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A Characterisation of Some Z-Like Logics

Krystyna Mruczek-Nasieniewska and Marek Nasieniewski

Abstract. In Béziau (Log Log Philos 15:99-111, 2006) a logic Z was de-
fined with the help of the modal logic S5. In it, the negation operator is
understood as meaning ‘it is not necessary that’. The strong soundness—
completeness result for Z with respect to a version of Kripke semantics
was also given there. Following the formulation of Z we can talk about
Z-like logics or Beziau-style logics if we consider other modal logics in-
stead of S5—such a possibility has been mentioned in [1]. The corre-
spondence result between modal logics and respective Beziau-style logics
has been generalised for the case of normal logics naturally leading to
soundness—completeness results [see Marcos (Log Anal 48(189-192):279—
300, 2005) and Mruczek-Nasieniewska and Nasieniewski (Bull Sect Log
34(4):229-248, 2005)]. In Mruczek-Nasieniewska and Nasieniewski (Bull
Sect Log 37(3-4):185-196, 2008), (Bull Sect Log 38(3-4):189-203, 2009)
some partial results for non-normal cases are given. In the present paper
we try to give similar but more general correspondence results for the
non-normal-worlds case. To achieve this aim we have to enrich original
Beziau’s language with an additional negation operator understood as ‘it
is necessary that not’.
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1. Introduction

The idea comes from [1], where a logic Z was defined with the use of the
normal logic S5. The definition of the logic Z was inspired by the definition
of Jaskowski’s logic Dy (see [4,11]). Beziau’s original formulation has been
generalized for the case of other normal logics [7,8], and also for some regular
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and quasi-regular ones, where the case of non-normal-world semantics was
considered [9,10]. In particular, it has been shown that there is a general way
to move from completeness results for normal modal logics to completeness
results for respective Beziau logics. A question arises: to what extent can those
results be repeated for regular logics. Our answer (see Theorem 7.14) requires
an extension of the language with a negation operator ‘it is necessary that
not’.

2. Béziau’s Logic Z

2.1. Syntax

Let Var be a set of propositional variables and For—the set of formulas built
up from elements of Var in the language {~, A,V, —}.

Definition 2.1 [1]. Axioms of the system HZ are
o all theses of positive classical logic!
e and for any A, B € For the following formulas:

AV ~A
(AN~B)A~(AAN~B)— (AN~ A)
~(AANB)— (~AV ~DB)
~~A— A

Rules of the system HZ are:

A HBB A (MP)
A— B
~(AN~B) (RZ)

A formula A is a thesis of HZ (in symbols Fz A) iff there is a finite
sequence of formulas By, ..., B, such that B, = A and B; (1 <¢<n) is an
axiom of HZ or it is a result of application of a rule of HZ, whose all premisses
are among formulas By, ..., By, (m <1).

2.2. Semantics
Definition 2.2 [1].
1. A Z-model?® is a non-empty set C of valuations such that: o € C iff
classical conditions for (A), (V), (—) hold, while for ~ we have:
a(~A) =0 iff Vgec B(4)=1. (~1)

2. A formula A is valid in Z-model C iff Vpec a(A) = 1.
3. A formula A is Z-valid (Fz A for short) iff A is valid in all Z-models.

Theorem 2.3 (Completeness, [1]). Fz A iff bz A3
! In [1] an axiomatisation of positive classical logic is used, but it is not essential there.

2 In [1], it was called ‘Z-cosmos’.
3 In [1] a strong adequacy theorem is proved.



Vol. 12 (2018) A Characterisation of Some Z-Like Logics 209

3. A Class IC

3.1. Syntax
Definition 3.1. Let K denote a family of logics such that each of them

— contains positive classical logic in the language {A,V, —},
— contains the de Morgan law:

~(pAg) = (~pV~q) (AM1_)
— the following version of Ex falso quodlibet:
~p—p)—p (EFQ)
— and is closed under modus ponens (MP), substitution and the rule of
contraposition:
FA— B
_ NT
F~B—~A (CONTR)

Let Pk be the smallest logic in K. Notice that the definition of Pgk
corresponds to the formulation of Dosen’s system HK [ (see [2]) which is
an extension of Heyting propositional calculus (where — is the intuitionistic
negation) with the axiom (dM1_,), where [I' is used as a symbol of the second
negation (in our notation ‘~’); an axiom —[J'(A — A) [that corresponds to
our (EFQ)] and the rule of contraposition with [0’ used again as a negation
symbol. Connections between these systems deserve a closer look but they will
not be discussed in this paper.

3.2. Semantics

Definition 3.2. 1. A frame is an ordered pair (W, R), where W is a non-
empty set and R is a binary relation on W (accessibility relation).
2. A waluation is any function v : Var — 2",
3. A model is any triple (W, R, v), where (W, R) is a frame and v—a valua-
tion. We say that (W, R,v) is built over the frame (W, R).

Definition 3.3 [8]. 1. A formula A € For is true in a world w € W under a
valuation v (notation: w Ik, A) iff

e if A is a variable, then
Wk, A<= w € v(A).

e if A is of the form ~ B for some B, then
w Ik, A <= there is a world w’ such that wRw’ and it is not the case
that w’ Ik, B (i.e. w' ¥, B).

e if A is of the form B A C, for some B and C, then
wlE, A<= wik, Band wik, C.

e if A is of the form BV C, for some B and C, then
wik, A<= wik, Borwlik, C.

e if A is of the form B — C, for some B and C, then
wlk, A<= wW, Borwlk, C.

2. A formula A is true in a model M = (W, R,v) (notation M k A) iff w Ik, A
for every w € W.



210 Krystyna Mruczek-Nasieniewska and Marek Nasieniewski Log. Univers.

3. A formula A is valid in a frame (W, R) iff it is true in every model built
over (W, R).

3.3. The Completeness of Pk

Theorem 3.4 (Completeness of Pk, [8]). For any A € For. A € Pk iff A is
valid in every frame.

4. A General Result for the Normal Case

Let For™ be the set of all propositional modal formulas in the language
{ﬁa/\av7_)a<>7‘:|}'

Definition 4.1 [8]. Let —* : For™ — For be a function satisfying for any
a € Var, A, B € For the followmg conditions:

1. (a)* = a,

2. (=A)" = ((A)" = ~(p = p)),

3. (A§B)* = (A*§ BY), for § € {A,V,—},

4. (0A)" = ~((A)" — ~(p = p)),

5. (BA)" = (~((A)") = ~(p = p)).

Definition 4.2. For X C For™, let K[X] be the smallest normal modal logic
containing the logic K and the set X. For a given logic § = K[X], let Pk|x)

be the smallest element in K which contains Pk and the set of ‘new’ axioms
Xv={A": Ae X}.

Let us recall

Theorem 4.3 [8]. Let S = K[X]. If the logic S is complete with respect to some
class of frames with accessibility relation fulfilling a given condition C, then
for the logic Pg the following holds:

For any A € For: A is true in every frame with accessibility relation
fulfilling the condition C iff A is a theorem of the logic Pg.

5. Examples

5.1. The Logic Py

Let us recall that the logic Pt is obtained by adding to Pk a single extra
axiom:

Op—p)*,
e (vp—r~(p—p)—p
Theorem 5.1 (Adequacy for P, [8]).

1. A formula A is true in every frame with reflexive accessibility relation iff
A is a theorem of the logic Pr.
2. The logic Pt is the smallest logic in KC containing the formula pV ~ p.
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5.2. The Logic Pks
The logic Pks is obtained by adding an extra axiom to Pk:

(Op — O0p)™.

Corollary 5.2 (Adequacy for Pks, [8]). A formula A is true in every frame
with Euclidean accessibility relation iff A is theorem of the logic Pxks.

Theorem 5.3 [8]. The logic Pks is the smallest logic in K containing the for-
mula ~p A\ ~~p—q.

Corollary 5.4. The logic Z is equal the smallest logic in K that contains
pNV~p

6. Class R

6.1. Syntax
Definition 6.1. Let R be the class of all logics that contain positive classical

logic in the language with {A,V,—}, that include (dM1_,), and are closed
under modus ponens, substitution, and contraposition (CONTR).

We easily obtain:

Fact 6.2. For any L € R, L contains:
(~pVe~q) = ~(pAg) (dM1.)
~(pVq) = (~pAr~g) (dM2_)

6.2. Semantics

Definition 6.3. 1. A frame is any triple (W, R, N), where W is a set, N is
a non-empty subset of W and R is a binary relation on W. Elements of
W, N, and W\N are called respectively: possible worlds, normal worlds,
and non-normal worlds.
2. A model is a quadruple (W, R, N, v), where (W, R, N) is a frame, and v—a
valuation. We say that (W, R, N, v) is built over the frame (W, R, N).

Definition 6.4 [9]. A formula A is ¢rue in w € W under a valuation v (w Ik, A
for short) iff
e if A is of the form ~ B for some B, then
— for w € W\N
wlE, A
— for w € N:
w Ik, A <= there is w’ such that wRw’ and it is not the case that
w’ Ik, B (w' ¥, B for short).
Other cases stay unchanged with respect to Definition 3.3.

Definition 6.5. 1. A is valid in a model M = (W, R,N,v) (M kg A) iff
w I, A for each w € W.
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2. A formula A is valid in a frame (W, R, N) iff it is valid in each model
built over (W, R, N).

Since classical logic belongs to R, there is a smallest logic in R, denoted
as Rco. Thus, we obtain:

Corollary 6.6 (Adequacy for Rca, [9]). For any A € For, A € Reoa iff A is
true in every frame (W, R, N).

6.3. Problems with Generalisation for the Non-normal Case

Any formula of the form ¢ A is valid in every non-normal world, even a formula
O=(p — p). Bearing in mind the applied translations, we cannot use ~(p — p)
as a bottom constant as we did in the case of normal world semantics which
is adequate for logics from the class /.

To obtain a general result—corresponding to the Theorem 4.3—for the
case in which non-normal worlds are allowed, we will use a formula that gives
after translation a formula of the form OA. Such formulas are false in every
non-normal world (see [6]). A natural candidate to assist in this task is a ‘it is
necessary that not’ operator which is denoted in what follows by ~. Moreover,
a formula ~(p — p) will be treated as false also in every normal world with
a non-empty set of alternative worlds. We have to remember that even this
formula is valid in worlds with the empty set of alternatives. This will limit
the generality of our solution.

7. A Solution: The Class R~

First, let us consider a set For™ of formulas in the language with the two
negations ~ and ~, and positive connectives A, V, —.

Definition 7.1 (Counterpart of the regular logic D2%). Let R™ be the class of
all logics that are non-trivial subsets of For™, containing full positive classical
logic in the language {A, V, —}, including the following formulas:

~pASg—~(p V), (dM27)
~p— (~(p— ~(g—q) = ~(q—9) (df~)
(~(p—~(g—q) —~g—q)—~p (df>)
~p—~p (D2)
(p—=~g—q)—~(g—q)—p (dneg)
and closed under modus ponens, CONTR™:
FA— B .
S P (CONTR")

and any substitution.

4 Notice that ‘D2’ has nothing to do with Jaskowski’s logic Da. It was introduced by Lemmon,
see Definition 7.7 and [6].
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Observe that the above system is an extension of the system N of Dosen
[3], defined by the axioms of positive intuitionistic logic, rules (MP) and
(CONTR™). On the other hand in [2] a system HK{' analogous to previ-
ously mentioned system H K [’ had been defined this time with (dM27 ), the
additional axiom ~ —=(A — A) (here — is the intuitionistic negation) and was
closed under the rule (CONTR™).

Similarly, as in [8] we have:

Fact 7.2. For any L € R™, L is closed under the rule of extensionality:
FA—-B)A(B—A)

EXT™
F(RASSB)A (LB — < A) ( )
and contains the following versions of de Morgan laws:
(~pV~q) = ~(pAg) (dM1Z)
~pVa) = (FpALq) (dM27%)

Proof. The fact that L is closed on the rule of extensionality is obvious.
Theses (AM17) and (dM2~) are obtained by modus ponens, substitution,
(CONTR"™), and positive logic. O

We have
Fact 7.3. For any L € R™, L NFor € R.

Proof. First we prove that L is closed under (CONTR). Assume that "4 —
B™ € L. By positive logic we have "(B — ~(¢ — ¢q)) = (A — ~(¢ —q))" € L
and using (CONTR™) we obtain "~(A — ~(q — q)) — ~(B — ~(q¢ — q))" €
L. Again by positive logic we see that "(~(B — ~(¢ — q)) — ~(¢ — q)) —
(~(A— ~(¢—q)) — ~(¢—q)" € L and by (dt™), (dfZ), substitution and
positive logic we have that "~ B — ~ A7 € L.

Now, it is enough to show that (dM1_,)e L. By (df™) and substitution
we have: "~(pAq) = (~((pAq) — ~(q¢ — q)) — ~(q — ¢))" € L. By positive
logic and (EXT™) we see that "~(p A ¢) — (~((p = ~(g = q) V(¢ —
(g — q))) = ~(¢ — q))" € L. Due to (dM27 ) and substitution we obtain
~p = ~g = @)~ — ~g—q) = ~p = ~g— 9)Vg— ~(g — 9))
as a thesis of L and by positive logic we conclude that "~(p A q) — (r'v(p —
~(a — q) A~(g = ~(g — @) = ~(¢ — q))" € L and next "~(p A q) —
(~p = ~g = q)) = ~g—q) V(Mg = ~g—4q) = ~g—q) €L
The thesis follows by (dfZ”) and again positive logic. O

We have to extend Definition 6.4 for the case of ~.

Definition 7.4. A formula A € For™ is true in a world w € W under a valuation
v (notation: w Ik, A) iff
e if A has the form ~ B, for some formula B, then
— for w € N:
w Ik, A <= for every world w’ such that wRw', it is not the case
that w' Ik, B;
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— for w € W\N:

w Iy, A,
Other cases stay unchanged with respect to Definition 6.4.

Validity in a model and in a frame behaves as in Definition 6.5
We extend the function —™ used in [8].

Definition 7.5. Let —™ : For™ — For™ be a function satisfying for any a €
Var, A, B € For™ the following conditions:
1. (&)™ = a,
(~ A)™ = O((A)™),
(~A)™ =D0=((A)™),
(A§B)™ = (Am§B™), for § € {A,V,—1}.

Ll

Now we redefine 4.1 using a new bottom constant. Although it is not
essential, to be able to easier formulate some statements, below we consider
the modal language with material equivalence.

Definition 7.6. Let —“~ : For™ — For™ be a function satisfying for any
a € Var, A, B € For the following conditions:
1. (a)** =a .
(=A)"~ = (A" = ~(p = p))
(A§B)"~ = (A“~)§(B"™), for § € {A,V,—}
(Ao By = (A" — BU) A (B* — A,
(0A)™ = (~((A)") = ~(p — p)),
(BA)" = (A" — ~(p — p)).

O U N

Let us recall that a regular logic is any set of modal formulas L that
contains classical logic, includes (df ¢): Op — =O-p, (K): O(p — ¢) — (Op —
Og), and is closed under modus ponens, substitution and the monotonicity
rule (mon): if "TA — B € L then "UOA — OB € L.

Definition 7.7 [6]. D2 is the smallest regular logic containing the axiom (D) :
Op — Op (equivalently O(p — p)).

Lemma 7.8. For any A € For™
FDQ A — ((A)UN)m (eXtDz)

Proof. The proof goes by induction on the complexity of a modal formula A.
The initial step is obvious since

(@)™ =a
for any variable a. For the inductive step notice that every regular logic is
closed under the rule of replacement:
A< B

70[‘4/3] =C (ext)
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Besides, for the case of —, { and O it is enough to observe that for any formulas
A, B € For™, the following formulas belong to D2:

A = (A—=D=(p—p))
0A « (0-A - 0O=(p — p))
0A < 0~(A — 0O-(p — p))
To prove the last statement, it is enough to observe that the following formulas
A (AN=O-(p —p))
O0A = (=0~(p — p) — ~0O-A4)
A= —(A—=DO=(p—p))
are also theses of D2.
The cases of positive classical connectives are obvious. O

Let Rpz be the smallest logic in R™.

Lemma 7.9. For any formula A € For™
FRpa (A = ((A)™)") A (((A)™)" — 4) (extrp,)

Proof. The proof goes by induction on the complexity of a formula A. The
initial step is obvious since

(@™ =a
for any variable a. For the inductive step using Facts 7.2, 7.3, and positive
logic we can replace in any formula, any its subformula B, by a formula C'
whenever "B — C7 € Rpg and "C — B € Rps. Thus, for the cases of ~
and ~ it is enough to observe that every logic from R~ has as its theses the
following formulas:

~ A= (MA = ~p = p)) = ~(p— ),

(MA = ~(p—p)) = ~p—p) —~A4

~A = A((A = ~(p—p) =~ =),

~((A = ~p—=p) = ~p—p) = A
We see that first two formulas are substitutions of (df™) and (dfZ), respec-
tively. The third one is obtained by (CONTR™) from a substitution of (dneg),
while the fourth one follows again by (CONTR™) from a substitution to modus

ponendo ponens: p — ((p — q) — q). The cases of positive connectives are
obvious. O

Definition 7.10. For X C For™, let D2[X] be the smallest regular modal logic
containing the logic D2 and the set X. For a given logic S = D2[X], let Rg
denote the smallest element in R~ which contains Rps and the set of ‘new’
axioms X*~ = {(A)*~: A€ X}.

We obtain an analogue with Lemma 16 in [8].

Lemma 7.11. Let S = D2[X]. For A € For™ we have A € S iff Fr, (A)*~.
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Proof. (=). Let A € For™ and A € 8. Consider a proof of A: C1,...,Cj. We
prove by induction on i that for any 1 < i < k: Fry (C;)*". Let us take any
¢ such that 1 <14 < k and assume that for any 1 < j < ¢ it holds that Fgg
(C;)**~. For the initial step we repeat argumentation for the cases of axioms of
the logic S (points 1-6 given below) together with the fact that classical logic
can be axiomatised by positive logic and the strong law of contraposition. We
consider the cases:

1.

u~~

C; is a thesis of classical positive logic; then (C;)“™~ is also a thesis of

classical positive logic, so Frg (C;)"™.

. Cy is of the form (~C' — —D) — (D — C) for some C,D € For™. We

prove _that I—Rs.(((C)"& — ri/(p.—> p) — (D)*~ — ~(p — p))) —
(D)~ — (C)*~) i.e. Frg (C;)"~. By (dneg) and substitution we have
((C)** = ~(q = q)) = ~(¢ — q)) — (C)** while by positive logic
we get ((D)“N — ((C)"™ = ~(g — q) — ~(¢ — Q))) — (D))"~ —
(C)*™~), so the required thesis follows by commutation of antecedents.

. C; is of the form OC « —-O-C for some C € For™. We need to prove

that Fry (~(C)"~ — ~(p — p)) = (~((C)*" = ~(p = p)) = ~(p —
p)) = ~p = p)) and Fry (~(((C)* = ~p = p)) = ~p = p)) =
~(p — P)) — (A(O)* — A(p — p)). But the first formula follows by
a substitution to modus ponendo ponens: (C)*~ — (((O)*~ — ~(p —
p)) — ~(p — p)), (CONTR™) and positive logic, while the second one is
obtained by a substitution to (dneg): (((C)*~ — ~(p — p)) — ~(p —
p)) — (C)*~, and again (CONTR™) and positive logic.

. Cj is of the form [(C' — D) — (OC — D) for some C, D € For™. We

have to infer the formula ~((C — D)~ — <(p — p)) — (~((C)*~ —
~(p — p)) — ~((D)* — ~(p — p))). Indeed, by positive logic, Def-
inition 7.6 and substitution we obtain ((D)*~ — ~(p — p)) — ((C —
D)™ — <(p — p)) V ((C)*~ — ~(p — p)), and the required formula
can be proved by (CONTR™), a substitution to (dAM27 ), transitivity of
implication and exportation.

. C; is an instance of the axiom (D). We need to prove ~((D)"~ —

“(p = p)) — (“((D)**) — “(p — p)). From (df~) by commutation
of antecedents and substitution we have: ~((D)"~ — ~(p — p)) —
(~((D)"*) — ~(p — p)). The rest follows by (D) and the transitivity
of implication: (~((D)"~) — ~((D)*™)) = ((~((D)"™) = ~(p — p)) —
(~((D)"™) = ~(p — p)))-

. C; is a specific axiom of the logic S i.e. C; € X. By the definition of Rg:

(Ci)*~ € Rg.

. C; is obtained by (MP) from C} = C; — C;, where k,j < i. By the in-

ductive hypothesis Frg (Cy)"~ and Fry (C; — C;)*~. By Definition 7.6
we have (C; — C;)"~ = (C;)"~ — (C;)*~ and (C;)"~ also arises from
(Ck)"~ and (C;)"~ by (MP).

. C; is obtained by the monotonicity rule from some formula C; = C — D

where j < i, so C; equals JC — OD. By the inductive hypothesis Fr,
(C — D)“~. By the definition of the function (—)*~ and transitivity
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of — we obtain ((D)*~ — ~(p — p)) — ((O)** — ~(p — p)). By
(CONTR™) we get: Frg (Ci)*™.

C; is obtained from a formula C; where j < i by a substitution of some
formulas Di, ..., Di € For™. Since Rg is closed under the substitution
it is enough to observe using induction on the complexity of the formula
that (C;)*" is equivalent on the basis of Rg to a formula (in the sense
that implications in both directions are theses of Rg) which arises from

(C;)"~ by the appropriate substitution of formulas (D})“~, ..., (Di)*~.

(«<). Let A € For™ and Frg A“~. Consider a proof of A*~: Cy,...,Ck. We
prove by induction on ¢ that for any 1 <i < k: (C;)™ € S. Let us take any i:
1 <4 < k. We consider the following cases:

1.

2.

10.

C; is a thesis of classical positive logic; then (C;)™ is just C; and of course
(Cl)m € D2.

Ciis ~“pA~q— ~(pVq). By definition (~pA~qg— ~(pVq))™ equals
O-pAO-g — O=(pV q). The proof that the last formula belongs to D2
(C S) is a standard task.

Ciis ~p = (~(p — ~(¢ — q)) — ~(¢ — q)). Its translation by (=)™
is just the formula ¢—p — (O-(p — O-(¢ — ¢q)) — O-(¢ — ¢)) which
belongs to D2 C S. This can be easily observed by the following thesis
of D2: O—p — (O(g — q) — O(0(qg — q) — —p)).

. C; is a formula (~(p — ~(¢ — q)) — ~(¢ — q)) — ~p. By translation

we have (O-(p — O-(¢ — ¢)) — O=(¢ — ¢q)) — O—p. We can see that
this formula is a thesis of D2 since also the following formula is a thesis
of D2 (0(q — q) = 0(0(q = ¢) — —p)) = O-p.

C; is a formula ~p — ~p. Its translation is a substitution of (D).

C; is a formula ((p — ~(¢ — ¢q)) — ~(¢ — ¢q)) — p. Its translation has
the form ((p — O-(¢ — ¢q)) — O—(¢ — q)) — p. It is enough to see that
the last formula can be easily inferred from the following theorem of D2:
(0lg—q) — (pPAOg—q)) — p.

C; is obtained by (MP) from Cy = C; — C;, where k,j < i. By the
inductive hypothesis (Cx)™ € S and (C; — C;)™ € S. By Definition 7.5
we have (C; — C;)™ = (C;)™ — (C;)™ and (C;)™ also arises from (Cj)™
and (C;)™ by (MP).

C; = ~ B — ~ (C is obtained by (CONTR™) from C} = C — B, where
k < i and C, B € For. By the inductive hypothesis (C — B)"™ = C™ —
B™ € S, while by contraposition and monotonicity we obtain (C;)™ =
"T~((B)™) — O~((C)™) " € S.

C; is obtained by a substitution of some formulas D%, ..., D¢ € For into
a formula C; where j < 4. Since S is closed under any substitution, it is
enough to observe that that (C;)™ arises from (C;)™ by the appropriate
substitution of formulas (D)™, ..., (Di)™.

C; € X%~ ie. C; is of the form (C)*~, for some C' € X. Thus, (C;)™ =
((C)*~)™ and by Lemma 7.8 it is equivalent on the basis of D2 to C €
X C S =D2[X]. So, also (C;)™ € S.
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Finally, let A € For™. If Fry (A)%" than by the above reasoning we have
((A)*»~)™ € S but by Lemma 7.8 also A € § = D2[X]. O

Let us recall that D2 is sound and complete with respect to the class of
serial frames,® where a modal formula is valid in a model iff this formula is true
in every world including non-normal worlds, i.e. worlds where every formula
of the form QA is true and every formula of the form [JA is false.

Below the fact that a modal formula A is true in a world w under a
valuation v is denoted by w =, A. We can easily verify that

Lemma 7.12. For any A € For, any model M = (W, R, N,v), and any w € W
the following holds: w k, A iff w =, (A)™.

Theorem 7.13. Rps is sound and complete with respect to the class of all serial
frames.

Proof. Let A € For™. We have: A € Rpg iff (by Lemma 7.9) ((4)™)*~ € Rpa
iff (by Lemma 7.11) (A)™ € D2 iff (by completeness for D2) (A)™ is valid in
every serial frame iff (by Lemma 7.12) A is valid in every serial frame. O

Theorem 7.14. Let S = D2[X]. If a modal logic S is sound and complete
with respect to some class of frames in the sense of Definition 6.3 (i.e. where
non-normal worlds are allowed) with accessibility relations fulfilling a given
condition C, then for the logic Rg the following holds:

For any A € For™: A is valid in every frame with an accessibility relation
fulfilling the condition C iff A is a theorem of the logic Rg.

Proof. Assume that A is true in every frame with an accessibility relation ful-
filling the condition C'. By Lemma 7.12 it holds iff (4)™ is valid in every frame
with an accessibility relation fulfilling the condition C' and, given assumption
about S, it is true iff (A)™ € S. By Lemma 7.11 it is equivalent to the fact
that Frg ((A)™)“~ while by Lemma 7.9 and the definition of Rg it holds iff
Fre A. O

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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