
ar
X

iv
:1

80
7.

01
62

0v
1

 [
cs

.L
O

]
 4

 J
ul

 2
01

8

LOGICAL RULES AS FRACTIONS AND LOGICS AS SKETCHES

DOMINIQUE DUVAL

Abstract. In this short paper, using category theory, we argue that logical rules can be seen as
fractions and logics as limit sketches.

INTRODUCTION

This short paper relies on a talk given at the Universal Logic 2018 conference, in the Category and Logic
workshop organised by Peter Arndt. Quoted from the home page of Universal Logic:

“Universal logic is a general theory of logical structures. Universal logic is not a new logic, it is a
way of unifying the multiplicity of logics by developing general tools and concepts that can be applied
to all logics.”

In this paper, using category theory, we argue that logical rules can be seen as fractions and logics as limit
sketches, with the hope that these tools and concepts can be applied to many kinds of logics. A detailed
presentation, with additional examples, can be found in [7, 8, 9, 10]. The importance of categorical fractions
for proofs and computations was recognised independently in [11].

For rules, it is a fact that logical rules are written as fractions H
C , with the conclusion as “denominator”, and

we argue that actually logical rules are fractions C
H , with the hypothesis as denominator. For a logic, first

we define the theories (i.e., the families of formulas which are closed under application of the rules) as the
realisations of a sketch ET where rules appear as arrows. Then we derive from ET a second sketch ES and
a morphism σ : ES → ET, such that the specifications (i.e., all the families of formulas) are the realisations
of ES and the rules are fractions with respect to σ. An application to computational effects is mentioned at
the end of this paper, this subject is developed in [12, 13, 14, 15].

Here are some historical and recommended references for: categories of fractions [1, 2], sketches [3, 4] and
locally presentable categories [5, 6]. In this short paper we omit many technical issues, typically issues related
to size, choice, bicategories, etc.

I – FRACTIONS

Categorical fractions.

Given two categories S, T and a functor S
F // T , a fraction

c

h
: C → H is (“essentially”) a cospan (h, c)

in S (left) such that F (h) is invertible in T (middle). We will use dashed arrows for representing “both”
(right):

H′

H

h

>>⑥⑥⑥⑥⑥⑥⑥⑥
C

c

``❅❅❅❅❅❅❅❅

F (H′)

F (h)−1

||②②
②②
②②
②②

F (H)

F (h)
<<②②②②②②②②

F (C)

F (c)
bb❉❉❉❉❉❉❉❉

F (h)−1◦F (c)

ll

H′

~~⑥
⑥
⑥
⑥

H

h

>>⑥⑥⑥⑥⑥⑥⑥⑥
C

c

``❅❅❅❅❅❅❅❅

c/h

kk ❢❞❛❴❪❩❳

Fractions, localisation, reflection

A functor F : S → T is:

• a localisation if it adds inverses for some morphisms in S;

Date: 3 July 2018.
1

http://arxiv.org/abs/1807.01620v1

• a reflector if T is a full subcategory of S and F is left adjoint to inclusion:

HomS(S, T) ∼= HomT(F (S), T)

Then this adjunction is called a reflection and this is denoted:

S
F

//⊤ // T

⊇full

ww

Theorem. [1].

Every reflector is a localisation.

Example: the (usual) fraction 3
4 .

On the integers (left), on the rationals (middle), and both (right):

Z

Z

×3
;;✈✈✈✈✈✈✈✈

Z

×4
cc❍❍❍❍❍❍❍❍

Q

× 1

4
##❋

❋❋
❋❋

❋❋
❋

Q

×3
;;①①①①①①①①

× 3

4

55 Q

×4
cc❋❋❋❋❋❋❋❋

Z

##❍
❍

❍
❍

Z

×3
;;✈✈✈✈✈✈✈✈

55❯ ❨ ❭ ❴ ❜ ❡ ✐ Z

×4
cc❍❍❍❍❍❍❍❍

Thus, (usual) fractions are categorical fractions, with S = Mod(Z) the category of modules over the integers,
T = Vect(Q) the category of vector spaces over the rationals, and F : Mod(Z) → Vect(Q) the extension of
scalars:

F (V) = Q ⊗ V

Then F (Z) = Q and the integer 4 non-invertible in Z becomes the rational 4 invertible in Q.

Logic, specifications, theories (informally).

The following notions will be defined in the next sections.

Given a logic, with its formulas and rules, we say that:

• a specification S is a family of formulas;
• a theory T is a family of formulas which is closed under application of the rules.

Let us assume the existence of:

• a category S of specifications
• a category T of theories
• and a generating functor F : S → T such that F (S) is the family of formulas (or theorems) deduced
from the formulas (or axioms) in S.

Then a logical rule is a categorical fraction wrt F .

Example: the logical rule p p⇒q
q (Modus Ponens).

On specifications (left), on theories (middle), and both (right):

{p, p⇒q, q}

{p, p⇒q}

⊆
;;①①①①①①

{q}

⊆
\\✿✿✿✿✿

{p, p⇒q, q}

=
yyss
ss
ss
s

{p, p⇒q, q}

=
99sssssss

{q}

⊆
^^❁❁❁❁❁

⊆
mm

{p, p⇒q, q}

zz✉
✉
✉
✉

{p, p⇒q}

⊆
::✉✉✉✉✉✉✉

{q}

⊆
__❄❄❄❄❄❄

ll ✐❢❜❴❭

Indeed, when modus ponens is a rule of the logic, let S = {p, p⇒ q}, then F (S) = {p, p⇒ q, q, ...}: S is a
specification that does not contain q while F (S) is a theory that contains q.

To sum up (I): Logical rules as fractions.

More precisely, a logical rule
H

C
is a fraction

c

h
: “the hypothesis becomes invertible”.

2

Z

##●
●

●
●

●

Z

×n

;;✇✇✇✇✇✇✇✇✇

n/d

22❨ ❬ ❪ ❴ ❛ ❝ ❡
Z

×d

cc●●●●●●●●●

H ∪ C

zz✉
✉
✉
✉
✉

H

h

::✉✉✉✉✉✉✉✉✉✉
C

c

dd❍❍❍❍❍❍❍❍❍❍

c/h

ll ❡❝❛❴❪❬❩

II – SKETCHES

Warning.

In this talk, sketch always means limit sketch.

Sketches and their realisations.

A sketch E is a presentation for a category with limits E. It is made of:

• objects,
• “morphisms” with only “some” identities and composition,
• and “limits” with only “some” associated tuples,

which become actual objects, morphisms and limits in E. We will use dotted arrows for denoting projections
in limits.

A realisation R of a sketch E is a set-valued model of E: it maps each object, morphism and limit in E to a
set, function and limit in Set. Equivalently, a realisation R of E is a limit-preserving functor R : E → Set.
Morphisms of realisations are “natural transformations” and Real(E) denotes the category of realisations
of E.

The category Real(E) is a kind of generalised presheaf.

• A linear sketch E has only objects and morphisms (no limit); then Real(E) = Func(E,Set) is a
presheaf category.

Example. Real(V E
soo

t
oo) is the category of directed graphs.

• In general, for a [limit] sketch E, Real(E) is a locally presentable category.

Example. Real(M M2
soo

t
oo

k

hh
) is the category of magmas.

Remark.

“Many” properties of presheaves are still valid for locally presentable categories.

Logics as sketches.

We argue that it is possible to define a logic as a sketch. This will provide a very simple and very abstract
algebraic proposal for “unifying the multiplicity of logics”, or at least part of this multiplicity.

Example: sketch for Modus Ponens.

As a basic example, starting from a logic with Modus Ponens LogMP , let us build the corresponding sketch
ET,MP . The logic LogMP is such that:

• The syntactic entities are the formulas (Form) and theorems (Theo), and each theorem is a formula.
• There are two rules: the formation rule (IM) states that if p and q are formulas then p⇒ q is a
formula while the deduction rule (MP) ensures that if p and p⇒q are theorems then q is a theorem.

(IM)
p, q : Form

p⇒q : Form
(MP)

[p, q, p⇒q : Form] p, p⇒q : Theo

q : Theo

A sketch ET,MP is now built in three steps.
3

• First, here is a sketch for the syntactic entities (where the arrow // // stands for a monomorphism,
which is a kind of limit). A realisation R of this sketch is made of a set of formulas R(Form) and a
set of theorems R(Theo), with R(Theo) ⊆ R(Form).

Form Theooooo

• Then, here is a sketch for the formation rule (IM), where the limits mean that CIM = Form and
HIM = Form2. A realisation R of this sketch is made of a set of formulas R(Form), the sets
R(CIM) = R(Form) and R(HIM) = R(Form)2, and a function R(cIM) : R(HIM) → R(CIM) that
will be denoted cIM (p, q) = p⇒q.

HIM

��

cIM // CIM

��

Form

• And finally here is (a simplified version of) the sketch ET,MP , where the limits mean that CMP =

Theo and that HMP is “essentially” Theo2. Drawing the precise limit diagram for HMP is left as
an exercice. It must be such that R(HMP) is the set of triples (p, q, r) of formulas, with p and
r theorems and with r = p ⇒ q. Thus, a realisation of ET,MP is a theory for the logic LogMP :
Real(ET,MP) = TMP .

ET,MP =

HMP

uu ||

�� ��

cMP // CMP

��

HIM

��

cIM // CIM

��

Form Theooooo

To sum up (II): Logical theories as realisations of a sketch.

If we define a logic as a sketch ET, then the category of theories is the category of realisations T = Real(ET).

At this point, we might define a model of a theory T in a theory D as an arrow M : T → D in T and a rule
as an arrow c : H → C in ET. However, this point of view is far from satisfactory, mainly because there is
no notion of specification. This is solved in Part (III), where in addition we recover the fact that rules are
fractions, as in Part (I).

III – SKETCHES and FRACTIONS

Morphisms of sketches.

A morphism of sketches is a generalised functor: it maps objects, morphisms and limits to objects, morphisms
and limits. Each morphism of sketches σ : E1 → E2 induces a functor G : Real(E2) → Real(E1) by mapping
each realisation R2 of E2 to the realisation R2 ◦ σ of E1.

Theorem. [3].

The functor G associated to σ has a left adjoint.

Real(E1)
F

11⊤ Real(E2)
G

qq

This means that each realisation of E1 generates a realisation of E2.
4

Cycles.

A “cycle” in a sketch E is defined by considering that projections are oriented both sides.

Example.

There is a cycle in the sketch for the formation rule (IM)
p, q : Form

p⇒q : Form
.

HIM

%% ��

cIM //

�

CIM

~~

Form

• Note: because of cycle “�”, in a theory T for ALL pairs of formulas (p, q) there is a formula p⇒q.
• Required: in a specification S for SOME chosen pairs of formulas (p, q) there is a formula p⇒q.

Breaking cycles.

Theorem. [7].

Cycles in a sketch can be broken “in a reasonable way”.

The key point is to make some arrows partial :

replace H
c // C by H H ′oohoo c // C

By breaking the cycles in ET we get a sketch ES and a morphism called a localiser

ES
// ET

such that the corresponding adjunction is a reflection.

Real(ES) = S
F

//⊤ // T = Real(ET)

⊇full

ss

Definitions.

A diagrammatic logic is a sketch ET.
By breaking the cycles in ET one gets a localiser σ : ES → ET, thus a reflector F : S → T.

• the category of theories is T = Real(ET),
• the category of specifications is S = Real(ES),
• the theory generated by a specification S is F (S),
• a model of a specification S in a theory D is an arrow M : S → D in S
[or equivalently, an arrow M : F (S) → D in T],

• a rule is a fraction in ES wrt σ.

These definitions can be illustrated as follows, using the Yoneda contravariant embedding Y : Eop → Real(E),
such that Y(X) = Hom

E
(X,−).

ES
op σop

//

YS

��

ET
op

YT

��

Real(ES) = S
F

//⊤ //

S

""❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
T = Real(ET)

⊇full

rr

D

||①①
①①
①①
①①
①①
①①
①①
①①
①①

M
+3

Set
5

Note that, thanks to Y, a rule can also be seen as a fraction in S wrt F which is in the image of Y. Then
a proof is any fraction in S wrt F , and the density property of Y (as expressed below) ensures that proofs
are built from rules.

About the Yoneda contravariant embedding.

The embedding Y : Eop → Real(E) is “nearly as nice” for locally presentable categories as for presheaves :

• Y is faithful,
• Y maps limits to colimits,
• Y(Eop) is dense in Real(E): each realisation of E is the colimit of realisations in Y(Eop).

The category Real(E) has all colimits (like presheaves) but they cannot be computed sortwise (unlike
presheaves). This last property can be read as negative: “computing colimits is not easy” or as positive: “a
large amount of theorems can be derived from a small amount of axioms”.

Example: breaking the cycle for rule (IM).

First in sketches: adding a rule is a morphism:

E0
// ET

HIM

�� ��

CIM

��

Form

→ HIM

��

//

��
�

CIM

��

Form

that gets factorised by breaking cycles:

E0
// ES

// ET

HIM

�� ��

CIM

��

Form

→ H ′
IM��

��✆✆
✆✆

��
✽✽

✽

HIM

�� ��

CIM

��

Form

→

HIM

��

//

��
�

CIM

��

Form

Now in realisations:

Eop
0

//

Y0

��

ES
op //

YS

��

ET
op

YT

��

Real(E0)
⊤ // S

F

⊤ //
tt

T

⊇full

vv

Thus, focusing on Y(−)(Form):

{p, q} {r}

→ {p, q, r}

{p, q}

BB✆✆✆✆
{r}

YY✹✹✹

→

{p, q, p⇒q,...} {r,...}
r 7→p⇒q
oo

we get the fraction:

{p, q, p⇒q}

xxq
q
q
q

{p, q}

88qqqqqqqq

{p⇒q}

ff▼▼▼▼▼▼▼▼

mm ❜❛❴❪❭

Morphisms of theories are presented by fractions of specifications.

• A specification S in S is a presentation for the theory T = F (S) in T
• A morphism s : S → S′ in S is a presentation for the morphism F (s) : F (S) → F (S′) in T.
In this way one gets SOME morphisms t : F (S) → F (S′) in T.

Example. Every ring is a monoid.

6

• A fraction
c

h
: S → S′ wrt F is a presentation for the morphism F (h)−1 ◦ F (c) : F (S) → F (S′)

in T.
In this way one gets ALL morphisms t : F (S) → F (S′) in T.

Example. Every boolean algebra is a ring.

Finiteness issues.

It is a fact that every book, program, proof,... is finite, but logical theories are usually infinite.
Let us say that a realization R of a finite sketch E is finite if the set R(X) is finite for each X in E.
For a diagrammatic logic, when the sketch ET is finite then:

• the sketch ES is finite,
• the realisation Y(X) is finite for each X in ES,
• and the hypothesis and conclusion of each rule are finite specifications.

To sum up (III): Logics as sketches and rules as fractions.

A diagrammatic logic is a sketch, and by breaking the cycles in this sketch one gets a localiser (between
sketches), thus a reflector (between categories of realisations). This provides a simple and abstract framework
for defining the notions of theories, specifications, models, and rules as fractions. Then morphisms of
diagrammatic logics are “of course” defined as fractions of sketches.

IV – Application: COMPUTATIONAL EFFECTS

The definition of a diagrammatic logic has been motivated by the study of imperative and object-oriented
features in computer languages. Such features, called computational effects, can be seen from various points
of view, corresponding to various logics related by non-trivial morphisms. We have built logics for reasoning
about such programs without departing from their imperative or object-oriented flavour, with implementa-
tions in the Coq proof-assistant. Here is a toy example of this application.

The state effect in object-oriented programming.

Let us consider the following piece of C++ code, for dealing with toy bank accounts:

Class BankAccount {...
int balance (void) const ;

void deposit (int) ;

...}

Our goal is to associate to this piece of code a “quasi-equational” specification. Here are three proposals.

• The apparent specification:

balance : void → int

deposit : int → void

Here the object-oriented flavour is preserved BUT the intended interpretation is not a model.
• The explicit specification:

balance : state → int

deposit : int× state → state

Here the intended interpretation is a model BUT the object-oriented flavour is not preserved.
• decorated specification:

balancea : void → int

depositm : int → void

where the decorations (superscripts) are:
m for modifiers (methods)
a for accessors (“const” methods)

Here the intended interpretation is a model AND the object-oriented flavour is preserved.
7

These three specifications live in three different diagrammatic logics, related by morphisms: a morphism from
the decorated logic to the apparent logic, that forgets the decorations, and a morphism from the decorated
logic to the explicit logic, that expands the code so as to make the semantics explicit. Our proofs lie in the
decorated logic.

ba : void → int

dm : int → void
✷

yyrr
rr
rr ☞

%%▲
▲▲

▲▲
▲

b : void → int

d : int → void

b : state → int

d : int× state → state

CONCLUSION

We propose an abstract algebraic framework for logic.

• A simple framework:
– A diagrammatic logic is a sketch.
– A diagrammatic logical rule is a fraction.

• A homogeneous framework:
“the logic of logics is a logic”.

• A category of logics:
morphisms of logics are fractions of sketches.

References

[1] Peter Gabriel, Michel Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzge-
biete, Band 35. Springer-Verlag (1967).

[2] Francis Borceux. Handbook of Categorical Algebra (I). Encyclopedia of Mathematics and its Applications. Cambridge
University Press (1994).

[3] Charles Ehresmann. Esquisses et types de structures algébriques. Bui. Inst. Polit. Iai. XIV- 1-2 (1968), 1-14.
[4] Michael Barr, Charles Wells. Category theory for computing science, 2nd ed. Prentice Hall International (1995).
[5] Peter Gabriel, Friedrich Ulmer. Lokal Präsentierbare Kategorien. Lecture Notes in Math. 221, Springer-Verlag (1971).
[6] Jiŕı Adámek, Jiŕı Rosický. Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note

Series 189, Cambridge University Press (1994).
[7] Dominique Duval. Diagrammatic Specifications. Mathematical Structures in Computer Science 13 p. 857-890 (2003).
[8] Dominique Duval. Diagrammatic inference. arXiv:0710.1208 (2007).
[9] César Domı́nguez, Dominique Duval. Diagrammatic logic applied to a parameterization process. Mathematical Structures

in Computer Science 20 p. 639-654 (2010).
[10] César Domı́nguez, Dominique Duval. A parameterization process: from a functorial point of view. International Journal

of Foundations of Computer Science 23 p. 225-242 (2012).
[11] Jerzy Tomasik, Jerzy Weyman. Category localization semantics for specification refinements. Ann. Math. Artif. Intell.

(2007).
[12] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Cartesian effect categories are Freyd-categories. Journal

of Symbolic Computation 46 p. 272-293 (2011).
[13] Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud. A duality between exceptions and

states. Mathematical Structures for Computer Science 22 p. 719-722 (2012).
[14] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous. Formal verification in Coq of program properties

involving the global state effect. JFLA 2014.
[15] Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Jean-Claude Reynaud. Certified Proofs in Programs Involving

Exceptions. CICM 2014. CEUR Workshop Proceedings 1186 (2014).

Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

8

http://arxiv.org/abs/0710.1208

	INTRODUCTION
	I – FRACTIONS
	II – SKETCHES
	III – SKETCHES and FRACTIONS
	IV – Application: COMPUTATIONAL EFFECTS
	CONCLUSION
	References

