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Abstract. The main goal of this paper is to provide an abstract framework
for constructing proof systems for various many-valued logics. Using the
framework it is possible to generate strongly complete proof systems with
respect to any finitely valued deterministic and non-deterministic logic.
I provide a couple of examples of proof systems for well-known many-
valued logics and prove the completeness of proof systems generated by
the framework.
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1. Motivations

In this paper, we’ll present an abstract framework for constructing tree-like
(tableaux) proof systems for finitely-many valued deterministic and non-
deterministic consequence relations.®

Non-deterministic logics were constructed? by Avron and Lev [5] as a
generalization of many-valued deterministic logics. Non-deterministic logics
are characterized by means of non-deterministic matrices. Roughly speaking,
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Sonatina 2 2018/28/C/HS1/00251. I wish to thank to Rafal Urbaniak and Frederik Van De
Putte for all the comments and discussions that we had on the previous versions of this
paper. I am also in debt to two anonymous reviewers for their feedback. The early work on
this has been supported by FWO.

1This proof systems are in the spirit of Carnielli [14]. For a very nice introduction to this
method see Priest [27]. The whole framework can be seen as a generalization of the systems
presented in Priest [27].

2To be fair, Rescher [29], Ivlev [21], Kearns [22], and Quine [28] suggested something similar
to a non-deterministic matrix.

® Birkhduser


http://crossmark.crossref.org/dialog/?doi=10.1007/s11787-020-00263-0&domain=pdf

408 P. Pawlowski Log. Univers.

in such matrices an interpretation may ascribe sets of values instead of a single
value. This means that these logics are not truth-functional. In their paper,
Avron and Lev constructed an abstract framework for sequent-based proof
systems which was further studied in [1-3].

A recipe for constructing tree-like (or tableaux) proof systems for non-
deterministic semantics will be provided.® This is at least as interesting as
providing alternative proof systems for any other kind of logic. Here the main
advantage of the framework is that it is quite general and that we do not
find sequent based proof systems particularly handy when it comes to actually
reasoning within the system.

One of the other advantages of these systems over sequent-based systems
is that there is a nice mechanical procedure for finding a counter-model for
any invalid inference. In this setting it is possible to keep track of values of
formulas that appear on a tree. This allows to find valuations under which the
premises have the designated value and the conclusion doesn’t. Tree-like proof
systems are also easy to handle for both humans and computers and they have
a nice visual representation.

Moreover, it seems that some logics that use intensional operators such
as modal logics or some paraconsistent logics despite not having finitely-many
valued deterministic semantics, may have finite non-deterministic semantics.*

There is a very nice and general algebraic proof framework for non-
deterministic consequence relations called The method of Polynomial Ring
Calculus.® The method is mainly used in automated theorem proving. Since
in that context the user-friendliness of the method is not important unsurpris-
ingly, the proof system is not easy to work with. On the other hand, tableaux
method is known to be very user-friendly and pedagogically interesting, and
as such deserves attention.

The paper is structured as follows. The first section sets the notation
and some necessary definitions. The second section is a presentation of the
framework. The third section describes a couple of examples of proof systems
generated using the framework for various well-known logics. Next, a brief
section that elaborates on extensions of the framework and also comments on
some issues with complexity will be presented. The last section is a sketch of
a strong completeness proof.

2. Technical Preliminaries

Let £ be a propositional language understood as a set of propositional variables
W ={p,q,...} closed under connectives from the set

11 2 2 n
F = {o1,03,...,0%,03,...,0%}

3Roughly speaking, non-deterministic semantics is a semantics in which the value of a com-
plex formula is not uniquely determined by the values of its sub-formulas.

4Some logicians are interested in finding non-deterministic semantics for such logics [15,16,
24].

5See Carnielli and Matulovic [13].
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where the upper script is the arity of a given functor. Greek letters ¢, v, ...
stand for meta-variables for formulas. Capital Greek letters denotes sets of
formulas.

Definition 1. (n-matriz) An n-matriz for a propositional language L is a triple
M= (T, D,O), where:

e T is a non-empty set of truth values.

o () £ D C T is a set of designated values.

e O is a set of functions, which for any n-ary functor o™ of the language
contains a corresponding n-ary function o™, o: T s 27\ {(}.

It is quite easy to see that the above notion is a generalization of deter-
ministic matrices. The set O consists of functions called truth-functions which
assign sets of possible values to complex formulas, given assignments of values
to their components. In the case of deterministic matrices, these sets are sin-
gletons. In a proper n-matrix functions from O can assign non-empty sets of
values, including those which are not singletons. In such case every valuation
picks exactly one value of a formula from the sets of possible values ascribed
to it by an appropriate function from O.

Definition 2. (Valuation) A wvaluation v: £ — T in an n-matrix M is a func-
tion such that for any functor o™ and any sequence of formulas 1, @2 ..., @y,
(0™ (1,92, .- yn)) € 9 (v(p1),v(P2), ..., v(en)). A valuation v satisfies @
inM (v Ex o) iff u(p) € D. We say that ¢ follows from T [I' =y ¢] iff every
valuation that satisfies all elements of T" satisfies ¢. An n-matrix M is k-valued
if |T| =k.

3. Trees

Suppose we have an n-valued non-deterministic consequence relation, whose
semantics is given by an n-matrix M, where T'= {0, 1,...,n —2,d} and d is its
designated value.%

Definition 3 (Root appropriate T',1). Let T' = {p1,92,...,¢:}, be a set of
formulas and 1 a single formula. By the root appropriate for I', 1) we mean the
following construction:

6We stick to the case where there is only one designated value. In order to deal with a
logic whose matrix has more designated values, the validity of an inferences is checked
by constructing a tree for each combination of values under which all the premises have
labels corresponding to different designated values and the conclusion’s label corresponds
to different non-designated values. So for a reasoning with m premises in a logic with d
designated values one has to construct m® different trees. If all of them are closed, then the
inference is valid. If at least one is open, it is not.
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The idea here is to list all the premises and ascribe to them index d.
Roughly speaking, it means that under all the valuations corresponding to this
root all premises have the designated value. Next, we split the construction
into n — 1 branches. On each branch we list the conclusion with different
indices. These indices represent all non-designated values. Intuitively, each
branch corresponds to any valuation under which all the premises and the
conclusion values are its own indices determined by the branch.

The root is further extended into a tree by means of syntactical rules
appropriate for a given logic. Before defining what a syntactical rule is we
need to introduce some additional notions.

Definition 4 (ith combination). Let ¢ be a formula. The set of all possible
valuations under which ¢ has value 7 is called an ith combination of ¢ and
is abbreviated as CO;(p). Let o?(¢1,...,¢;) be a formula built from o/ and
©1 ..., p;, suppose that v € CO; (o7 (1, ..., 9;)). By f(v,4) we mean the value
ascribed to ¢; by the valuation v.

Definition 5 (Syntactical rule for o, j). Let M be an n-matrix and

Coj(oi(splv P2y %01)) = {Ula V2,44 Uk:}~
By a syntactical rule for o'(¢1, o, ..., ¢;),j appropriate for an n-matrix M we
mean the following construction:
dL(‘PL »2 ... Lpi)mj

Wl’f(‘vl,l) 9017f(‘11271) ‘ 801,f(‘vk71)

\ | |
Soivf(vlvi) Spiaf(vbi) cpiaf(vkai)
Definition 6 (Functor described by a set). Let M = (T, D,O) be an n-matrix
and o be a functor from the language of the matrix. We say that a set A, of
syntactical rules describes o iff for any t € T, A, contains a syntactical rule
o,t appropriate for M and nothing else is in A,.

Definition 7 (Matriz described by a set). An n-matrix M is described by a set
of syntactical rules A iff A =], A; where A; describes the i-th functor in the
language of n-matrix M.
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Suppose that a consequence relation is given by an n-matrix M. In order
to check any given inference in our framework we start with a root appropriate
for it and then extend it into a tree by a set of syntactical rules describing M.
Next, in order to see if an inference is indeed valid in a consequence relation
described by M, we need to introduce some additional definitions.

Definition 8 (Tree appropriate for T',1). A tree is appropriate for T, if it
starts with a root appropriate for I', 1.

Definition 9 (Complete tree). We say that a tree is complete iff it is impossible
to extend the tree further using syntactical rules appropriate for a given logic.

Definition 10 (Closed branch). We say that a branch on a tree is closed iff for
some formula ¢ occurring on the branch it occurs with two different num-
bers(values).

Definition 11 (Closed tree). A tree is closed iff all of its branches are closed.

Definition 12 ( Valid inference). We say that an inference from I to ¢ is valid
on a tree iff the tree starts with a root appropriate for I', ¢ and is complete
and all of its branches are closed. We will denote this by I" F ¢. Moreover if a
tree was constructed only by using rules from a set A, we will denote this by
Fa.

4. A Handful of Examples

In this section we will show how the framework works.” We will give four
examples of proof systems generated by our framework. Let’s start with weak
Kleene logic.®

4.1. Deterministic Examples

In our case we will be interested in a propositional language with three connec-
tives =, V, A. In a weak Kleene logic? these are characterized by the following
truth-tables:

= | value AlO0O|n|1l VIi0|n|l1l
0 1 0[{0|n|O 00 |n|l
n n n|{n|n|n n|{n|n|n
1 0 110|n|1l 1|1|n|l

by Eki ¢ we mean that any valuation respecting the above truth-tables as-
cribes value 1 to ¢. By I' Ek; ¢ we mean that any valuation v such that for
all ¢ € T v(yp) = 1 ascribe value 1 to ¢.

"Note that the results presented for deterministic consequence relations are not original.
They are here for pedagogical reasons. For an extensive study of tableaux method see Baaz
et al. [6] and Fitting [18].

8This logic sometimes goes by the name of Bochvar logic [12]. One of the main application
of this logic is in truth theories [19,20].

9Known also by the name Bochvar internal logic. See Bergmann [11] for an extensive overview
of many-valued logics.
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The above characterization of weak Kleene logic can be easily rephrased
in terms of n-matrix.'® Let Ax; be a set of rules describing Kleene logics. It
means that Ag; consists of:

Negation 1: -, 0
\
@, 1
Negation 2: =, 1
|
©,0
Negation 3: —p,n
\
@, n
Disjunction 1: eV, l

o1 9.0 ¢l
¥v,0 ¥, 1 4,1
Disjunction 2: pVi,n

e;n om0 @1 pn
Y,n 9,0 P Yn P, 1
Disjunction 3: pV,0
|
©,0
¥,0
Conjunction 1: wAY,1
|
e, 1
¥, 1
Conjunction 2: pAY,n

e,n om0 @1 @n
Y,n 0 Pn pn Pl
Conjunction 3: p N, 0

©,0 0 ¢l

¥,0 9,1 4,0
It is rather easy to see that the following system is sound (since all the abstract
rules are based on truth-tables). A completeness proof is in the last section.

4.2. Non-deterministic examples

The first candidate is a paraconsistent logic CLuN [7,8,10].!! This logic has
both a non-deterministic and a deterministic characterization (see Batens [8,

100bserve, that truth-tables define interpretations of connectives, the designated value is 1
and T = {0,n,1}.
1One might be interested in a comparison of CluN with da Costa and Alves [17].
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9]). We will focus on the non-deterministic one. CLuN is a two valued logic
characterized by the truth-tables of classical logic for all the connectives except
negation. The negation is characterized by:

= Value
{0,1} 1
1 0

where 0, 1 means that the interpretation of — ascribes two values, so negation
is strictly non-deterministic. In other words, there are valuations under which
a formula and its negation can be true. Again, it is rather straightforward
what the n-matrix for CLuN looks like. The set of rules appropriate for CluN
is defined as:

Negation 1: -, 1
N
0 @1
Negation 2: -, 0
o
Disjunction 1: pVa,l

e, 1 o, 1 90
P, 1,0 9,1
Disjunction 2: pV,0
|
»,0
$,0
Conjunction 1: p A, 1
|
¥, 1
¥, 1
Conjunction 2: YA, 0

0 1 0
¥,0 ¥,0 9,1
The last example of a proof system that we will formulate more interest-
ing, since it contains a modal operator B. The logic BAT was presented in [26]
as a logic of informal provability. In this logic, informal provability is treated
similarly to the notion of truth in [23]. It is partial in the sense that some sen-
tences are informally provable, other are informally refutable but this division
is not exhaustive. There are sentences which are neither informally provable
nor informally refutable. To indicate this BAT logic has three values: 0,n,1.
The intended interpretation of 0 is informally refutable, 1 stands for informally
provable and n stands for neither. BAT connectives are characterized by the
following truth-tables:
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= | value A0 |n|l VIi0|n|l

0 1 0(0|n|oO 0|0|n|1l

n n n|n|n|n n|n|n|n

1 0 110|n|1 11 |n|1
the provability operator is characterized by the following table:
B Value
1 1
{0,n} n
0 0

Since in this case we have multiple non-deterministic connectives,'? we

will split the presentation of syntactical rules for BAT into subsets. BAT nega-
tion is described by the following:

Negation 1: =, 1

©,0

Negation 2: “p,n
\

P,n

Negation 3: -, 0
\

@, 1

As one can imagine, rules for disjunction and conjuction are somehow
complicated (both connectives are non-deterministic'®). For readability we will
provide a minor simplification. Suppose that we have a formula ¢, o s. If it
is clear from the truth-table that for v(p; o p2) =i it is sufficient that either
v(p1) = i or v(p2) = i instead of listing all the options we will only list two
options: either ¢1,7 or ¢9,¢. Thus, the non-deterministic connectives of BAT
are described by the following rules.

Disjunction 1: pVy,l
SD’ 1 /l/}’ 1 907 n
v,n

Disjunction 2: eVi,n

Sp’n /Ib’n @7”
0 9,0 ¥,n

12By a non-deterministic connective we mean a connective whose truth-function at least for
one value is not deterministic.
13Some disjunctions of two undecided claims can be informally provable whereas some
other remains undecided. Similar considerations apply to conjuctions. For more details see
Pawlowski and Urbaniak [26].
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Disjunction 3: (e V1),0
|
»,0
¥,0
Conjunction 1: p AP, 1
|
v, 1
¥,1
Conjunction 2: (p AY),n

e pm .l
Yno P, 1ohn
Conjunction 3: (g AY),1

©,0 0 ¢n
Y, n
Provability 1: By, 1
|
@1
Provability 2: By, 0
/\
©,0 p,n
Provability 3: Bp,n
\
P, n

5. Reductions and Generalizations

The main feature of the proposed framework is its generality. Yet, one might
worry that some proof systems generated by the framework are more complex
than needed. Some rules in those proof systems, when applied to a branch on
a tree, lead to multiple extensions of this branch, and some of those exten-
sions are redundant. Consider a proof system generated by the framework for
propositional logic. The application of the rule for classical disjunction results
in three different extensions of a branch: one where the first disjunct is true,
one where the second disjunct is true, and one where both disjuncts are true.
It is fairly easy to see that the third extension of the branch does not provide
any new information and it is repetitive and redundant.

The most straightforward way to solve the above issue is to provide proof-
theoretical reductions. However, since the proposed framework is quite general,
it is not that simple. First, for deterministic proof systems, such proof-theoretic
reductions are well-known. Second, for non-deterministic cases, it is quite hard
to provide any exiting reductions—non-deterministic consequence relations are
too general and too weak. To be fair, there are some partial results for the la-
beled sequent-calculus (see Avron [1] and Avron and Lev [4], for a discussion),
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but those results concern particular examples of proof systems, and not general
results on classes of them.

Logicians are well-aware that most of non-deterministic consequence re-
lations are quite weak. This is the main reason for supplementing some of
non-deterministic logics with further semantical conditions put on the top of
valuations. For instance, Avron and Lev [5] introduced the notion of static
valuations, Kearns [22], Omori and Skurt [24], Pawlowski and Urbaniak [26]
used different versions of filtration of the set of valuations to strengthen the
consequence relation.

An interesting example of a logic that results from non-deterministic logic
BAT by filtration is CABAT. One will see that the framework can be used to
generate a proof system for CABAT. Moreover, it is quite easy to see how
one could go about adapting the framework for different kinds of filtration
procedure.*

Let’s start with a couple of definitions. We say that a BAT valuation e
respects the closure condition iff

For any Lg-formulas ¢1, ¢o, ..., ¢,, 1 such that
¢13¢27"'7¢n |:1/J7

where |= is the classical consequence relation in the language of

BAT, if v(B¢;) = 1 for any 0 < ¢ < n, then v(By) = 1.

CABAT is the logic resulting from BAT by not considering BAT-valuations
which do not respect the closure condition. The closure condition is quite im-
portant since BAT is a very weak logic, for instance disjunction in BAT is not
symmetric.

We will use I'wc ¢ to denote the consequence relation of CABAT. Alter-
natively, we can characterize CABAT by using filtration:

Definition 13. Let = be the classical propositional consequence relation in the
language with B. We say that a BAT-valuation e belongs to the filtered set of
BAT valuations just in case the following conditions hold:

1. For any two formulas ¢, v, if = ¢ = ¢ then v(¢) = v(v¥),
2. For any tautology ¢, v(¢) = 1,
3. For any counter tautology ¢, v(¢) = 0.

Let I =1 ¢ mean that for any L-filtrated BAT valuation v such that
v(y) =1 for any ) € T" it follows that v(p) = 1. Then the following holds:

Fact 1. For any T, ¢, Twc @ iff T =rp @

How to adapt the proposed framework to construct a complete proof
system with respect to CABAT? The answer is quite straightforward. One
needs to define a procedure of selecting appropriate branches on BAT tree,
that will mimic the conditions put on the set of BAT valuations.

To do so, we need to introduce some additional definitions.

141t is worth pointing out that it is way harder to adapt labeled sequent calculi for this task.
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Definition 14. (Filtrated branch) Let b be a complete open branch in a BAT
tree. We will say that b is filtrated iff for all formulas ¢, on b the following
hold:

1. If ¢ is a classical tautology, then it doesn’t appear with a signature or in
a negated form on b.

2. If ¢ is a classical countertautology, it appears in negated form.

3. If ¢, are classically equivalent then they appear in the same form: either
both with signatures, or both negated, or both in the standard form: ¢, v.

A tree appropriate for CABAT, is a BAT tree whose open not filtrated
branches are removed.'® This method can be also applied to generate proof
systems for logics defined in a similar fashion [22,24]. This shows that the
framework is a bit more flexible than the labeled sequent calculus.

6. Soundness and Completeness

Suppose that we have a consequence relation L defined in terms of an n-matrix
M. Let A be a set of rules describing M. In order to prove that k4 is sound and
strongly complete with respect to L we need some further definitions.

Definition 15. We say that a valuation v is faithful to a branch b iff for all
formulas ¢ occurring on the branch, if ¢ occurs with a label k, then v(p) = k.

Fact 2. Let v be an L-valuation and b a branch in a tree. If v is faithful to b,
then for any rule of A that can be applied to b, there is an extension b’ of b
such that v is faithful to .

Proof. by cases. Let ¢ = 0;(¢1, 2, ..., ;) and suppose ¢, k appears on b. Let
COk(¢) = {v1,...,v} for some l. Thus, the application of a rule appropriate
for o,7 generates [ many extensions of b. By construction, each extension is
correlated with a valuation from COg(y) and these valuations constitute all
the possible ways of having v(¢) = k. By the definition, since v is faithful to
b, v(¢) = k, so v € COk(p) which means that v is faithful to at least one
extension of b. 0

Fact 3. If T4 ¢ then T Ep .

Proof. By contraposition, suppose I' [y ¢. Then there is an L-valuation v,
such that for any ¢ € T', v(¢)) € D and v(p) ¢ D. This valuation is faithful to
at least one extension of a root of a tree for I', p. By a multiple application of
the above lemma we can find a valuation faithful to some branch b. It means
that this branch must be open, so I /4 . O

Definition 16 (FEvaluation induced by b). Let b be an open branch. An L-
valuation v is induced by b iff for all propositional variables p, if they occur in
the form p, k, then v(p) = k.

5The proof of the completeness of this proof system can be found in [25].
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We proceed with a lemma which will enable us to sketch a proof of the
completeness theorem.

Fact 4. Let a branch b be open and complete. Let E be the set of L- valuations
induced by b. Then there is an L-valuation v € E such that if ¢ occurs on b
with a label k, then v(p) = k.

Proof. The proof is by induction on the complexity of . If ¢ is a propo-
sitional parameter, we are done by the definition of v being induced. Sup-
pose that the theorem works for o1, o, ... 0. We will show that it also
works for o™ (1, @2 ... pm). Assume that o™ (1,92 ...¢m),J occurs on the
branch. Since, b is complete a rule for o™ j must have been applied to it. Let
0 =| CO;(0™(¢1,92...%m)) |. Thus, we have o many extensions of b where
indexes of ¢1 ..., on each extension correspond uniquely to some valuation
v € CO; (0™ (1,92 ... m)). By induction hypothesis if for some formula ¢;,
i < m++1, it occurs with a number h, there is a valuation v such that v(y;) = h.
It is clear that v € CO; (0™ (p1,92...¢0m)), s0 v(p) = j. O

Fact 5. If T =pr p then T 4 .

Proof. By contraposition, suppose I' ¥4 ¢. Then there is a complete open tree
for T', ¢. Let b be an open branch on that tree. Take valuation v € E which is
induced by b. Under this valuation all elements of I" have the designated value
and ¢ does not, meaning I' £, ¢. O

7. Conclusions

We presented a simple framework for constructing proof systems for finitely-
valued deterministic and non-deterministic logics. Using the framework we can
construct, for any finite n-matrix, a strongly complete proof system.
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