V0(X) = 0, then E → X. Therefore, there exists some
Y ∈ Att(X), such that Y ∈ E and hence V0(Y) = 1. It follows that

V1(X) = min

{
1

2
, 1− 1

}
= 0 = V0(X).

Finally, if V0(X) = 1
2 , then X 6∈ E and E 6→ X. We must have that for

all Y ∈ Att(X), V0(Y) < 1 (otherwise, we would have that E → X). We
must also have that for some Y ∈ Att(X), V0(Y) > 0, otherwise E would
defend X and since it is complete X ∈ E, but then V0(X) = 1. Therefore,
1−maxY ∈Att(X){V (Y)} = 1

2 , and hence we have that

V1(X) =
1

2
·min

{
1

2
,

1

2

}
+

1

2
·max

{
1

2
,

1

2

}
=

1

4
+

1

4
=

1

2
= V0(X).

15

Obviously, if for all nodes X, V1(X) = V0(X) as above, then for all nodes
X, Vi+1(X) = Vi(X), for all i ≥ 0.

Furthermore, crisp values do not “swap” between each other and undecided
values do not become crisp:

Theorem 2.1 Let N = 〈S,R〉 be an argumentation network, T a system of
equations for N using the Gabbay-Rodrigues Iteration Schema, and V0 : S 7−→ U
an assignment of initial values to the nodes in S. Let V0, V1, V2, . . . be a
sequence of value assignments where each Vi, i > 0, is generated by T . Then
the following properties hold for all X ∈ S and for all k ≥ 0

1. If Vk(X) = 0, then Vk+1(X) 6= 1.

2. If Vk(X) = 1, then Vk+1(X) 6= 0.

3. If 0 < Vk(X) < 1, then 0 < Vk+1(X) < 1.

Proof.

1. Suppose Vk(X) = 0, then Vk+1(X) = min
{

1/2, 1−maxY ∈Att(X) Vi(Y)
}
≤

1/2.

2. Suppose Vk(X) = 1, then Vk+1(X) = max
{

1/2, 1−maxY ∈Att(X) Vi(Y)
}
≥

1/2.

3. Suppose 0 < Vk(X) < 1. We first show that Vk+1(X) > 0. Note that
0 < (1− Vk(X)) < 1. Therefore, we have that

Vk+1(X) = (1− Vk(X)) ·min

{
1/2, 1− max

Y ∈Att(X)
Vi(Y)

}
+

Vk(X) ·max

{
1/2, 1− max

Y ∈Att(X)
Vi(Y)

}
It is easy to see that the first component of the above sum is greater than
or equal to 0, whereas the second is strictly greater than 0, and hence
Vk+1(X) > 0.

Since we start with values in U , Proposition 2.1, gives us that Vk+1(X) ≤
1, for all X ∈ S. We therefore only need to show that Vk+1(X) 6= 1. Again
we have that Vk+1(X) = (1− α) · x+ α · y, where

0 < α < 1

0 < (1− α) < 1

0 ≤ x ≤ 1/2

1/2 ≤ y ≤ 1

16

Suppose Vk+1(X) = 1. It follows that

(1− α) · x+ α · y = 1

x− α · x+ α · y = 1

α(y − x) = (1− x)

α =
1− x
y − x

Since α < 1, we have that 1−x < y−x, and hence y > 1, a contradiction.

The above theorem shows that any changes between iterations can only
generate new values for nodes in the interval (0, 1), i.e., successive iterations
can only turn crisp values into undecided. Therefore, the sets of nodes with
crisp values can only decrease throughout the iterations:

Corollary 2.1 Let N = 〈S,R〉 be an argumentation network, V0 : S 7−→ U an
initial assignment of values to the nodes in S and T its GR system of equations.
It follows that for all 0 ≤ i ≤ j, in(Vj) ⊆ in(Vi) and out(Vj) ⊆ out(Vi).

The situation in the limit of the sequence of values is more complex and we
will deal with it later. If between two successive iterations there are no changes
in the crisp values, then these values “stabilise”:

Theorem 2.2 Let N = 〈S,R〉 be a network, T its GR system of equations, and
V0 an initial assignment of values to the nodes in S. Let V0, V1, V2, . . . be a
sequence of value assignments where each Vi, i > 0, is generated by T . Assume
that for some iteration i and all nodes X ∈ S such that Vi(X) ∈ {0, 1}, we have
that Vi+1(X) = Vi(X), then for all j ≥ 1, Vi+j(X) = Vi(X).
Proof. Assume that Vi(X) ∈ {0, 1} for some node X. There are two cases to
consider.

Case 1: Vi(X) = 0. By assumption, we have that Vi+1(X) = 0. We show that
Vi+2(X) = 0. If Vi+1(X) = 0, we have that

Vi+1(X) = (1− Vi(X)) ·min

{
1

2
, 1− max

Y ∈Att(X)
{Vi(Y)}

}
+

Vi(X) ·max

{
1

2
, 1− max

Y ∈Att(X)
{Vi(Y)}

}
0 = min

{
1

2
, 1− max

Y ∈Att(X)
{Vi(Y)}

}
So, maxY ∈Att(X){Vi(Y)} = 1 and hence for some Y ∈ Att(X), Vi(Y) = 1. By
assumption Vi+1(Y) = 1 and hence maxY ∈Att(X){Vi+1(Y)} = 1. Therefore,

Vi+2(X) = min

{
1

2
, 1− max

Y ∈Att(X)
{Vi+1(Y)}

}
= 0

17

Case 2: Vi(X) = 1. By assumption, we have that Vi+1(X) = 1. We show that
Vi+2(X) = 1. If Vi+1(X) = 1, we have that

Vi+1(X) = (1− Vi(X)) ·min

{
1

2
, 1− max

Y ∈Att(X)
{Vi(Y)}

}
+

Vi(X) ·max

{
1

2
, 1− max

Y ∈Att(X)
{Vi(Y)}

}
1 = max

{
1

2
, 1− max

Y ∈Att(X)
{Vi(Y)}

}

So, maxY ∈Att(X){Vi(Y)} = 0, and hence for all Y ∈ Att(X), Vi(Y) = 0. By
assumption, maxY ∈Att(X){Vi+1(Y)} = 0, and hence

Vi+2(X) = max

{
1

2
, 1− max

Y ∈Att(X)
{Vi+1(Y)}

}
= 1

Definition 2.2 Let N = 〈S,R〉 be an argumentation network and V0 : S 7−→ U
an assignment of initial values to the nodes in S. A sequence of assignments
Vi : S 7−→ U where each i > 0 is generated by the Gabbay-Rodrigues Iteration
Schema for N becomes stable at iteration k, if for all nodes X ∈ S we have that

1. If Vk(X) ∈ {0, 1}, then Vk+1(X) = Vk(X); and

2. k is the smallest value for which the condition above holds.

Note that if Vk(X) ∈ (0, 1), then Vk+1(X) ∈ (0, 1), for all k ≥ 0, by Theo-
rem 2.1.

Corollary 2.2 Consider a sequence of value assignments V0, V1, V2, . . . as
described in Theorem 2.2. If the sequence becomes stable at iteration k, then the
sequence remains stable for all iterations k + j, j ≥ 0.
Proof. The first stability condition in Definition 2.2 follows from Theorem 2.1
and the second condition follows from Theorem 2.2.

Corollary 2.3 Let N = 〈S,R〉 be an argumentation network, V0 : S 7−→ U an
assignment of initial values to the nodes in S and T its GR system of equations.
The following hold:

1. If the sequence of value assignments is not stable at iteration k, then there
exists X ∈ S, such that Vk(X) ∈ {0, 1} and Vk+1(X) ∈ (0, 1).

2. Let |S| = n. Then, the sequence is stable for some k ≤ n.

Proof. (1) follows from Theorem 2.1. For (2), notice that each iteration i
which is not stable causes at least one node to change value from {0, 1} into
(0, 1). Theorem 2.1 states that all values in (0, 1) remain in (0, 1). Since S is
finite, there are only finitely many nodes that can change from {0, 1} into (0, 1)
and the number of iterations in which this can happen is bounded by |S|.

18

Corollary 2.3 shows that for some value 0 ≤ k ≤ |S|, the sequence of value
assignments V0(X), V1(X), V2(X), . . . eventually becomes stable. That is, there
exists k ≥ 0, such that for all j ≥ 0 and all nodes X

• if Vk(X) = 0, then Vk+j = 0;

• if Vk(X) = 1, then Vk+j = 1; and

• if Vk(X) ∈ (0, 1), then Vk+j ∈ (0, 1).

Remark 2.1 Given an argumentation-friendly function g, we can define the
Gabbay-Rodrigues Iteration Schema for g, denoted by GR(g), as follows.

Vi+1(X) = (1− Vi(X)) ·min

{
1

2
, g(∪Y ∈Att(X){1− Vi(Y)})

}
+

Vi(X) ·max

{
1

2
, g(∪Y ∈Att(X){1− Vi(Y)})

}
If we further assume that g satisfies the optional condition

(T6) If for all x ∈ ∆, we have that x < 1 and for some x ∈ ∆, x > 0, then
g(∆) ∈ (0, 1).

Then the above sequence of definitions and theorems in this section still holds if
we replace GR by GR(g).

The above discussion laid out the properties of the Gabbay-Rodrigues It-
eration Schema. In what follows we shall apply it to the following question.
Suppose we have an argumentation network 〈S,R〉 with associated equations
and an initial assignment f : S 7−→ U . f may come from a single agent who
insists on giving certain values to the arguments of S; or f may be the result of
merging several argumentation frameworks with the nodes in S (through some
well-defined process, e.g., voting); or f may arise from any other process. Our
problem is to find the function f ′, closest to f , which also corresponds to an
extension of 〈S,R〉 (for example, solves the equations generated from 〈S,R〉).
Now, what do we mean by “closest”? Following Caminada and Pigozzi [7], we
take the view that “closest” means agreeing on the maximal number of nodes
with f -values in {0, 1}. In what follows, we show how to find such an assignment
f ′, through the Gabbay-Rodrigues Iteration Schema.

Theorem 2.3 Let 〈S,R〉 be a network and f : S 7−→ U an assignment of values
to the nodes in S. Then there is an assignment h : S 7−→ U such that the sets
in(h) ⊆ in(f) and out(h) ⊆ out(f) are maximal and for every node X ∈ S:

If h(X) = 1, then maxY ∈Att(X){h(Y)} = 0; and (5)
If h(X) = 0, then maxY ∈Att(X){h(Y)} = 1. (6)

Proof. The proof is analogous to the proof of Theorem 5 in [7].
Take any two assignments g1 and g2 such that for all X ∈ S:

19

• g1(X) = 0 implies f(X) = 0 and g2(X) = 0 implies f(X) = 0; and

• g1(X) = 1 implies f(X) = 1 and g2(X) = 1 implies f(X) = 1

and

If g1(X) = 1, then maxY ∈Att(X){g1(Y)} = 0; and (7)
If g2(X) = 1, then maxY ∈Att(X){g2(Y)} = 0; and (8)
If g1(X) = 0, then maxY ∈Att(X){g1(Y)} = 1; and (9)

If g2(X) = 0, then maxY ∈Att(X){g2(Y)} = 1 (10)

It follows that in(g1) ⊆ in(f) and out(g1) ⊆ out(f); and in(g2) ⊆ in(f) and
out(g2) ⊆ out(f).

Let us construct an assignment h : S 7−→ U , such that for all X ∈ S:

h(X) = 1 iff max(g1(X), g2(X)) = 1 (11)
h(X) = 0 iff min(g1(X), g2(X)) = 0 (12)

h(X) = 1/2 iff 0 < g1(X) < 1 and 0 < g2(X) < 1 (13)

We now show that the assignment h is a well-defined function and that
in(h) ⊆ in(f) and that out(h) ⊆ out(f). It is easy to see that every node
X gets at least one value h(X). We need to show that for every node X, this
value is unique and that the above inclusions are satisfied. From (13), it is
easy to see that h(X) is equal to 1/2 if and only if both g1(X) ∈ (0, 1) and
g2(X) ∈ (0, 1). To show inclusion, suppose X ∈ in(h). Then h(X) = 1 and
hence max(g1(X), g2(X)) = 1. Either g1(X) = 1 or g2(X) = 1 (or both),
and hence f(X) = 1. Therefore X ∈ in(f). To show that h(X) is unique
in this case, it is sufficient to show that min(g1(X), g2(X)) > 0. Suppose
min(g1(X), g2(X)) = 0, then either g1(X) = 0 or g2(X) = 0, in which case
f(X) = 0, a contradiction, since f is a function. Analogously, if X ∈ out(h),
then h(X) = 0 and hence min(g1(X), g2(X)) = 0. Then either g1(X) = 0 or
g2(X) = 0 (or both), and hence f(X) = 0. Therefore, X ∈ out(f). To show that
h(X) is also unique in this case, it suffices to show that max(g1(X), g2(X)) < 1.
Suppose that max(g1(X), g2(X)) = 1, then either g1(X) = 1 or g2(X) = 1, in
which case f(X) = 1, a contradiction, since f is a function.

We now show that h satisfies (5) and (6).
Suppose h(X) = 1. By construction, max(g1(X), g2(X)) = 1. It follows

that i) either X ∈ in(g1), and then by (7), maxY ∈Att(X){g1(Y } = 0. This
means that for every Y ∈ Att(X), g1(Y) = 0. By (12), for every Y ∈
Att(X), h(Y) = 0, and hence maxY ∈Att(X){h(Y)} = 0; or ii) X ∈ in(g2),
and then by (8), maxY ∈Att(X){g2(Y } = 0. By (12), for in(g2) is also admissi-
ble, Y ∈ out(g2), and hence for every Y ∈ Att(X), h(Y) = 0, and hence again
maxY ∈Att(X){h(Y)} = 0. This shows that h satisfies (5).

As for (6), suppose h(X) = 0, then by the construction of h either g1(X) = 0
or g2(X) = 0 (or both). The two cases are identical. We consider only the case

20

g1(X) = 0. By (9), maxY ∈Att(X){g1(Y)} = 1, and hence for some Y ∈ Att(X),
g1(Y) = 1. By (11), we have that h(Y) = 1 and then maxY ∈Att(X){h(Y)} = 1.

Note that in(g1) ⊆ in(h), out(g1) ⊆ out(h), in(g2) ⊆ in(h) and out(g2) ⊆
out(h). Therefore, since every g1 and g2 satisfying (7)–(10) give rise to a func-
tion h as described, and the number of all such functions is finite, then there
exists one such h that the sets in(h) and out(h) are maximal.

Corollary 2.4 Let 〈S,R〉 be a network and f : S 7−→ U an assignment of
values to the nodes in S and h : S 7−→ U the assignment such that the sets
in(h) ⊆ in(f) and out(h) ⊆ out(f) are maximal and for every node X ∈ S:

If h(X) = 1, then maxY ∈Att(X){h(Y)} = 0; and (14)
If h(X) = 0, then maxY ∈Att(X){h(Y)} = 1. (15)

as given by Theorem 2.3. Then the set in(h) is the largest admissible subset of
in(f) such that also out(h) ⊆ out(f).
Proof. in(h) is conflict-free: if you take X ∈ in(h), then h(X) = 1 and then
maxY ∈Att(X){h(Y)} = 0. Therefore, either Att(X) = ∅; or for all Y ∈ Att(X),
h(Y) = 0, and hence Y 6∈ in(h).

To show that in(h) is admissible, we just need to show that if X ∈ in(h)
and Y ∈ Att(X), then there exists Z ∈ Att(Y), such that Z ∈ in(h). Assume
that X ∈ in(h) and Y ∈ Att(X). By definition, h(X) = 1, and then by (14),
maxWx∈Att(X){h(Wx)} = 0, and hence h(Y) = 0. By (15), maxWy∈Att(Y)

{h(Wy)} = 1. Therefore, there exists Z ∈ Att(Y), such that Z ∈ in(h).
The fact that in(h) is the largest subset of in(f) subject to out(h) ⊆ out(f)

comes directly from Theorem 2.3.

Remark 2.2 Consider the following network.

X Y

There is no largest admissible subset of E = {X,Y }! There are two maximal
admissible subsets E1 = {X} and E2 = {Y }, so the requirement that “no new
out nodes are generated” is very important in Theorem 2.3. In terms of assign-
ments (or labellings for that matter) this was expressed as: out(h) ⊆ out(f).13

If we are given an assignment f(A) = 1 and f(B) = 1, there is a class of
assignments h such that the sets in(h) ⊆ in(f) and out(h) ⊆ out(f) are the
largest. For instance, h(A) = h(B) = 1

2 . In the example above, it is sufficient
to set 0 < h(A) < 1 and 0 < h(B) < 1 (we chose the value 1

2 in Theorem 2.3
simply because we wanted to show that one existed and because as we shall see
the legal undecided values will end up converging to 1

2).
Note, in particular that the assignment f does not satisfy the conditions

of Theorem 2.3 (which guarantee by Corollary 2.4 that in(f) is an admissible
13If we are given just E, we may want to think of an assignment f such that in(f) = E and

out(f) = {X | E → X}, leaving the nodes in S\(in(E) ∪ out(E)) with a value in (0, 1).

21

set). We could turn f into an admissible assignment by just flipping one of the
values of A or B to 0. However, if we did this, for instance, by generating the
assignment f ′(A) = 1 and f ′(B) = 0, then although in(f ′) is admissible and
in(f ′) ⊆ in(f), we would not have that out(f ′) = {B} ⊆ out(f) = ∅!

This is as it should be, because an initial assignment f encodes not only
which nodes we would like to be in, but also those that we would like to be out,
and we cannot decide without further information to optimise on the in’s in
detriment of the out’s.

Theorem 2.4 Let N = 〈S,R〉 be a network and T its GR system of equations.
If the sequence of values V0, V1, . . . becomes stable at iteration k, then in(Vk) is
the largest admissible set such that in(Vk) ⊆ in(V0) and out(Vk) ⊆ out(V0).
Proof. We first show that in(Vk) is an admissible set.

1. Suppose in(Vk) is not conflict-free. Therefore, there must exist X,Y ∈
in(Vk), such that (Y,X) ∈ R. Since X,Y ∈ in(Vk), Vk(X) = Vk(Y) = 1.
Vk+1(X) = max

{
1/2, 1−maxY ∈Att(X) Vk(Y)

}
= 1/2, and then the se-

quence is not stable at k, a contradiction. Therefore, in(Vk) is conflict-
free.

2. Suppose in(Vk) is not admissible. It follows that there exists X ∈ in(Vk)
and some Y ∈ S with (Y,X) ∈ R, such that in(Vk) 6→ Y . Since X ∈
in(Vk), then Vk(X) = 1 and since the sequence is stable at k, Vk+1(X) =
1 = max

{
1/2, 1−maxW∈Att(X) Vk(W)

}
. Therefore, maxW∈Att(X) Vk(W)

= 0. In particular, Vk(Y) = 0, and hence Vk+1(Y) = min {1/2, 1−
maxZ∈Att(Y) Vk(Z)

}
= 0, and therefore there exists Z ∈ Att(Y), such

that Vk(Z) = 1, and hence Z ∈ in(Vk), and hence in(Vk) → Y , a contra-
diction. Therefore, in(Vk) is admissible.

Now we need to show that in(Vk) is indeed the maximal admissible set such that
in(Vk) ⊆ in(V0) and out(Vk) ⊆ out(V0). By Theorem 2.3, there are unique
maximal sets in(Vmax) ⊆ in(V0) and out(Vmax) ⊆ out(V0) such that in(Vmax)
is admissible. Furthermore, in(Vmax) ⊇ in(Vk) and out(Vmax) ⊇ out(Vk).
Suppose either in(Vk) or out(Vk) are not maximal and let 0 < j < k be
the first index such that there is some X ∈ in(Vmax), such that X 6∈ in(Vj)
or that there is some Y ∈ out(Vmax) such that Y 6∈ out(Vj) (or both). We
start with the first case. Since X ∈ in(Vmax), then X ∈ in(Vj−1) and hence
Vj−1(X) = 1. Since X 6∈ in(Vj), then Vj(X) < 1. It follows that Vj(X) =
max

{
1/2, 1−maxY ∈Att(X) Vj−1(Y)

}
< 1. Therefore, there exists Y ∈ Att(X),

such that Vj−1(Y) > 0 and hence Y 6∈ out(Vj−1). Since in(Vmax) is admissible,
Y ∈ out(Vmax) and this is a contradiction with the fact that j was the first index
such that there was some Y ∈ out(Vmax) such that Y 6∈ out(Vj) .

The second case is analogous. Take Y ∈ out(Vmax) such that Y 6∈ out(Vj).
Since Y ∈ out(Vmax), then Y ∈ out(Vj−1) and hence Vj−1(Y) = 0. Since
Y 6∈ out(Vj), then Vj(Y) > 0. It follows that Vj(Y) = min{1/2, 1−maxZ∈Att(Y)

Vj−1(Z)} > 0. Therefore, for all Z ∈ Att(Y) we have that Vj−1(Z) < 1 and
hence there is no Z ∈ Att(Y), such that Z ∈ in(Vj−1). Since Y ∈ out(Vmax),

22

there must be some Z ′ ∈ Att(Y), such that Z ′ ∈ in(Vmax), but this is a contra-
diction since Z ′ 6∈ in(Vj−1) and j was the first index such that there was some
X ∈ in(Vmax), such that X 6∈ in(Vj).

Remark 2.3 Given an argumentation network N = 〈S,R〉, an argumentation-
friendly function g, a system of equations T written for N using g, and an
assignment v : S 7−→ U , which represents initial desired values, then if v corre-
sponds to a complete extension then the above theorems tell us that the sequence
of equations V0 = v, V1, V2,. . . will become stable at some iteration k and Vk = v.
Otherwise, Vk is the function giving the maximal possible crisp part in(Vk) and
out(Vk) agreeing with v such that the set in(Vk) is admissible. We now have the
option of extending in(Vk) into a complete extension Ecomp that is the closest
extension agreeing with in(v). If this extension is also preferred, then it would
correspond to an assignment f ′, which solves the original system of equations
T (by Theorem 1.2). If the extension is not preferred, then whether such an
f ′ exists depends on the nature of the function g. Some such functions, such
as min can always find an f ′ for every complete extension. Others, such as
product, can not always find them.14

We will see that with the Gabbay-Rodrigues Iteration Schema, if we continue
iterating, in the limit of the sequence, we will get an extension.

The following definition helps to translate between values in U and values
in {in,out,und}.

Definition 2.3 (Caminada-Pigozzi/Gabbay-Rodrigues Translation) A la-
belling function λ and a valuation function V can be inter-defined according to
the table below.

λ(X) → Vλ(X) V (X) → λV (X)

in → 1 1 → in
out → 0 0 → out
und → 1/2 (0, 1) → und

The choice of the value 1/2 in the translation from und is arbitrary. Any
value in (0, 1) would do, but we will see that legal undecided values will converge
to 1/2 in the limit, and so 1/2 is the natural choice.

Definition 2.4 A legal assignment V is an assignment of values V : S 7−→ U
such that the corresponding labelling function λV defined according to Defini-
tion 2.3 is also legal.

Proposition 2.3 Let λ be a labelling function and Vλ its corresponding Caminada-
Pigozzi translation. If the Gabbay-Rodrigues Iteration Schema is employed us-
ing Vλ as V0, then for some value k ≥ 0, the sequence of values V0, V1, . . . will

14Product is given in Item 2. of Example 1.1. For the network S = {A,B}, R =
{(A,B), (B,A), (B,B)} and the complete extension “all undecided”, there is no solution using
product.

23

become stable and the sets in(Vk) and out(Vk) will correspond to the down-
admissible labelling of λ.
Proof. This follows directly from Theorem 2.4 and Corollary 2.3.

We may also arbitrarily start with V0(X) = 1 for all nodes X ∈ S and
see if this assignment satisfies the equations. At each iteration, the equations
may force the crisp values of some nodes to turn to und. Eventually, some
iteration k ≤ |S| will produce the last set of new undecided values, at which
point we say that the sequence has stabilised. We have that in(Vk) and out(Vk)
correspond to the largest admissible labelling such that in(Vk) ⊆ in(V0) and
out(Vk) ⊆ out(V0). in(Vk) can now form the basis of a complete extension. The
smallest of such (complete) extensions comes from what Caminada and Pigozzi
called the up-complete labelling of λVk

:

Definition 2.5 ([7]) Let λ be an admissible labelling. The up-complete la-
belling of λ is a complete labelling λ′ s.t. in(λ′) ⊇ in(λ) and out(λ′) ⊇ out(λ)
and in(λ′) and out(λ′) are the smallest sets satisfying these conditions.

If we continue with our calculations we can see what happens with the values
V0, V1,. . . ,Vi, . . . in the limit of the sequence. We cal these the equilibrium values.
Formally,

Definition 2.6 Let N = 〈S,R〉 be an argumentation network, T its GR system
of equations, and V0 an assignment of initial values to the nodes in S. The
equilibrium value of the node X is defined as Ve(X) = limi→∞ Vi(X).

The understanding of the meaning of the equilibrium values requires an
analysis of the behaviour of the sequence. The value of a node X is essentially
determined by the values of the nodes in Att(X). At the stable point k we know
that the crisp values remain crisp. The values of the attackers of a node at the
stable point k can be of one of three types:

1. maxY ∈Att(X){Vk(Y)} = 0

2. maxY ∈Att(X){Vk(Y)} = 1

3. 0 < maxY ∈Att(X){Vk(Y)} < 1

If the value of a node Y at the stable point k is in {0, 1}, then Theo-
rem 2.2 ensures that it will remain the same in the limit limi→∞ Vi(Y). As
it turns out, if maxY ∈Att(X){Vk(Y)} = 0, then limi→∞ Vi(X) = 1. And if
maxY ∈Att(X){Vk(Y)} = 1, then limi→∞ Vi(X) = 0, as shown by the next theo-
rem.

Theorem 2.5 Let N = 〈S,R〉 be an argumentation network and V0 : S 7−→ U
assign initial values to the nodes in S. Let the sequence of value assignments V0,
V1, V2, . . . where each Vi, i > 0, is generated by the Gabbay-Rodrigues Iteration
Schema be stable at iteration k. For every X ∈ S:

24

1. If maxY ∈Att(X){Vk(Y)} = 0, then Ve(X) = 1; and

2. If maxY ∈Att(X){Vk(Y)} = 1, then Ve(X) = 0.

3. If Vk(X) ∈ {0, 1}, then Ve(X) = Vk(X);

Proof.

1. If maxY ∈Att(X) Vk(Y) = 0, and the sequence is stable at k, then by Corol-
lary 2.2, maxY ∈Att(X) Vk+j(Y) = 0, for all j ≥ 0. We have that

Vk+1(X) = (1− Vk(X)) ·min

{
1

2
, 1

}
+ Vk(X) ·max

{
1

2
, 1

}
=

1

2
− Vk(X)

2
+ Vk(X) =

1

2
+
Vk(X)

2

Vk+2(X) =
1

2
+

1

4
+
Vk(X)

4

Vk+j(X) =

j∑
k=1

1

2k
+
Vk(X)

2j

Ve(X) = lim
j→∞

Vk+j(X)

=

∞∑
k=1

1

2k
+ lim
j→∞

Vk(X)

2j
= 1 + 0 = 1

So if the maximum value mk of all attackers of X at iteration k is 0, then
the value of X converges to 1; and finally

2. If maxY ∈Att(X) Vk(Y) = 1, and the sequence is stable at k, then by Corol-
lary 2.2, maxY ∈Att(X) Vk+j(Y) = 1, for all j ≥ 0. We have that

Vk+1(X) = (1− Vk(X)) ·min

{
1

2
, 0

}
+ Vk(X) ·max

{
1

2
, 0

}
=
Vk(X)

2

Vk+2(X) =
Vk(X)

4
∴ Vk+j(X) =

Vk(X)

2j

Ve(X) = lim
j→∞

Vk+j(X) = lim
j→∞

Vk(X)

2j
= 0

So if the maximum value mk of all attackers of X at iteration k is 1, then
the value of X converges to 0.

3. This follows from the fact that the sequence is stable at k;

The theorem above asserts self-correction for the values of nodes whose at-
tackers are either all out or that have an attacker that is in. Case 3 above, in

25

which 0 < maxY ∈Att(X){Vk(Y)} < 1, is harder and will be dealt with in stages.
We start with the case of a cycle whose values of the nodes are all in (0, 1) (see
Figure 4). Such cycles may involve an even or odd number of nodes, so we have
chains of attacks of one of the following types:

• either X = Z1 ← Z2 ← . . .← Z2n = X (even cycle)

• or X = Z1 ← Z2 ← . . .← Z2n+1 = X (odd cycle)

The next lemma shows that in either case, the value of X in the limit is 1
2 .

...

... Yi Z2

Zk

Z3

Z4

Yj

X = Z1

Figure 4: A network with a cycle with k nodes.

Theorem 2.6 Let the sequence of values V0, V1, . . . , be stable at iteration k.
Let X be a point such that Vk+i(X), Vk+i+1(X), . . . ∈ (0, 1), for all i ≥ 0. Our
final aim is to show that limi→∞ Vk+i(X) = 1

2 . As a first step towards our
goal, we show that any converging subsequence V ck+j(X) converges to 1

2 (by a
subsequence V ck+j(X) we mean some of the elements of the sequence Vk+i(X),
that is for every j there is an ij such that V ck+j(X) = Vk+ij (X)). From now
on we talk about the subsequence V ck+j(X), which we further assume that it
converges to V ce (X), for every such X, and we will show that V ce (X) = 1

2 , for
every X.

To be absolutely clear we assume for the time being that there is a sequence
of values s1, s2, s3, . . . , such that for every X, the sequence V csi(X) converges
to V ce (X) and we show that under these conditions V ce (X) = 1

2 .
Consider all possible cycles X = Z1 ← Z2 ← . . . ← Z2n = X (even)

and X = Z1 ← Z2 ← . . . ← Z2n+1 = X (odd) and assume that amongst
them we have a cycle such that there exists a sequence of values r1, r2, . . . such
that for each Zi, Zi+1 is the node in Att(Zi) with maximum value and 0 <
V ck+r1+r2+...+rm

(Zi) < 1, for every m ≥ 0. Then V ce (Zi) = 1
2 , for all Zi.

Proof. Since the Gabbay-Rodrigues Iteration Schema uses continuous func-
tions, if the schema holds for the elements of the sequence V ck+j(X), for every
X ∈ S, it also holds for the limit V ce (X).

We get the following systems of equations

1. For the cycle X = Z1 ← Z2 ← . . .← Z2n = X:

V ce (X) = (1−V ce (X)) ·min
{

1
2 , 1− V

c
e (Y)

}
+V ce (X) ·max

{
1
2 , 1− V

c
e (Y)

}
,

where Y is the node in Att(X) with maximum value. We have two cases
to consider.

26

• V ce (Y) ≥ 1
2 , then we get that

V ce (X) =
1− V ce (Y)

1.5− V ce (Y)

• V ce (Y) ≤ 1
2 , the we get that

V ce (X) =
1

1 + 2 · V ce (Y)

it is easy to see from the equations that if V ce (Y) ≥ 1
2 , then V ce (X) ≤ 1

2
and if V ce (Y) ≤ 1

2 , then V ce (X) ≥ 1
2 . Therefore, if we have the cycle

X = Z1 ← Z2 ← . . . ← Z2n = X, then we get that 1
2 ≤ Z1 ≤ 1

2 , so all
Zi = 1

2 .

2. For the cycle X = Z1 ← Z2 ← . . .← Z2n+1 = X, we have that

• either V ce (Y) ≥ 1
2 . Let us write V ce (Y) = 1

2 + ε(Y), for some 0 ≤
ε(Y) < 1

2 . We then get that

V ce (X) =
1− V ce (Y)

1.5− V ce (Y)

=
1− 1

2 − ε(Y)

1.5− (1
2 + ε(Y))

=
1
2 − ε(Y)

1− ε(Y)

Write V ce (X) = 1
2 − η, for some 0 < η < 1

2 .

1

2
− η =

1
2 − ε(Y)

1− ε(Y)

η = 1
2 −

1
2−ε(Y)

1−ε(Y)

=
(1ε(Y))−2(1

2−ε(Y))

2(1−ε(Y)

=
1− ε(Y)− 1 + 2ε(Y)

2(1− ε(Y))

=
ε(Y)

2(1− ε(Y))

• or V ce (Y) ≤ 1
2 . Let us write V

c
e (Y) = 1

2 − ε(Y), for some 0 ≤ ε(Y) <

27

1
2 . We then get that

V ce (X) =
1

1 + 2(1
2 − ε(Y)

=
1

1 + 1− 2ε(Y)

=
1

2(1− ε(Y))

=
1

2
+ η

η =
1

2(1− ε(Y))
− 1

2

=
1− 1 + ε(Y)

2(1− ε(Y))

=
ε(Y)

2(1− ε(Y))

Where are we now? We saw that if we start from V ce (Y) = 1
2 ± ε(Y) and

Y → X (Y attacks X as in a cycle), then V ce (X) = 1
2 ± η, where η is in

the other direction and
η =

ε(Y)

2(1− ε(Y))
.

Let us now assume a cycle

X = Z1 ← Z2 ← . . .← Zn = X

Assume Z1 = 1
2 ± ε. What would the value of Zk be?

We claim that
Zk =

1

2
± ηk

where
ηk =

ε

2(2k − (2k − 1)ε)

28

The proof is by induction. Let X = Zk, then Y = Zk+1, and then

ηk+1 =
ηk

2(1− ηk)

=

ε
2(2k−(2k−1)ε)

2(1− ε
2(2k−(2k−1)ε)

)

=

ε
2(2k−(2k−1)ε)

2
(2(2k−(2k−1)ε−ε)

2(2k−(2k+1)ε)

)
=

ε

2
(
2k+1 − 2k+1ε+ 2ε− ε

)
=

ε

2(2k+1 − (2k+1 − 1)ε)

So the recursion works. Now if we have a loop, we get

Zn = Z1

So ηn = η1 and thus

η =
η

2(2k+1 − (2k+1 − 1)ε)

If we divide by η (6= 0), we get

1 =
1

2(2k+1 − (2k+1 − 1)ε)

It is easy to see that only ε = 1
2 solves the equation. This means that

V ce (Zi) = 1
2 , for all Zi.

Remark 2.4 Ordinarily we cannot guarantee that Zi+1 is the node in Att(Zi)
with maximum value for all k′ > k, we need to find a subsequence. This is done
as follows: we start with a node X and since there are a finite number of nodes
attacking it (the network is finite), there exists a subsequence such that there is
a single attacker whose V ck′ value is the maximum for all k′ in the subsequence.
We can assume it is Z2. This Z2 is not unique, there may be other choices.
Let Zα2

2 be one arbitrary such choice. Repeating this consideration now for Zα2
2

and for the subsequence thus obtained, we get a Zα3
3 and a further subsequence

of the subsequence and so on. Eventually, we get a final subsequence (which
depends on the choices of Zαi

i) V ck+r1
,V ck+r1+r2

, . . ., such that Zαi+1

i+1 is the node
in Att(Zαi

i) with maximum value and 0 < V ck+r1+r2+...+rm
(Zαi

i+1) < 1, for each
m.

Remark 2.5 We use a similar argument to the one in Remark 2.4 to show that
if a subsequence V ck+j(X) converges to V ce (X), then it can be further refined to
a subsequence V csi such that V csi(Y) converges for all Y . The reason is that the

29

number of such Y is finite (since S is finite). We can then successively re-
fine the sequence V ck+j(X) into subsequences for which V ck+j(Y) also converges.
Therefore, Theorem 2.6, can be used to show that the convergent sequence V ck+j

converges to 1
2 . We can therefore further conclude that every convergent subse-

quence of Vk+m(X) converges to 1
2 . The next lemma shows that the sequence

Vk+m(X) itself converges to 1
2 .

Lemma 2.1 Let α = α1, α2, α3, . . ., be an infinite sequence of values in [0, 1].
If every convergent subsequence of α converges to 1

2 , then limi→∞ αi = 1
2 .

Proof. For every 0 < ε < 1
2 , [1

2 − ε,
1
2 + ε] only a finite number of αi’s are in

[0, 1
2 − ε] ∪ [1

2 + ε, 1]. Otherwise, say [0, 1
2 − ε] has an infinite number of αi’s.

Then since [0, 1
2 − ε] is a closed interval with an infinite number of values in

it, there would exist an infinite convergent subsequence of α in it that does not
converge to 1

2 .
Therefore, we have shown that for every 0 < ε < 1

2 , ε small, there exists
a number m such that for every n > m, (1

2 − αn) ∈ [1
2 − ε, 1

2 + ε], that is
limi→∞ αi = 1

2 .

Theorem 2.5 asserts what the limit values of the nodes whose values of the
attackers are known at the stable iteration k. Theorem 2.7 asserts the same in
terms of the limit values of the attackers.

Theorem 2.7

1. If maxY ∈Att(X){Ve(Y)} = 0, then Ve(X) = 1.

2. If maxY ∈Att(X){Ve(Y)} = 1, then Ve(X) = 0.

Proof. Note that limj→∞{Vj+1(X)} = limj→∞{Vj(X)}.

1. If maxY ∈Att(X){Ve(Y)} = 0, then we have that

Ve(X) = (1− Ve(X)) ·min

{
1

2
, 1

}
+ Ve(X) ·max

{
1

2
, 1

}
Ve(X) = (1− Ve(X)) · 1

2
+ Ve(X)

2 · Ve(X) = 1− Ve(X) + 2 · Ve(X)

Ve(X) = 1

So if the equilibrium values of all attackers of X is 0, then the equilibrium
value of X is 1.

2. If maxY ∈Att(X){Ve(Y)} = 1, then we have that

Ve(X) = (1− Ve(X)) ·min

{
1

2
, 0

}
+ Ve(X) ·max

{
1

2
, 0

}
Ve(X) =

Ve(X)

2
Ve(X) = 0

30

So if the equilibrium value of any of the attackers of X is 1, then the
equilibrium value of X is 0.

Theorem 2.8 Let 〈S,R〉 be an argumentation network and T its GR system
of equations. If the assignment V0 : S 7−→ U is legal then the sequence V0, V1,
V2, . . . , where each Vi, i > 0, is generated by T , is stable at iteration 0.
Proof. Suppose V0 is legal. Then if V0(X) = 0, then there exists Y ∈ Att(X)
such that V0(Y) = 1. Therefore V1(X) = min {1/2, 0} = 0. If V0(X) = 1, then
for all Y ∈ Att(X), V0(Y) = 0, and hence maxY ∈Att(X)V0(Y) = 0. Therefore,
V1(X) = max {1/2, 1} = 1.

The stability of the crisp values then follows from Theorem 2.2 and since
0 < V0(X) < 1, then by Theorem 2.1 (case 3), so does the stability of the
remaining non-crisp values.

Proposition 2.4 Let 〈S,R〉 be an argumentation network; T its GR system
of equations and Ve a function with the equilibrium values of the nodes in S
calculated according to the Gabbay-Rodrigues Iteration Schema. Let λ be a legal
labelling function.

Take any X ∈ S. If λ and Ve agree on the values of all nodes in Att(X),
then λ and Ve agree on the value of X.
Proof. There are three cases to consider. Proofs of cases 1. and 2. are similar
to the proofs of cases 1. and 2. of Theorem 2.5.

1. maxY ∈Att(X){Ve(Y)} = 0, then for all Y ∈ Att(X), Ve(Y) = 0. It follows
that Ve(X) =

∑∞
k=1

1
2k + limj→∞

Vk(X)
2j = 1 + 0 = 1. Since Ve and λ agree

with each other on the values of all nodes in Att(X), we have that for all
Y ∈ Att(X), λ(Y) = out and since λ is legal, λ(X) = in, and hence λ
and Ve agree with each other with respect to the value of X as well.

2. maxY ∈Att(X){Ve(Y)} = 1, then there exists Y ∈ Att(X), such that Ve(Y) =

1. It follows that Ve(X) = limj→∞
Ve(X)

2j = 0. Since Ve and λ agree with
each other on the values of all nodes in Att(X), we have that λ(Y) = in
and since λ is legal, λ(X) = out. Hence λ and Ve agree with each other
with respect to the value of X as well.

3. maxY ∈Att(X){Ve(Y)} = 1
2 , then there exists Y ∈ Att(X), such that Ve(Y) =

1
2 (and hence λ(Y) = und) and for no Y ∈ Att(X), Ve(Y) = 1 (and hence
for no Y ∈ Att(X), λ(Y) = in). It follows that

Ve(X) =
1− Ve(X)

2
+
Ve(X)

2
2 · Ve(X) =1

Ve(X) =
1

2

Since λ is legal, λ(X) = und, and hence λ and Ve agree with each other
with respect to the value of X.

31

And now to the main theorem of this section, which explains the equilibrium
values of all nodes and shows their relationship to Caminada and Pigozzi’s down-
admissible/up-complete constructions. A down-admissible labelling is obtained
after a series of contraction operations as defined below.

Definition 2.7 ([7]) Let λ be a labelling of an argumentation network 〈S,R〉.
A contraction sequence from λ is a sequence of labellings [λ1 = λ, . . . λk] such
that

1. For each i ∈ {1, . . . , k− 1}, λi+1 = λi−{(X, in), (X,out)}∪ {(X,und)},
where X is an argument that is illegally labelled in, or illegally labelled
out in λj; and

2. λk is a labelling without any arguments illegally labelled in or illegally
labelled out.

Theorem 6 of [7] shows us that if we successively contract an initial labelling
λ, then at the end of the contraction sequence [λ1 = λ, λ2, . . . λk], λk corresponds
to the down-admissible labelling of λ, which is the largest admissible labelling
that is smaller or equal to λ.

Not every admissible labelling corresponds to a complete extension. How-
ever, an admissible labelling can be turned into a labelling that corresponds to
a complete extension by changing the labels of nodes that illegally labelled und,
to in or out as appropriate. Each such operation is called an expansion, and
an expansion sequence corresponds to a list of all such operations:

Definition 2.8 ([7]) Let λ be an admissible labelling of the argumentation net-
work 〈S,R〉. An expansion sequence from λ is a sequence of labellings [λ1 =
λ, . . . λk] such that

1. For each i ∈ {1, . . . , k − 1},

λi+1 =

λi − {(X,und)} ∪ {(X, in)}, if X is an argument that is
illegally labelled und in λi and all its attackers are labelled out

λi − {(X,und)} ∪ {(X,out)}, if X is an argument that is
illegally labelled und in λi and it has an attacker labelled in

2. λk is a labelling without any arguments illegally labelled und.

Caminada and Pigozzi have shown us that if [λ1 = λ, . . . λk] is an expansion
sequence,15 then λk is a complete labelling and it is the smallest such labelling
containing λ. We now introduce a few concepts to help us in the proof of our
main theorem.

Definition 2.9 Let 〈S,R〉 be an argumentation network; V be an assignment
of values to the nodes in S; and λ a labelling of these nodes. We say that V and
λ agree with each other with respect to the value of a node X if and only if the
following conditions hold:

15Note λ1 must be admissible.

32

1. V (X) = 1 if and only if λ(X) = in

2. V (X) = 0 if and only if λ(X) = out

3. V (X) = 1/2 if and only if λ(X) = und

We say that V and λ agree with each other if they agree with the values of
all nodes in S.

Definition 2.10 (Attack tree of a node) Let 〈S,R〉 be a network. The at-
tack tree tree(X) of a node X ∈ S is the tree with root X and for every node N
in Tree(X), the children of N are the nodes in Att(N).

Definition 2.11 (Path from a node) Let 〈S,R〉 be a network. Take X ∈ S.
A path from X is a sequence of nodes X = Z0, Z1, Z2, . . . such that each Zi+1,
i ≥ 0, is a child of Zi in the attack tree of X. The set of all paths from a node
X is denoted Π(X). We allow for a single node to be a path.

Using paths, we can define a strongly connected component (SCC) to be a
maximal subset C ⊆ S, such that for every X,Y ∈ C, there exists a path from
X containing Y .

Note that in a SCC C for every path π = Z0, Zi, . . . from every node Z0 ∈ C,
there exists a smallest i(π) such that for some r(π), Zi(π) = Zi(π)+r(π). i(π) <
|C|. i(π) is the index of the first node in the path π that is involved in a loop,
or you can think of it as the minimum distance from the starting node of the
path π to a looping node in the path. If i(π) = 0, then Z0 attacks itself. Let us
call the loop head of the path π = Z0, Z1, . . ., the node Zi(π).

Definition 2.12 (Vmax-paths) Let Z be a node in a SCC C and let the se-
quence of values V0, V1, . . . be stable at iteration k. The set of Vmax-paths of
Z is defined as Vmax-paths(Z) = {π = [Z = Z0, Z1, . . .] ∈ Π(Z) | for each Zi,
Vk+r(Zi+1) = maxZ′

i+1
{Vk+r(Z

′
i+1)} for an infinite number of r’s}.

For every Z ∈ C, the set of Vmax-paths from Z is non-empty (see Re-
mark 2.4).

Definition 2.13 (Bar of a node) Let C be a SCC and take X ∈ C. The bar
of X is the set

bar(X) = {Z ∈ C | Z is the loop head of a path in Vmax-paths(X)}.

Definition 2.14 Let Γ(X) be the set of Vmax-paths of X and take U ⊆ C a set
of points. The bar of X modified by U is defined as

bar(X,U) =
⋃

π∈Γ(X)

{
y y is the first node in π such that either y is

the loop head of π or y ∈ U

}

33

Theorem 2.9 Let 〈S,R〉 be an argumentation network; V0 be an initial assign-
ment of values to the nodes in S; λ0 an initial labelling of these nodes; and V0

and λ0 faithful to each other according to Definition 2.3. Let λda be the labelling
at the end of a contraction sequence from λ0 and λCP the labelling at the end
of an expansion sequence after λda. Let k be the point at which the sequence
V0, V1,. . . becomes stable and Ve(X) the equilibrium value of a node calculated
through the Gabbay-Rodrigues Iteration Schema. Then λCP and Ve agree with
each other according to Definition 2.9.
Proof. The proof is done on induction on the depth of a node X. Suppose the
depth of X is 0. There are three main cases to consider.

Case 1: X is a source node. By definition, X has no attackers, and hence
maxY ∈Att(X) V0(Y) = maxY ∈Att(X) Vk(Y) = 0 and then by
Theorem 2.5, Ve(X) = 1.

If λ0(X) = in, then X is legally labelled in, X does not take part in
the contraction or expansion sequences and therefore λCP (X) = in. If
λ0(X) = out, then X is illegally labelled out, and therefore the label of
X is changed to und in the contraction sequence and since it is illegally
labelled und, then it is subsequently changed to in in the expansion se-
quence. If λ0(X) = und, then X cannot be contracted, and since it is
illegally labelled und, its label must be changed to in during the expansion
sequence. In all cases, λCP (X) = in, and hence λCP and Ve agree with
each other with respect to the value of X.

Case 2: X is part of a source SCC C and both V0�C and λ0�C are legal assignments
within C. Let us partition C into two components: Cc containing all nodes
with crisp values and Cu containing all nodes with undecided values.

Since λ0�C is a legal assignment, and the nodes in Cc only have val-
ues in {in,out}, then no nodes in Cc are illegally labelled and hence
their labels are unaffected by the contraction sequence. Likewise, since
no node is labelled undecided in Cc, nothing can be subsequently expanded
and λCP �Cc = λ0�Cc. By construction, the values of all nodes in Cu are
und, and hence these nodes are not affected by the contraction sequence.
Furthermore, they are all legally labelled undecided and hence the values
remain unchanged, and hence λCP �C = λ0�C.

Since V0�C is a legal assignment, then by Theorem 2.8, it is stable at
iteration 0. As a result, for all nodes X ∈ Cc, V1(X) = V0(X). Hence
by Theorem 2.2, Ve(X) = V0(X) for all nodes X ∈ Cc, and then since λ0

and V0 are faithful to each other (Definition 2.3), conditions 1. and 2. of
Definition 2.9 are satisfied. We now show that condition 3. also follows.
For all nodes X ∈ Cu, we have that 0 < V0(X) < 1. Since V0�C is a legal
assignment, then for every X ∈ Cu, 0 < maxY ∈Att(X){V0(Y)} < 1.16

16This effectively means that the only possible incoming attacks from Cc are from nodes
labelled out. Otherwise, the attacked nodes in Cu should have been labelled out and hence
would have been illegally labelled und.

34

Notice that by construction Cu = C\Cc. Stage two of case 3 below shows
that for all nodes X ∈ Cu, Ve(X) = 1/2. Therefore, condition 3. of
Definition 2.9 is also satisfied and as a result, λCP and Ve agree with each
other with respect to all nodes in C.

case 3: X is part of a source SCC C and λ0�C and V0�C are not legal assignments.
Stage one:
We know that the sequence of assignments V0, V1,. . . , eventually becomes
stable at some iteration k and by Theorem 2.4, in(Vk) ⊆ in(V0), out(Vk) ⊆
out(V0) and in(Vk) is the largest admissible subset of in(V0). By Theo-
rem 6 of [7], in(λCP) is the largest (and unique) admissible subset of
in(λ0) and since λ0 and V0 are faithful to each other, we can conclude
that in(Vk) = in(λda) and out(Vk) = out(λda).
Note that since the sequence is stable at k, in(Vk) ⊆ in(Ve) and out(Vk) ⊆
out(Ve).
Consider the sequence of expansion operations e1, e2, . . . , em and the
sequence of labellings λ0 = λda, λ1, λ2,. . . ,λm = λCP , where for each i > 0,
λi is obtained from λi−1 via the expansion ei. We show by induction on
m that in(λCP) ⊆ in(Ve) and out(λCP) ⊆ out(Ve). In a second step, we
show that if λCP (X) = und, then Ve(X) = 1/2.
Suppose that e1 turns the node X illegally labelled und by λda into in.
Then out(λ1) = out(λda) and in(λ1) = in(λda) ∪ {X}. Then for all
Y ∈ Att(X), λda(X) = out. Therefore, Vk(Y) = 0 for all Y ∈ Att(X),
and hence maxY ∈Att(X){Vk(Y)} = 0. By Theorem 2.5, Ve(X) = 1 and
therefore X ∈ in(Ve). We set V 1,out

k = out(Vk) and V 1,in
k = in(Vk)∪{X}.

Suppose that e1 turns the node X illegally labelled und by λda into out.
Then in(λ1) = in(λda) and out(λ1) = out(λda) ∪ {X}. Then there exists
Y ∈ Att(X) such that λda(X) = in. Therefore, Vk(Y) = 1 for some
Y ∈ Att(X), and hence maxY ∈Att(X){Vk(Y)} = 1. By Theorem 2.5,
Ve(X) = 0 and therefore X ∈ out(Ve(X)). We set V 1,out

k = out(Vk)∪{X}
and V 1,in

k = in(Vk).

Assume that for some i, in(λi) = V i,ink and out(λi) = V i,outk . Now con-
sider the i+ 1-th expansion operation ei+1.
Suppose that e1+1 turns the node X illegally labelled und in λi into in.
Then for all Y ∈ Att(X), λi(X) = out. Therefore, Ve(Y) = 0 for all
Y ∈ Att(X), and hence maxY ∈Att(X){Ve(Y)} = 0. By Theorem 2.7,
Ve(X) = 1 and therefore X ∈ in(Ve). As before, we set V i+1,out

k = V i,outk

and V i+1,in
k = in(Vk) ∪ {X}.

Suppose that ei+1 turns the node X illegally labelled und by λi into out.
Then there exists Y ∈ Att(X) such that λi(X) = in. Therefore, Ve(Y) = 1
for some Y ∈ Att(X), and hence maxY ∈Att(X){Ve(Y)} = 1. By The-
orem 2.7, Ve(X) = 0 and therefore X ∈ out(Ve(X)). Again, we set
V i+1,out
k = V ik ∪ {X} and V

i+1,in
k = V i,ink .

35

By now we know that if X ∈ V m,ink , then Ve(X) = 1 and λCP (X) = in
and that X ∈ V m,outk , then Ve(X) = 0 and λCP (X) = out. We ask if
there is some Z 6∈ V m,ink such that Ve(Z) = 1 or Z 6∈ V m,outk such that
Ve(Z) = 0. The answer is no as it is explained in stage two below.

Stage two:

Let us use Cc to denote (V m,ink ∪V m,outk) and Cu to denote C\Cc. Suppose
X ∈ Cu.
We know that V m,ink = in(λCP) is a complete extension and that no further
expansion operation is possible from λCP , therefore if X 6∈ in(λCP), then
either λCP (X) = out and hence X ∈ V m,outk , which is not possible, or
λCP (X) = und and legally so. Therefore there exists Y ∈ Att(X), such
that λCP (Y) = und and hence 0 < maxY ∈Att(X){Ve(Y)} < 1.

Similarly, if X 6∈ out(λCP), then either λCP (X) = in and hence X ∈
V m,ink , which is not possible, or λCP (X) = und and legally so. There-
fore there exists Y ∈ Att(X), such that λCP (Y) = und and hence 0 <
maxY ∈Att(X){Ve(Y)} < 1 and therefore 0 < Ve(X) < 1.

So we know that for all X ∈ Cu, λCP (X) = und and 0 < Ve(X) <
1. In what follows, we will show that indeed for all nodes in C − Cc,
Ve(X) = 1/2. Note that since we are in a SCC C, for all X ∈ Cu, there is
an infinite attack tree with root X, in which every branch is of the form
X = Z0, Z1, Z2, . . . , Zk = X, where for every i > 0, (Zi+1, Zi) ∈ R. Some
of the Zi are in V m,outk , but none can be in V m,ink , for that would make
Zi−1 out.

The proof is done by induction on the maximum distance from a node X
in Cu to a loop Z1, Z2, . . . , Zk = Z1, where every Zi ∈ C\V mk . There are
infinitely many paths from X in the attack tree of X, but we only need to
consider the set Γ(X) with all Vmax-paths of X. Each such path is of the
form π(X) = (Z0 = X), Z1, Now define the distance of X, dimX, as
the maximum index i such that for each path π(X), Zi ∈ bar(Z, V m,outk).
This means that Zi is the first point in the path π(X) which is either a
repetition of a previous point or a point in V m,outk .

If dimX = 0, then X must be attacked by a cycle involving only X (oth-
erwise X ∈ V m,outk , and then Ve(X) = 0, a contradiction). Therefore, we
have a cycle that attacks X and which involves X alone. All attackers
in this cycle (i.e., X) have maximum value and 0 < Vk+r(X) < 1 for
every r ≥ 0. By Theorem 2.6, the value of every node in the cycle is
Ve(X) = 1/2. Now the equilibrium value of the node X attacked by the

36

cycle is calculated by

Ve(X) = (1− Ve(X)) ·min

{
1

2
,

1

2

}
+ Ve(X) ·max

{
1

2
,

1

2

}
=

1− Ve(X)

2
+
Ve(X)

2

=
1− Ve(X) + Ve(X)

2

=
1

2

Now assume that the equilibrium value of all nodes with distance up to k
is 1/2 and consider the node X with distance k + 1. For all Y ∈ Att(X),
we have that dimY ≤ k. Therefore, either Y ∈ V m,outk in which case
Ve(Y) = 0, or by the inductive hypothesis Ve(Y) = 1/2.17 Therefore we
have that maxY ∈ Att(X){Ve(Y)} = 1/2 and as before

Ve(X) = (1− Ve(X)) ·min

{
1

2
,

1

2

}
+ Ve(X) ·max

{
1

2
,

1

2

}
=

1

2

To conclude, for all X ∈ V m,ink , Ve(X) = 0; for all X ∈ V m,outk , Ve(X) =
0; and for all X ∈ Cu, Ve(X) = 1/2. in(Ve�C) (resp., in(λCP �C)) in
this case is the minimal complete extension containing in(Vk�C) (resp.,
in(λda�C)).

Assume the theorem holds for all nodes of depth up to k. We now show that it
holds for nodes of depth k + 1.

Define Known0
k+1 = {X ∈ S | depth(X) ≤ k} and Knownm+1

k+1 = {X ∈
S | depth(X) = k + 1 and for all Y ∈ Att(X), Y ∈ Knownmk+1}.

We show that for all i ≥ 0, we have that λCP (X) = Ve(X), for all X ∈
Knownik+1. First notice that by induction hypothesis, λCP (X) = Ve(X) for all
X ∈ Known0

k+1. Now suppose that λCP (X) = Ve(X) for all X ∈ Knownik+1,
then by Proposition 2.4, λCP (X) = Ve(X) for all X ∈ Knowni+1

k+1. Since the
network is finite, Knownek+1 = Knowne+1

k+1, for some e ≥ 0. Define Cuk+1 =
{X ∈ S | depth(X) = k + 1} \ Knownek+1.

By definition, if there exists X ∈ Cuk+1 and Y ∈ Att(X) such that Y ∈
Knownek+1, then λCP (Y) = out and Ve(Y) = 0 (otherwise the value of X would
be known). Therefore, we can exclude the nodes in Knownek+1 and consider
Cuk+1 in isolation. Cuk+1 can therefore be treated as a network of depth 0, and
the proof will follow exactly from Cases 2 and 3 of the base of the main induction,
and hence for all X ∈ Cuk+1, Ve(X) = λCP (X).

Corollary 2.5 Let 〈S,R〉 be an argumentation network and V0 be an initial
assignment of values to the nodes in S. Let Ve(X) be the equilibrium value of

17Note that Att(X) 6⊆ Vm,out
k , otherwise X would be illegally labelled und.

37

Y WX Z

X Y W Z
(V0, Vk, Ve) (V0, Vk, Ve) (V0, Vk, Ve) (V0, Vk, Ve)

1. (0, 3/4, 1) (0, 1/2, 0) (0, 0, 0) (1, 1, 1)

2. (0, 7/8, 1) (1, 3/8, 0) (1, 1/2, 1/2) (0, 5/8, 1/2)

3. (1, 1, 1) (0, 0, 0) (1, 1, 1) (0, 0, 0)

Figure 5: Network used in Section 3.

a node X calculated through the Gabbay-Rodrigues Iteration Schema. For all
nodes X ∈ S, Ve(X) ∈ {0, 1/2, 1}.
Proof. Follows from the possible equilibrium values of all nodes in Theo-
rem 2.9.

3 Discussion and Worked Examples
Suppose we are given a network such as the one in Figure 5 with some initial
values to its nodes. The values may or may not correspond to a complete
extension. We can write equations for the network, apply the Gabbay-Rodrigues
Iteration Schema and obtain extensions for the network.

For the sake of illustration, we consider three sets of representative initial
values 1., 2. and 3.. The table in Figure 5 shows what happens when these
values are applied to the equations, giving both the values at the stable point
(Vk) and at the limit (Ve). The corresponding down-admissible labellings and
their resulting up-completion according to Caminada-Pigozzi’s procedure can
be obtained simply by replacing 0 with out, 1 with in and values in (0, 1) with
und.

Case 1. represents the situation in which the initial values in the cycleW ↔
Z are compatible with an extension and hence the crisp values are preserved by
the calculations. We end up with the complete extension E1 = {X,Z}. Contrast
this with case 2., in which the initial values of W and Z are 1 and 0, resp. The
extension E = {X,W} is also complete but is obtained neither by our procedure
nor by Caminada-Pigozzi’s down-admissible/up-complete construction. This
can be explained as follows. The initial illegal value of Y invalidates the initial
acceptance of W , turning it into undecided in the calculation of the down-
admissible subset. From that point on, the original legal assignments for W
and Z can no longer be restored and they both end up as undecided. As a
result, we obtain the complete (but not preferred) extension E2 = {X}. This
interference does not happen in case 1., because there the interference of the
undecided value of Y over W is dominated by Z’s 1 value that keeps W ’s 0
value in check (because of the behaviour of max). As a result, both W ’s and

38

Z’s initial values are retained.
If however we start with a preferred extension, which is also complete by defi-

nition, we get as a result unchanged initial values (cf. Theorem 2.9). Caminada-
Pigozzi also give the same result because the down-admissible labelling of a
labelling yielding a preferred extension is the labelling itself and since that la-
belling is also complete, then the up-completion does not change anything (case
3. in the table of Figure 5.

We can suggest an enhanced procedure to improve on the results obtained
in case 2., which is outlined below. The procedure starts with an empty set of
crisp values (Crisp) and a set of initial values to the nodes.

1. Calculate the equilibrium values for all nodes using the iteration schema.

2. If {X ∈ S | Ve(X) ∈ {0, 1}} ⊆ Crisp, stop. The extension is defined in the set
{X | Ve(X) = 1}. Otherwise, set Crisp = Crisp ∪ {X ∈ S | Ve(X) ∈ {0, 1}}
and proceed to step 3.

3. For every X ∈ {X | Ve(X) ∈ {0, 1}}, set V0 = Ve(X) and leave V0(X) as before
for the remaining nodes.

4. Repeat from 1.

The above procedure is sound, since at each run the equilibrium values com-
puted yield a complete extension. Note that re-using some of the original values
does not affect soundness. If they cannot be used to generate a larger exten-
sion, they will just converge to 1/2. The procedure also terminates as long as
the original network S is finite, since a new iteration is invoked only when new
crisp values are generated and this is bound by |S|.

If we apply the procedure to Case 2. above, in the first run we will get
Ve(X) = 1, Ve(Y) = 0, Ve(W) = Ve(Z) = 1/2. Hence, Crisp = {X,Y }. We
then run it once more, this time with initial values V0(X) = 1, V0(Y) = 0,
V0(W) = 1 and V0(Z) = 0. This will stabilise immediately at these values and
then Crisp = {X,Y,W,Z}. In the third run, no new crisp values are generated,
so we stop with extension {X,W}, which is a preferred extension (see case 3.
above). This is closer to the original values, because the preference of W over
Z is preserved.

Obviously, the procedure can also be applied using Caminada-Pigozzi’s con-
struction instead of the Gabbay-Rodrigues Iteration Schema of step 1. above.

3.1 Worked Examples with Cycles
The table in Figure 6 displays initial, stable and equilibrium values (V0, Vk, Ve)
for all nodes in the networks (L) and (R). The last row of the table indicates
the iteration in which the stable values were reached and the equilibrium values
approximated (S,E). Obviously the equilibrium values are an approximation.
We set our tolerance as 10−19, the upper bound of the relative error due to
rounding in the calculations in our 64-bit machine.18 Independent nodes, such

18Effectively this means that if the maximum variation in node values between two successive
iterations is smaller than 10−19, we cannot be sure it is not simply the result of a rounding

39

(L) (R)

A

C

B X Y

Z
A

C

B X Y

Z

L1. L2 R1. R2
(V0, Vk, Ve) (V0, Vk, Ve) (V0, Vk, Ve) (V0, Vk, Ve)

X (0, 0, 0) (1, 0.430, 1/2) (1, 1, 1) (0, 0, 0)
Y (1, 1, 1) (0, 0.516, 1/2) (0, 0, 0) (1, 1, 1)
A (0, 1/2, 1/2) (1, 0.516, 1/2) (1, 0.438, 0) (0, 0.562, 1/2)
B (1, 0.266, 1/2) (0, 1/2, 1/2) (1, 0.062, 0) (0, 1/2, 1/2)
C (0, 0.562, 1/2) (0, 0.430, 1/2) (0, 0.734, 1) (1, 0.266, 1/2)
Z (0, 0.938, 1) (1/2, 0.992, 1) (0, 0.938, 1) (1/2, 0.969, 1)

(S,E) (3,58) (5,58) (3,76) (3,58)

Figure 6: Equilibrium and stable values of nodes involved in cycles.

as Z in the networks above always converge to 1 independently of their initial
values. This also happens to all nodes whose values of the attackers all converge
to 0. Cases (L) and (R) explore different scenarios involving cycles. The odd
cycle in (L) attacks the even cycle X ↔ Y and the even cycle in (R) attacks the
odd cycle A → B → C → A. We start with (L), which contains an odd cycle
attacking an even cycle. The values in the odd cycle in this case will converge
to 1/2 independently of their initial values. This may or may not have an effect
on nodes that are attacked by any of the nodes in the cycle. We start with an
initial valid configuration for X and Y in both (L1) and (L2). The end results
will differ though as explained next. If X starts with 0 and Y with 1 (L1),
then the interference of the undecidedness of B over X is dominated by the Y ’s
value of 1 and the initial values of both X and Y persist. However, if X starts
with 1 and Y with 0, the undecidedness of B will then “contaminate” the X–Y
loop. It will force X to become undecided, which in turn makes Y also become
undecided. As a result, all of the values will converge to 1/2 apart from Z’s,
which as we said is independent and will converge to 1 (L2).

Now let us look at (R) in which the even cycle attacks the odd one. (R1) and
(R2) contain different initial valid configurations for the even cycle. This time
the nodes in the even cycle are independent of external values and their original
values remain. If X starts with 1, it remains with 1 and this in turn breaks
the odd cycle. The attacked node B is forced to converge to 0, forcing C to
converge to 1 and A to converge to 0 (independently of their initial values). An

error due to the precision of the computer. At that point we assume we have reached the limit
of what can be accurately calculated.

40

initial value of 0 for X cannot break the odd cycle and its values will converge
to 1/2 independently of their initial values (R2).

4 Comparisons with other work
This section compares our framework with other techniques that deal with initial
values. Our discussions so far and the use of the Gabbay-Rodrigues Iteration
Schema were in the context of the equational approach to an argumentation
network when we are given some initial values. Our problem was to find a
solution to the system of equations that was “close” to these initial values.

Two important concepts which are directly related to the work presented in
this paper were proposed in [7], which addressed the problem of finding an ex-
tension of an argumentation network given an initial labelling of its arguments.
Their procedure works in two steps. Firstly, they calculate the downward-
admissible labelling of the original labelling, which essentially consists of an
admissible labelling whose crisp part is maximally included in the original la-
belling. This is done by a procedure which at each step, turns an illegally
labelled argument from in or out into und until no illegal crisp values remain.
They called this step a contraction sequence and it is similar to what our schema
does to the sequence of value assignments until it becomes stable, except that
at each iteration our schema may contract more than one node simultaneously,
whereas theirs contracts only one node per iteration. More importantly, their
procedure is non-deterministic: it selects an illegally labelled node for contrac-
tion, but this requires searching for such nodes. Hence there is an implicit cost
involved in it. Even though the search can be optimised, it renders the overall
cost of the procedure in terms of steps higher than ours, which is truly bounded
by |S|. Now, given an admissible labelling, a complete extension is constructed
by turning nodes that are illegally labelled und into in or out as appropri-
ate. They call this step an expansion and its counterpart in our procedure is
the calculation of the limit values of the sequence. Obviously, in a computer
program, we can only approximate these limit values. In our implementation,
we stop the iterations when we can no longer guarantee the accuracy of the
calculations without introducing rounding errors due to the limitations of the
processor. This happens in linear time too (see Figure 6). In practice, the limit
values can be guessed much earlier as the iteration values can be seen to be
converging towards one of the three values 0, 1/2 and 1.

We stress that neither are we limited to the discreet values out, in and
und, nor to the Eqmax equation used in the iteration schema and this allows
the application of the schema in the calculation of extensions given different
semantics (see Section 5).

One can take a different approach to the one above, especially if one is not
using any equations. One can take the view that given a network with initial
values, we should give an iteration formula that will stabilise on some limit final
values. This approach is a bit risky. One needs to explain where the initial values
come from and what is the meaning of the iteration formula. One also needs

41

to check whether or not the iteration formula is sound relative to the network’s
extensions in Dung’s sense. In other words, if the initial values correspond to
an acceptable Dung extension, does the iteration formula yield a result which
does not correspond to a Dung extension? We begin with the work of Pereira
et al. [9], which does not take any equational approach but simply iterates on
the values of the nodes. We examine in detail what they do.

In what follows, 〈S,R〉 is an acyclic argumentation network and f : S 7−→ U
is a function assigning initial values to the nodes in S.

Definition 4.1 Consider the sequence α0(X), α1(X), . . . , αi(X), . . ., where

α0(X) = f(X)

αi(X) = αi−1(X) + min

{
f(X), 1− max

Y ∈Att(X)
αi−1(Y)

}

and let
α(X) = lim

i→∞

1

2
αi +

1

2
min

(
f(X), 1− max

Y ∈Att(X)
αi(Y)

)
Definition 4.2 The attack depth of a node X of an acyclic argumentation
network, in symbols a-depth(X), is defined recursively as

a-depth(X) =

{
0, if Att(X) = ∅(

max
Y ∈Att(X)

a-depth(Y)
)

+ 1, otherwise

The function a-depth is well-defined, because there are no cycles in 〈S,R〉.

Definition 4.3 Given initial values for the nodes of an acyclic network, the
function β : S 7−→ U provides a means of calculating fixed-point values for all
nodes as follows.

β(X) =

f(X), if a-depth(X) = 0

min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
, otherwise

Theorem 4.1 α(X) = β(X) for all X ∈ S.
Proof. The proof is done by induction on the depth of a node.
Base cases: (Depth 0) Let X be an argument node of depth 0. By definition, X

42

has no attacks. It follows that

α0(X) = f(X)

α1(X) =
1

2
α0(X) +

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

}
=

1

2
f(X) +

1

2
f(X)

= f(X)

α2(X) =
1

2
α1(X) +

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α1(Y)

}
=

1

2
f(X) +

1

2
f(X) = f(X)

α(X) = lim
i→∞

{
1

2
αi +

1

2
f(X)

}
α(X) = f(X) = β(X)

(Depth 1) Let X be an argument node of depth 1. By definition, all nodes Y
attacking X have depth 0. For all such nodes f(Y) = α0(Y) = α1(Y) = αi(Y) =
. . . = α(Y) = β(Y).

α0(X) = f(X)

α1(X) =
1

2
α0(X) +

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

}
=

1

2
f(X) +

1

2
min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
α2(X) =

1

2

(
1

2
f(X) +

1

2
min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

})
+

1

2
min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
=

1

22
f(X) +

1

22
min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
+

1

2
min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
αi(X) =

1

2i
f(X) +

t∑
i=1

1

2i
·min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
=

1

2i
f(X) +

(
1− 1

2i

)
·min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
α(X) = lim

i→∞
αi(X)

= lim
i→∞

1

2i
f(X) +

(
1− 1

2i

)
·min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}

43

= min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
= β(X)

Assume that the theorem holds for nodes with attack depth up to k and let
X be an argument node whose attack depth is k + 1. We have that

α0(X) = f(X)

α1(X) =
1

2
α0(X) +

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

}
=

1

2
f(X) +

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

}
α2(X) =

1

2

(
1

2
f(X) +

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

})
+

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α1(Y)

}
=

1

22
f(X) +

1

22
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

}
+

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α1(Y)

}
α3(X) =

1

2

(
1

22
f(X) +

1

22
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

}
+

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α1(Y)

})
+

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α2(Y)

}
=

1

23
f(X) +

1

23
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

}
+

1

22
min

{
f(X), 1− max

Y ∈Att(X)
α1(Y)

}
+

1

2
min

{
f(X), 1− max

Y ∈Att(X)
α2(Y)

}
αi(X) =

1

2i
f(X) +

1

2i−0
min

{
f(X), 1− max

Y ∈Att(X)
α0(Y)

}
+

1

2i−1
min

{
f(X), 1− max

Y ∈Att(X)
α1(Y)

}
+ . . .+

1

21
min

{
f(X), 1− max

Y ∈Att(X)
αi−1(Y)

}

44

αi+1(X) =
1

2i
f(X) +

i∑
i=1

1

2i
·min

{
f(X), 1− max

Y ∈Att(X)
αi(Y)

}
=

1

2i
f(X) +

(
1− 1

2i

)
·min

{
f(X), 1− max

Y ∈Att(X)
αi(Y)

}
α(X) = lim

i→∞

1

2i
f(X) +

(
1− 1

2i

)
·min

{
f(X), 1− max

Y ∈Att(X)
αi(Y)

}
= lim

i→∞

(
1− 1

2i

)
min

{
f(X), 1− max

Y ∈Att(X)
αi(Y)

}
= lim

i→∞
min

{
f(X), 1− max

Y ∈Att(X)
αi(Y)

}
= min

{
f(X), 1− max

Y ∈Att(X)
lim
i→∞

αi(Y)

}
α(X) = min

{
f(X), 1− max

Y ∈Att(X)
α(Y)

}

But the attack depth of the nodes Y ∈ Att(X) is no higher than k. By the
induction hypothesis we have that α(Y) = β(Y) for all Y ∈ Att(X) and hence

α(X) = min

{
f(X), 1− max

Y ∈Att(X)
β(Y)

}
= β(X)

The theorem above shows that when there are no cycles, for any node X,
the sequence αi(X) converges to the value β(X), which can be calculated by
considering the tree with root X and propagating values from the leaves to the
root according to Definition 4.3.

One can argue that the procedure is not sound with respect to admissibility.
In particular, the algorithm does not turn arbitrary initial values into admissible
ones. If we give initial value 0 to a node which should not be labelled out,
the algorithm does not correct the node’s value and it remains illegally out.
Likewise, if we start with a two-node cycle A↔ B and provide initial values to
A and B that correspond to a complete extension, say A = 1, B = 0, in the
limit we get values A = 1

2 and B = 0. Ideally, the initial values should remain
the same as in the Gabbay-Rodrigues Iteration Schema (and indeed Caminada
and Pigozzi’s down-admissible/up-complete construction).

5 Conclusions and Future Research
This paper investigated aspects concerned with argumentation networks where
the arguments are provided with initial values. We are aware that assigning
values to nodes and propagating values through the network has been indepen-
dently investigated before as in, e.g., [8, 2]. However, our approach is different
because we see a network as a generator for equations whose solutions generalise
the concept of extensions of the network.

45

There are advantages to using equations to calculate extensions in this way
as numerical values arise naturally in many applications where argumentation
systems are used and the behaviour of the node interactions can be described
naturally using equations. In addition, there are many mathematical tools to
help find solutions to the equations.

The equational approach is general enough to be adapted to particular ap-
plications. For instance, the arguments themselves may be expressed as some
proof in a fuzzy logic and then the initial values can represent the values of the
conclusions of the proofs, in the spirit of Prakken’s work [20]; or they can be
obtained as the result of the merging of several networks, as proposed in [17, 16].

In this paper, we showed that the equations can be solved through an iter-
ative process, as in Newton’s method and as such one can regard initial values
as initial guesses or a desired configuration of the extension. The Gabbay-
Rodrigues Iteration Schema takes the following generalised form:

Vi+1(X) = (1− Vi(X)) ·min {1/2, g(N (X))}+ Vi(X) ·max {1/2, g(N (X))}

In this paper, we considered the special case where g is min and N (X) is the
set of complemented values of the nodes in the “neighbourhood” of X (i.e., the
attackers of X).19 Other operations can be used for argumentation systems,
whose relationship with the schema is being further investigated. One such
operation is product, which unlike min combines the strength of the attacks
on a node. Another interesting possibility is to use the schema for abstract
dialectical frameworks (ADFs) [3]. ADFs require the specification of a possibly
unique type of equation for each node. Consider the ADF with nodes a, b, c
and d with R = {(a, b), (b, c), (c, c)}. The ADF equations are: Ca = >, Cb = a,
Cc = c∧b and Cd = ¬d. The complete models for this ADF are m1 = (t, t, u, u),
m2 = (t, t, t, u) and m3 = (t, t, f, u). The Gabbay-Rodrigues schema converges
to m1 given initial values (1, 1, 1/2, 1/2); to m2 given initial values (1, 1, 1, 1); and
to m3 given initial values (0, 0, 0, 0).

For the case of min, we showed that the values generated at each iteration in
the schema eventually “stabilise” by changing illegal crisp values into undecided.
This process will calculate the down-admissible labelling of the initial values,
as in [7], in time t linear to the set of arguments (t ≤ |S|). If we carry on
the calculation, the values of the sequence in the limit will correspond to a
complete extension of the original network. Obviously, the values corresponding
to a legitimate extension are all legal. If they are given as input, the sequence
will immediately stabilise. In practice, a few iterations are sufficient to indicate
what the values will converge to in the limit. We have also outlined a procedure
which can improve on the calculation above by propagating crisp values and
replacing the remaining undecided values with their initial counterparts after
each run of the iterations. This procedure terminates when no new crisp values
are generated. Original crisp values which are compatible with a calculated
extension can thus be preserved and hence we can end up with a larger complete

19Note that 1−maxY ∈Att(X){V (Y)} = minY ∈Att(X){1− V (Y)}.

46

extension than the one obtained through a single run. This extension is as
compatible as possible with the initial values.

Acknowledgements
The authors would like to thank Massimiliano Giacomin, Gabriella Pigozzi,
Martin Caminada and Sanjay Modgil for comments and discussions on the topic
of this paper.

References
[1] H. Barringer, D. M. Gabbay, and J. Woods. Temporal dynamics of support

and attack networks. In D. Hutter and W. Stephan, editors, Mechanizing
Mathematical Reasoning, 2005. LNCS, vol. 2605.

[2] P. Besnard and A. Hunter. A logic-based theory of deductive arguments.
Artificial Intelligence, 128(1-2):203 – 235, 2001.

[3] G. Brewka and S. Woltran. Abstract dialectical frameworks. In Proceed-
ings of the 12th International Conference on the Principles of Knowledge
Representation and Reasoning: KR’10, pages 102 – 111. AAAI Press, 2010.

[4] M. Caminada. An algorithm for computing semi-stable semantics. In Pro-
ceedings of the 9th European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty, ECSQARU ’07, pages 222–234,
Berlin, Heidelberg, 2007. Springer-Verlag.

[5] M. Caminada. A labelling approach for ideal and stage semantics. Argu-
ment and Computation, 2(1):1–21, 2011.

[6] M. Caminada and D. M. Gabbay. A logical account of formal argumenta-
tion. Studia Logica, 93(2-3):109–145, 2009.

[7] M. Caminada and G. Pigozzi. On judgment aggregation in abstract ar-
gumentation. Autonomous Agents and Multi-Agent Systems, 22(1):64–102,
2011.

[8] C. Cayrol and M.-C. Lagasquie-Schiex. Graduality in argumentation. Jour-
nal of Artificial Intelligence Research, 23:245–297, 2005.

[9] C. da Costa Pereira, A.G.B. Tettamanzi, and S. Villata. Changing one’s
mind: erase or rewind? possibilistic belief revision with fuzzy argumen-
tation based on trust. In Proceedings of the 22nd International joint con-
ference on artificial intelligence : IJCAI’11, pages 164 – 171, Menlo Park,
2011. AAAI Press.

47

[10] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77:321–357, 1995.

[11] S. Eǧilmez, J. Leite, and J. Martins. Extending social abstract argumenta-
tion with votes on attacks. In Proceedings of the 2nd International Work-
shop on Theory and Applications of Formal Argumentation (TAFA’13), to
appear 2014.

[12] D. Gabbay and O. Rodrigues. Probabilistic argumentation. An equational
approach. To appear.

[13] D. M. Gabbay. Introducing equational semantics for argumentation net-
works. DOI: 10.1007/978-3-642-22152-1_2, 2011.

[14] D. M. Gabbay. Equational approach to argumentation networks. Argument
and Computation, 3:87–142, 2012. DOI: 10.1080/19462166.2012.704398.

[15] D. M Gabbay. Meta-logical Investigations in Argumentation Networks, vol-
ume 44 of Studies in Logic: Mathematical Logic and Foundations. College
Publications, 2013. ISBN: 978-1-84890-103-2.

[16] D. M. Gabbay and O. Rodrigues. A equational approach to the merging of
argumentation networks. Journal of Logic and Computation, 2012.

[17] D. M. Gabbay and O. Rodrigues. A numerical approach to the merging
of argumentation networks. In M. Fisher, L. van der Torre, M. Dastani,
and G. Governatori, editors, Proceedings of CLIMA XIII, pages 195–212.
Springer-Verlag, 2012.

[18] M. P. Hassell. The Dynamics of Arthropod Predator-Prey Systems. Prince-
ton University Press, 1978.

[19] J. Leite and J. Martins. Social abstract argumentation. In Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, 2011. To
appear.

[20] H. Prakken. An abstract framework for argumentation with structured
arguments. Argument and Computation, 1:93–124, 2010.

[21] E. Süli and D. F. Mayers. An Introduction to Numerical Analysis. Cam-
bridge University Press, September 2003.

48

A Predator-Prey and Argumentation Motivating
Case Studies

Let us motivate our ideas through two main examples. Our purpose is to make
some conceptual distinction about iteration processes.

Example A.1 Let us look at an example from biology. This is a model by M.
P. Hassell [18] of the dynamics of a system with two parasitoids (P and Q) and
one host (N). The interactions in the ecology are depicted in Figure 7. The
equations modelling the dynamics are the following (see [1, p. 295]).

N t+1 = λN tf1(P t)f2(Qt)

P t+1 = N t[1− f1(P t)]

Qt+1 = N tf1(P t)[1− f2(Qt)]

In the above equations the subscripts t and t+ 1 indicate two successive gen-
erations of P , Q and N ; λ is the finite host rate of increase; and the functions
f1 and f2 are the probabilities of a host not being found by P t or Qt parasitoids,
respectively. This model applies to two quite distinct types of interaction that
are frequently found in real systems. It applies to cases where P acts first, to be
followed by Q acting only on the survivors. Such is the case where a host popu-
lation with discrete generations is parasitized at different developmental stages.
In addition, it applies to cases where both P and Q act together on the same
host stage, but the larvae of P always out-compete those of Q, should multi-
parasitism occur.

The functions f1 and f2 are:

f1(P t) =

[
1 +

a1P t

k1

]−k1
f2(Qt) =

[
1 +

a2Qt

k2

]−k2
where a1, a2, k1 and k2 are constants.

To simplify and later compare the biological model with the argumentation
model, we put k1 = k2 = −1.

P N

Q

Figure 7: A sample biological network.

49

This gives

f1(P t) = 1− a1P t

f2(Qt) = 1− a2Qt

and therefore, the equations are

(1, t): N t+1 = λNt(1− a1P t)(1− a2Qt)
(2, t): P t+1 = a1NtP t

(3, t): Qt+1 = a2QtN t(1− a1P t)

At a state of equilibrium, we get the following fixpoint equations:

N = λN(1− a1P)(1− a2Q) (16)
P = a1NP (17)
Q = a2QN(1− a1P) (18)

It can be easily seen from the above equations that one of the solutions is P =
Q = N = 0 (the “all zero” solution). If we ignore it, we get from (17) that

N =
1

a1
(19)

and from (18) we get

1 = a2 ·
1

a1
(1− a1P) (20)

and hence

a1 = a2 − a2a1P

P =
a2 − a1

a1a2

From (16), we get

1 = λ
(
1− a1(a2 − a1)

a1a2

)
(1− a2Q)

1 =
λa1

a2
(1− a2Q)

so
a2

λa1
= 1− a2Q

a2Q =
λa1 − a2

λa1

Q =
λa1 − a2

λa1a2

50

To have a specific example for discussion let a1 = 2, a2 = 3, λ = 2. We get
N = 0.5, P = 1

6 and Q = 1
12 . Indeed, substituting these values in the equations

we have
(1) 1 = 2

(
1− 2 · 1

6

) (
1− 3

12

)
= 2 · 2

3 ·
9
12

= 2 · 18
36

= 1

(2) 1 = 2 · 1
2

= 1

(3) 1 = 3 · 1
2

(
1− 2

6

)
= 3

2 ·
4
6

= 1
Let us substitute a1, a2 and λ in the equations and pretend we do not know

the solution. We get the equations:

(1*) N = 2N(1− 2P)(1− 3Q)
(2*) P = 2PN
(3*) Q = 3

2Q(1− 2P)

So we have a system of equations modelling a certain ecology.
The equations above give rise to the iteration equations

(1∗, i): N i+1 = 2N i(1− 2P i)(1− 3Qi)
(2∗, i): P i+1 = 2N iP i

(3∗, i): Qi+1 = 3
2Qi(1− 2P i)

Let us discuss our options. We have a system of equations involving N , P
and Q and we want to solve it. We do not know whether there are solutions.

Option 1 – a mathematical view. Let us just find a solution. We can guess
a candidate solution, use Newton’s method and iterate. Let us do this with the
guess N0 = P 0 = Q0 = 1

2 and iterate. These are equations (1∗, i), (2∗, i) and
(3∗, i) for i = 1.

Because the equations come from ecological considerations, the iterations are
not just a numerical device but also have an evolutionary meaning. However, our
view is purely mathematical. The corresponding to the meaning is accidental.

We get

N1 = 2 · 1
2 ·Ni(1− 1)

(
1− 3

2

)
= 0

P 1 = 2 · 1
2 ·

1
2 = 0

Q1 = 3
2 ·Qi(1− 2P i) = 0

N2 = 0
P 2 = 0
Q2 = 0

We converge to the “all zero” solution.

Option 2 – a semantical view. We seek a solution motivated not by mathematics
but by the meaning of the equations: by ecological considerations. So let us adopt

51

the friends of parasites view and say that we are equal and we all have a right
to live and so let us seek a steady state of compromise and living together in
tolerance and understanding, namely N0 = P 0 = Q0 = 1

2 .
Unfortunately using Newton’s method leads us, as shown above, to the solu-

tion P = Q = N = 0. In biological terms this is not good, it means everything
is dead. So we may need a better iteration schema, a schema suitable for the
biological interpretation.

We can choose to be selfish and cruel and start with N0 = 1 and P 0 =
Q0 = 0. This means we aim at full population and no parasites. Iterating the
equations will give us

N1 = 2
P 1 = 0
Q1 = 0

Nk = 2k

P k = 0
Qk = 0

This does not lead to a solution. It diverges!
The reader can check that even if the initial values are very close to a solu-

tion, the method in general will not converge to the solution.

Remark A.1 The conclusion we draw from Example A.1 is that we must be
aware that some iteration processes can be mathematical only, just possibly lead-
ing to a mathematical solution but otherwise semantically meaningless, and some
may be semantically meaningful and useful in the context of the application area
from which the equations arise.

This observation shall become sharper and clearer in the case of our next
example from abstract argumentation.

Example A.2 Consider Figure 7 again but this time as an argumentation net-
work where N , P , Q are arguments. This network has three extensions E1, E2

and E3, namely

E1 = P is in
= N and Q are out

E2 = N is in
= P and Q are out

E3 = P , N and Q are all und
In [13, 14, 15], we showed how to provide semantics for abstract argumenta-

tion in terms of equations. These equations are generated according to equation
schema, of which two of the most significant ones are Eqmax and Eqinv, described
next.

Let Att(X) = {Y1, . . . , Yk} be all the attackers of X. Consider X, Y1,. . . ,Yk
as variables ranging over [0, 1]. Define

52

Gmax(Att(X)) = 1−max{Y1, . . . , Yk}
Ginv(Att(X)) = Πk

i=1(1− Yi)

The equation we write for a node X is

X = G(Att(X)) (*)

where G can be Gmax or Ginv or some other function. We consider X = 1
to mean X is in; X = 0 to mean X is out; and 0 < X < 1 to mean that X
is und. The background material on the equational approach is given in the
next section. It is sufficient to say here that Gmax follows more closely the
traditional semantics of argumentation networks being only concerned about the
highest strength of attack to a node. The solutions to the equations using Gmax
correspond to the traditional concept of extensions (in Dung’s sense) taking the
nodes with value 1 in a solution to be the nodes in the extension.

Ginv on the other hand is also sensitive to the number of attackers to a node.
For example, assume there are 10 undecided attackers Yi of X each having value
1
2 (und), then the value of X becomes 1

210 under Ginv, while under Gmax, the
value of X is simply 1

2 . Note that X is nearer to 0 (i.e., out) in the Ginv case!
The Gmax equations for the network in Figure 7 are:

N = 1−max{P ,Q} (21)
P = 1−N (22)
Q = 1−max{P ,N} (23)

and its Ginv equations are:

N = (1− P)(1−Q) (24)
P = (1−N) (25)
Q = (1− P)(1−N) (26)

The Gmax equations have the solutions: N = Q = 0 and P = 1 (E1);
N = 1, P = Q = 0 (E2); and N = P = Q = 1

2 (E3). The Ginv only accepts
the first two solutions with the extension E3 not being possible.20

Now suppose we actually do not know whether there are solutions or what
they would be and let us consider our options. We have a system of equations
involving N , P and Q and we want to try and solve it.

Option 1 – A mathematical view. Let us just find a solution. This is a nu-
merical analysis problem. We can guess a candidate solution; use, for instance,
Newton’s method; and iterate in the hope of converging to a solution. Option

20The specific behaviour of Ginv is outside of the scope of this paper. However it is explored
in detail in [12].

53

2 – A semantical view. We seek a solution motivated not by mathematics but
by the meaning of the equations; by argumentation considerations. Newton’s
method may not be adequate here. We want a method which, if we start very
near a solution, then we get convergence to that desired solution. Here we can-
not accept any solution. We want solutions which reflect the input. So we need
to devise algorithms involving iterations which have a semanical meaning, in
addition to the usual mathematical properties that the iteration sequences calcu-
lated by these algorithms converge. This point is important. Suppose we give the
following interpretation to the network. 100 voters need to form a committee
from amongst three experts P , Q and N to give an opinion on a crucial issue.
All of them vote for N to be included (in), none of them want P to be included
(i.e, they want P to be out), and they are equally divided on their support for
Q (und). There is however an additional information about these candidates
which is of a personal nature of which the voters are not aware. These are repre-
sented by the attack relation in the network, in which X → Y means X refuses
to work with Y . We thus say that we have a numerical assignment N = 1,
P = 0 and Q = 1

2 and we now ask what extension (i.e., what committee mem-
bership) is nearest to this majority vote? At first glance, the reader may think
that it is extension E2 (N is in, and P and Q are out), because it agrees with
the wishes of all of the voters that N is in and P is out. We would like our
iteration algorithm to give us this result if possible.

Let us look at what Newton’s method would do to these initial values.
We start with initial values N0 = 1, P 0 = 0 and Q0 = 1

2 and iterate for the
case of Gmax (equations (21)–(23)). We shall see that iterating in this way is
not satisfactory. We get

N1 = 1
2 , P 1 = 0, Q1 = 0

N2 = 1, P 2 = 1
2 , Q2 = 1

2
N2 = 1

2 , P 2 = 0, Q2 = 0

There is no convergence here, so this is not satisfactory as we do not get an
answer for membership (i.e., no extension in the argumentation sense).

Let us now compare with the Gabbay-Rodrigues Iteration Schema for Gmax,
which is the main subject matter of this paper and is introduced in Section 2.
The schema always yields a solution which corresponds to an extension in the
argumentation sense.

Let 〈S,R〉 be an argumentation network and X,Yi ∈ S be considered vari-
ables. Let Att(X) = {Yj} (j ≥ 0) be the attackers of X and let the equations
be X = Gmax(Att(X)).21 Let Vi(X) be the value of X at iteration step i. Then
the value of X at step i+ 1 is calculated as

Vi+1(X) = (1− Vi(X)) ·min

{
1

2
, G ({Vi(Yj)})

}
+

Vi(X) ·max

{
1

2
, G({Vi(Yj)})

}
21Ginv can also be used, with different results.

54

So for the network in Figure 7 and Gmax we get

Vi+1(N) = (1− Vi(N)) ·min

{
1

2
, 1−max{Vi(P), Vi(Q)}

}
+

Vi(N) ·max

{
1

2
, 1−max{Vi(P), Vi(Q)}

}
Vi+1(P) = (1− Vi(P)) ·min

{
1

2
, 1− Vi(N)

}
+

Vi(P) ·max

{
1

2
, 1− Vi(N)

}
Vi+1(Q) = (1− Vi(Q)) ·min

{
1

2
, 1−max{Vi(P), Vi(N)}

}
+

Vi(Q) ·max

{
1

2
, 1−max{Vi(P), Vi(N)}

}
Let us now take the initial conditions V0(N) = 1, V0(P) = 0 and V0(Q) = 0

and calculate the iterations. All values will converge to 1
2 .

The perceptive reader might ask what is the philosophy behind the schema that
led us to the extension E3, rather than to the larger extension E2. The schema
is very sensitive to the undecided values. It acts cautiously in considering the
votes for N ’s being included, because a proportion of the voters wanted Q to be
included but N and Q cannot work together.

B Numerical Argumentation Networks
In [1], the idea of support and attack networks was initially proposed. These
networks allow for the assignment of initial values to the nodes of the graph;
the specification of a transmission factor associated with the strength with which
an attack between arguments is carried out; and the higher-level notion of an
attack to an attack. In [17], we showed how some of these features can be
used in the merging of argumentation networks. The numerical argumentation
networks we now propose share some of the features of the support and attack
networks, but introduce a functional approach to the computation of interaction
between nodes.

Definition B.1 (Numerical Argumentation Network) A numerical argu-
mentation network is a tuple 〈S,R, V0, Ve, g, h,Π〉, where

• S is a set of nodes, representing arguments;

• R ⊆ S2 is an attack relation, where (X,Y) ∈ R means “X attacks Y ”;

• V0 : S −→ U is a function assigning initial values to the nodes in S;

• g is a function to combine attacks to a node;

55

• h is a function to combine the initial value of a node with the value of its
attack;

• Π is an algorithm to compute equilibrium values Ve(X), for each node
X ∈ S.

We assume that g and h are possibly distinct argumentation-friendly func-
tions according to Definition 1.2. The equilibrium value of a node X, Ve(X),
is defined as h(V0(X), gY ∈Att(X)({1− Ve(Y)})) and computed by the algorithm
Π. Since the computation of the equilibrium values of the nodes takes the
values of the attacking nodes into account, in Cayrol and Lagasquie-Schiex’s
terminology, the algorithm Π offers a procedure to perform an interaction-based
valuation of the graph 〈S,R〉. However, our approach is more general because
the computation is done in terms of equations satisfying abstract principles.

We start our discussion with a simple graph without cycles, such as the one
in Figure 8 to illustrate how numerical argumentation networks are used in the
context of the argumentation-friendly functions seen in this paper.

Y ZX

Figure 8: A simple argumentation graph without cycles.

Given initial values V0(X), V0(Y), and V0(Z) for the nodes X, Y and Z,
respectively, we want the values of Ve(X), Ve(Y) and Ve(Z) to depend on them.
Since the node X is not attacked by any node, its equilibrium value Ve(X) is
defined as h(V0(X), g(∅)) = h(V0(X), 1) = V0(X). However, the value of Ve(Y)
and Ve(Z) depend not only on their initial values, but also on the equilibrium
values of their attackers. This suggests some notion of directionality in the
computation.

Now consider a more complex network, in which the node X has a number
of attackers as well as an initial value V0(X) as depicted in Figure 9.

We can compute g({1 − Ve(Y1), . . . , 1 − Ve(Yk)}) = y, which gives us the
value of the attack on X. The equilibrium value of X is the result of combining
its initial value V0(X) with the value of the combined attacks on it, so we can
pretend we have the interaction depicted in Figure 10.
and compute h(Ve(Z1), Ve(Z2)), i.e., h(V0(X), g({1 − Ve(Y1), . . . , 1 − Ve(Yk)}).
We get equations of the kind

Ve(X) = h(V0(X), g({1− Ve(Y1), . . . , 1− Ve(Yk)}) (27)

to solve. As we mentioned, g and hmay be different functions, so for example we
could have g({1− Ve(Y1), . . . , 1− Ve(Yk)}) = min({1− Ve(Y1), . . . , 1− Ve(Yk)})
and h(x, y) = x · y.

56

X

Y1

Y2

Yk

g({1− Ve(Y1), . . . , 1− Ve(Yk)})

V0(X)

Value of the attack on X

Initial value of X

Attackers

Figure 9: Attacks to a node and its initial value.

X

Z2

Z1

Ve(Z2) = y

Ve(Z1) = V0(X)

Figure 10: Combination of a node’s initial value with its attacks.

When f and g are the same, e.g., f = g = min, we can pretend we have
Figure 11. And then we get Ve(X) = min({1− (1− V0(X)), 1− Ve(Y1), . . . , 1−
Ve(Yk)}) = min({V0(X), 1 − Ve(Y1), . . . , 1 − Ve(Yk)}). Note that in this situa-
tion, the traditional equation (without h and initial values) is a special case of
V0(X) = 1, because h(1, z) = z and then Ve(X) = h(1, g({1 − Ve(Y1), . . . , 1 −
Ve(Yk)})) = g({1− Ve(Y1), . . . , 1− Ve(Yk)}).

We now address another issue. Once we solve equation (27), we get a function
Ve such that

Ve(X) = h(V0(X), g({1− Y1, . . . , 1− Yk}))

Can we use Ve(X) itself as an initial value?
In other words, do we have that equation (28) below holds?

Ve(X) = h(Ve(X), g({1− Y1, . . . , 1− Yk})) (28)

57

X

Z2

Z1

Ve(Z2) = y

Ve(Z1) = 1− V0(X)

Figure 11: Combining attacks and initial value.

The answer is “no”, because g and h are not necessarily the same function.
In case it is the same function, we have

Ve(X) = h(Ve(X), g({1− Y1, . . . , 1− Yk}))
= g({Ve(X), g({1− Y1, . . . , 1− Yk})})
= g({Ve(X), 1− Y1, . . . , 1− Yk})
= g({Z, 1− Y1, . . . , 1− Yk})

where Z is the equilibrium value of a new point attacking X, whose value is
fixed at V0(X). We can simulate this by adding new points Z1

X and Z2
X for

each X and form the graph depicited in Figure 12. All solutions to the cycle

X

Y1

Y2

Yk

Attackers

Z1
X

Z2
X

Figure 12: Combining attacks and initial value.

Z1
X ↔ Z2

X are of the form (Ve(Z
1
X),1− Ve(Z1

X)), which means that Z1
X can get

any value in U and hence so can its attack on X. This can be seen as having
the same effect as giving X a particular initial value in U .

These conditions are satisfied by the t-norm min. An attack takes the com-
plement of the value of the attacking node to 1 (co-norm).

58

We have that

min
Y ∈Att(X)

{1− Ve(Y)} = 1− max
Y ∈Att(X)

{Ve(Y)}

giving us our now familiar Eqmax.
The t-norm min only cares about the strength of the strongest argument. In

some applications, one could argue that attacks by multiple arguments should
bear more weight than the value of any of the arguments alone. One way of
modelling this is by combining attacks via product.∏

Y ∈Att(X)

(1− Ve(Y)) (29)

Again, if any attacker of an argument has equilibrium value 1, then the value
of the product will be 0. Otherwise, if all attackers of X are fully defeated, i.e.,
if they all have equilibrium value 0, then the value of the product will be 1.
Combining the value of attacks in this way was initially proposed in [1].

The expression (29) is equivalent to

1−gY ∈Att(X)Ve(Y) (30)

where xgy = x+y−x.y and for V = {x1, . . . , xk}, gV = (((x1gx2)g. . .)gxk).
(30) is the complement of the probabilistic sum t-conorm. It is well known that
in probability theory, the probabilistic sum expresses the probability of the
occurrence of independent events. Since we want to weaken the value of the
attacked node, we take the complement of this sum to 1.

A network generates a system of equations. If there are cycles in the graph,
then some of the variables associated with equilibrium values will be expressed
in terms of each other. We now explore this in a bit more detail.

Consider the following example.

X Y

Figure 13: A cycle involving two nodes.

Assume that all initial values are 1, that g and h are product. The graph in
Figure 13 will generate the system of equations

Ve(X) = 1− Ve(Y)

Ve(Y) = 1− Ve(X)

which has an infinite number of solutions given by the formula Ve(X)+Ve(Y) =
1. A way to arrive at a unique solution to the equations is to introduce a

59

constant κ < 1 and analyse the solution to the system of equations in the limit
κ→ 1. This would give us

Ve(X) = κ(1− Ve(Y))

Ve(Y) = κ(1− Ve(X))

Ve(X) = κ− κVe(Y)

= κ− κ(κ− κVe(X))

= κ− κ2 + κ2Ve(X)

Ve(X)− κ2Ve(X) = κ− κ2

Ve(X)(1− κ2) = κ− κ2

Ve(X) =
κ(1− κ)

(1− κ)(1 + κ)

Ve(X) =
κ

1 + κ

Hence, when κ→ 1, Ve(X) = Ve(Y) = 1/2. This result explains the implicit
introduction of the parameter ε to the vote aggregation function proposed by
Leite and Martins in [19].22

Since the initial values of the two nodes in the network of Figure 13 are the
same, another way of looking at the network is by unravelling the cycle starting
arbitrarily at one of its nodes, say X. In our example, this would result in the
(infinite) network of Figure 14.

...A B A

Figure 14: Unravelling the cycle in the network of Figure 13.

If we assume the initial values for X and Y are both x, the equilibrium value
for X could be calculated as

Ve(X) = x · (1− (x · (1− (x · (1− . . .))))
Now suppose x = 1

1+ε , for some ε > 0, we have that

Ve(X) =
1

1 + ε

(
1−

(
1

1 + ε

(
1−

(
1

1 + ε
(1− . . .)

))))
Thus, in fact, we would be multiplying the initial value x = 1

1+ε by the number

δ = 1−
(

1

1 + ε

(
1−

(
1

1 + ε
(1− . . .)

)))
22We disagree with the reasons for the introduction of the parameter itself, although tech-

nically it is the reason why the solution converges. A full discussion about this is given on
Section 4.

60

Let us calculate what the value δ is. To simplify the calculation we set
α = (1 + ε), we then get

δ = 1−
(

1

α

(
1−

(
1

α
(1− . . .)

)))
If we expand the first multiplication, we get

δ = 1−
(

1

α
− 1

α2

(
1− 1

α
(. . .)

))
= 1−

[
1

α
− 1

α2
+

1

α3

(
1− 1

α
(. . .)

)]
= 1−

[
1

α
− 1

α2
+

1

α3
− 1

α4

(
1− 1

α
(. . .)

)]
= 1−

[(
α− 1

α2

)
+

(
α− 1

α4

)
+

(
α− 1

α6

)
+ . . .

]
The component (

α− 1

α2

)
+

(
α− 1

α4

)
+

(
α− 1

α6

)
+ . . .

can be re-written as
∞∑
k=1

(α− 1)

(
1

α2

)k
which is the same as

∞∑
k=0

(α− 1)

(
1

α2

)k
− (α− 1)

The first component in the main subtraction above is the sum of a geometric
series with common ratio 1

α2 and scale factor α − 1. Now note that the ratio
1
α2 < 1, since α = 1 + ε > 1, and hence

∞∑
k=0

(α− 1)

(
1

α2

)k
=

(α− 1)

1− 1
α2

=
α2(α− 1)

α2 − 1

The subtraction can therefore be re-written as

α2(α− 1)

α2 − 1
− (α− 1)

=
α2(α− 1)− (α2 − 1)(α− 1)

α2 − 1

=
(α− 1)(α2 − α2 + 1)

α2 − 1

=
α

α2 − 1

61

Remember that α = 1 + ε, hence
α

α2 − 1
=

1 + ε− 1

(1 + ε)(1 + ε)− 1

=
ε

ε2 + 2ε+ 1− 1

=
ε

ε(ε+ 2)

=
1

ε+ 2

Therefore,

δ =

(
1− 1

ε+ 2

)
and hence in the limit ε→ 0, we get

Ve(X) = lim
ε→0

1

1 + ε

(
1− 1

ε+ 2

)
=

1

2

as expected.
If we just have an acyclic sequence of attacks such as the one in Figure 15,

we can analyse what happens with the equilibrium values of each node, given a
fixed initial value v for all nodes (again we consider f as product).

...X1 X2 Xk

Figure 15: Sequence of attacks.

From the network in Figure 15, we get that Ve(X1) = v, Ve(X2) = v · (1−v),
Ve(X3) = v · (1 − (v · (1 − v))), and so forth. If v = 1, then Ve(X1) = 1,
Ve(X2) = 0, Ve(X3) = 1,. . . . The values alternate between 0 and 1, agreeing
with Dung’s original semantics as expected. If v = 0, then Ve(Xi) = 0 for all
0 ≤ i ≤ k. This is a consequence of the fact, that by using g, the equilibrium
value depends on the node’s initial value and if this is 0, so is the equilibrium
value of the node when g is product. Similarly, if the initial values of all nodes
is 1

2 , we get Ve(X1) = 1
2 , Ve(X2) = 1

4 , Ve(X3) = 3
8 ,

Contrast the calculation of the equilibrium values above with that of Besnard
and Hunter [2], in which the values are calculated by a so-called categoriser
function. In their paper, the given example of such a function was the h-
categoriser h, defined as

h(X) =

{
1, if Att(X) = ∅

1
1+

∑
Y ∈Att(X)

h(Y) , otherwise

Assuming initial value v = 1 in the example above, we would have that
h(X1) = 1, h(X2) = 1

2 , h(X3) = 2
3 , and so forth. This obviously does not agree

with Dung’s interpretation.

62

The effect on the equilibrium value of a node calculated using g and h as
product, when the node is attacked by a single node of same initial value is now
discussed. This is the scenario depicted in Figure 16.

X Y

Figure 16: Attack by a node of same initial value.

If we assume that X and Y get initial value x, we have that since X has no
attacking arguments, Ve(X) = x · (1− 0) = x. We then have

Ve(X) = x
Ve(Y) = x(1− Ve(X)) = x− x2

If X gets initial value 1, then it gets equilibrium value 1 and since it attacks
Y , its equilibrium value is 0, as expected.23 On the other hand, if X and Y
get initial value 0, then Y ’s equilibrium value will also be 0. If X and Y get
initial value 1

2 , then the attack by X on Y is not sufficiently strong to annihilate
Y ’s initial value completely. In fact, it only brings it down by 50%, i.e., giving
it equilibrium value 1

4 . This is the maximum weakening that an attack by an
equally strong argument can inflict on Y using product. The full range of values
under these circumstances is illustrated by Figure 17.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
qu

ili
br

iu
m

 v
al

ue
 o

f Y

Initial value of X

x-x2

Figure 17: Attack by a single node of same initial value.

23This equilibrium value would be 0 independently of the initial value of Y in this case,
because we retain Dung’s semantics in the trivial cases.

63

B.1 Comparisons with Social Abstract Argumentation Net-
works

In [19], Leite and Martins proposed social abstract argumentation frameworks
which can be seen as an extension of Dung’s abstract argumentation frameworks
to allow the representation of information about votes to arguments. This work
was subsequently extended in [11] to handle votes on attacks too.

The motivation for these networks is to provide a means to calculate the
result of the interaction between arguments using approval and disapproval rat-
ings from users of news forums. The idea is that when a user sees an argument,
she may approve it, disapprove it, or simply abstain from expressing an opinion.
Since the arguments relate to each other through an attack relation (not neces-
sarily known to the users), the votes themselves are not sufficient to provide an
overall picture of the discussion. An interesting feature of these environments
is therefore their intrinsic informal nature in the sense that in practice it is pos-
sible that voters vote for multiple arguments in the debate and also that users
may be unware of conflicts between the arguments.

One immediate concern is the provision of an appropriate semantics which
can give an interpretation to the votes capturing the intuition of the voting
process. The semantics must take into account both the interactions between
the arguments as well as the votes originally cast for them.

We now introduce Eǧilmez et al.’s work [11], which is an extension to [19]
so we can compare it with our methodology.24

Definition B.2 [11] A social abstract argumentation framework is a tuple
〈S,R, VS , VR〉, where S is a set of arguments; R : S × S is a binary attack
relation between arguments; and VS : S −→ N × N and VR : R −→ N × N are
functions mapping arguments and attacks to tuples 〈v+, v−〉 representing the
total of approval and disapproval votes received by each.

In order to provide a semantical interpretation, Eǧilmez et al. introduce the
concept of a semantic framework presented below.

Definition B.3 [11] A social abstract argumentation semantic framework is a
tuple 〈L, τ,f,g,¬〉, where

• L is a totally ordered set with top and bottom elements > and ⊥, respec-
tively

• τ : N × N −→ L is a vote aggregation function that computes the social
support of arguments and attacks

• fS ,fR : L × L −→ L; g : L × L −→ L; and ¬ : L −→ L are algebraic
operations on L

24Note that [19] were not aware (and did not quote) [1], which was six years earlier. Thus,
the only new contribution in [1] was how they determine the initial values and the connection
with voting.

64

The operations τ , f, g and ¬ are used to calculate the overall strength of
the arguments and attacks based on their initial votes. For the voting scenario
considered in [11], the so-called product semantics was given. In this semantics,
L is U (i.e., the interval [0, 1]); fS and fR are both the product t-norm f,
where xfy = x.y; g is its associated t-conorm, i.e., xgy = 1−(1−x).(1−y) =
x + y − x.y; ¬x = 1 − x; and τ is one of a family of operations τε defined as
follows:

Definition B.4 [Initial support for attacks and arguments] Let X be an argu-
ment and VS(X) = 〈p,m〉.

τε(X) =
p

p+m+ ε

where ε > 0.
The initial support value for an attack (X,Y) is calculated identically, except

that we use VR
(
(X,Y)

)
instead of VS(X).

One can regard τε and the operation that calculates the initial social support
value for arguments and attacks. However, one adverse effect of calculating the
initial support in this way is that it fails to put the votes in context, so an
argument for which a single supporting vote is cast can get social support close
to 1 (depending on what the value of ε is).25

The semantics of a social abstract framework is then defined by a social
model presented below.

Definition B.5 [11] Let F be a social abstract argumentation framework and
T = 〈L, τ,fS ,fR,g,¬〉 a semantic framework. A social model of F under
semantics T is a total mapping M : S −→ L such that for every X ∈ S

M(X) = τ(X)f ¬gYi∈Att(X) {τ
(
(Yi, X)

)
fM(Yi)}

Note that if f is product t-norm and g is its t-conorm, as in [11], then

M(X) = τ(X)f ¬gYi∈Att(X) {τ ((Yi, X))fM(Yi)}

= τ(X) ·

1−

1−
∏

Yi∈Att(X)

(1− τ((Yi, X)) ·M(Yi))

= τ(X) ·

∏
Yi∈Att(X)

(1− τ((Yi, X)) ·M(Yi))

Contrast M(X) with the equilibrium value of X, Ve(X) as we proposed it in
[17, Definition 5]:

Ve(X) = V0(X) ·
∏

Yi∈Att(X)

(1− ξ ((Yi, X))Ve(Yi))

25ε cannot be 0, because this would render τε ill defined for components with no votes.

65

The calculation is exactly the same, except that we compute initial support
differently as discussed next. We emphasise that the notion of the strength of
attack already existed since [1].

As Leite et al. initially pointed out in [19], there are difficulties with the
vote aggregation function τ . At first, the constant ε was introduced to avoid
the existence of infinite models. For example, consider the network

Y

1

1

X

And assume that VS(X) = VS(Y) = 〈x, 0〉. Then we have that τ0(X) =
τ0(Y) = 1 and hence any model M satisfying the equation M(X) = 1−M(Y)
is a social model of the network.

However, if the social support uses a very small value for ε that is nevertheless
greater than 0, we get the following situation.

M(X) =
1

1 + ε
(1−M(Y))

M(Y) =
1

1 + ε
(1−M(X))

If we substitute one value for the other, we get that

M(X) =
1

1 + ε

(
1− 1

1 + ε
(1−M(X))

)
=

1

1 + ε

(
1 + ε− 1 +M(X)

1 + ε

)
=

1

1 + ε

(
ε+M(X)

1 + ε

)
=

ε+M(X)

(1 + ε)2

M(X)(1 + ε)2 = ε+M(X)

M(X)(1 + ε)2 −M(X) = ε

M(X) =
ε

(1 + ε)2 − 1

=
ε

2ε+ ε2

=
1

2 + ε

66

and hence limε→0M(X) = 1
2 = M(Y), which provides a unique solution.

In our opinion, there is a methodological problem and a technical one. The
value ε > 0 solves the technical problem, which is the convergence to a single
model. However, methodologically speaking, the objective of τ is to calculate
initial support for components and in that respect, the constant ε has no part
to play. This situation does not arise in [17, 16], because the social support
function there is normalised with respect to the total number of argumentation
networks being merged. We hope we have shed some light into the technicalities
of finding solutions to the equations throughout this paper.

A more difficult problem is the exaggerated role played by terminal argu-
ments with little support, as shown below. Consider the following example:

X Y

τ
(
(X,Y)

)

and assume that VS(X) = 〈1, 0〉 and VS(Y) = 〈99, 0〉. According to Defini-
tion B.4, τ0(X) = 1. Since X is a terminal argument, M(X) = 1(1−0) = 1 and
hence M(Y) = τ0(Y)(1 − τ ((X,Y)) ·M(X)) = τ0(Y) (1− τ ((X,Y))). Hence,
the fate of Y depends on how strongly the attack from X is supported.26 Al-
though this technically solves the problem, it mixes the two issues, because a
voter must vote for an argument as well as for its attacks, if they are to have
any effect and an argument can get very high initial support even if it is voted
only by a very small number of voters.27

26The main motivation for the introduction of the weights on attacks in [11].
27High values of τ should correspond to high level of initial support.

67

	1 Orientation and Background
	1.1 Orientation
	1.2 Background

	2 The Gabbay-Rodrigues Iteration Schema
	3 Discussion and Worked Examples
	3.1 Worked Examples with Cycles

	4 Comparisons with other work
	5 Conclusions and Future Research
	A Predator-Prey and Argumentation Motivating Case Studies
	B Numerical Argumentation Networks
	B.1 Comparisons with Social Abstract Argumentation Networks

