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Abstract The credibility of microsimulation modeling with the research community
and policymakers depends on high-quality baseline surveys. Quality problems with
the baseline survey tend to impair the quality of microsimulation built on top of the
survey data. We address two potential issues that both relate to skewed and heavy-
tailed distributions.

First, we find that ultra-high-income households are under-represented in the
baseline household survey. Moreover, the sample estimate of average income under-
estimates the known population average. Although the Deville–Särndal calibration
method corrects the under-representation, it cannot achieve alignment of estimated
average income in the right tail of the distribution with known population values
without distorting the empirical income distribution. To overcome the problem, we
introduce a Pareto tail model. With the help of the tail model, we can adjust the
sample income distribution in the tail to meet the alignment targets. Our method can
be a useful tool for microsimulation modelers working with survey income data.

The second contribution refers to the treatment of an outlier-prone variable that
has been added to the survey by record linkage (our empirical example is health care
cost). The nature of the baseline survey is not affected by record linkage, that is, the
baseline survey still covers only a small part of the population. Hence, the sampling
weights are relatively large. An outlying observation together with a high sampling
weight can heavily influence or even ruin an estimate of a population characteristic.
Thus, we argue that it is beneficial—in terms of mean square error—to use robust
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estimation and alignment methods, because robust methods are less affected by the
presence of outliers.

Keywords Simulation · Pareto distribution · Representative outliers ·
Nonresponse · Calibration · Imputation

JEL classification C15 · C54 · C63 · C83 · I13 · I18

Methoden zur Behandlung von Unterrepräsentation bei schiefen
Verteilungen für die stichprobenbasierte Mikrosimulation: Eine
Analyse zu den Umverteilungseffekten in der obligatorischen
Krankenversicherung der Schweiz

Zusammenfassung Eine qualitativ hochstehende Stichprobenerhebungen ist eine
wesentliche Voraussetzung, um gültige und zuverlässige Aussagen mit stichproben-
basierten Mikrosimulationsstudien zu tätigen. Sind die stichprobenbasierten Schät-
zer massiv verzerrt (z.B. infolge von Antwortausfällen), so ist damit zu rechnen,
dass die auf dem Basisdatensatz aufbauende Mikrosimulation ebenfalls zu verzerr-
ten Umverteilungseffekten führt. Wir befassen uns mit zwei potenziellen Schätz-/
bzw. Simulationsproblemen, die bei schiefen Verteilungen mit schweren Rändern
(heavy tails) in personenrepräsentativen Haushaltserhebungen auftreten.

(1) Am Beispiel des Haushaltseinkommens zeigen wir auf, dass Haushalte mit ei-
nem sehr hohen Einkommen in der Erhebung deutlich unterrepräsentiert sind (hoch-
gerechnet auf die Grundgesamtheit). Des Weiteren unterschätzt die Hochrechnung
des arithmetischen Mittels das bekannte Populationsmittel in der Gruppe der Haus-
halte mit einem Einkommen von über 200.000CHF deutlich. Der Einsatz der Ka-
librierungsmethode nach Deville-Särndal vermag zwar die Unterrepräsentation der
Haushalt zu korrigieren, ist jedoch nicht in der Lage, die Hochrechnungsgewichte so
anzupassen, dass das geschätzte Mittel mit dem bekannten Populationsmittel über-
einstimmt, ohne gleichzeitig die empirische Einkommensverteilung zu verfälschen.
Wir schlagen darum eine alternative Methode vor, die eine Pareto-Verteilung für den
rechten Rand der Verteilung (tail model) unterstellt. Mit Hilfe des Modells kann die
Einkommensverteilung der Stichprobe am rechten Rand derart anpasst werden, dass
das gewichtete arithmetische Stichprobenmittel mit dem bekannten Populationsmit-
tel übereinstimmt.

(2) Der zweite Beitrag bezieht sich auf die Behandlung von ausreißeranfälli-
gen Variablen mit schiefer Verteilung. Als Beispiel dienen uns die in einem Jahr
aufgelaufenen Gesundheitskosten pro Person (Registerdaten). Diese Variable wurde
mittels Datensatzverknüpfung in den Datensatz der Stichprobenerhebung integriert.
Bei einer kleinen Gruppe von Personen waren die Gesundheitskosten außerordent-
lich hoch, so dass sie klar als Ausreisser zu bezeichnen sind. Besitzt ein Ausreisser
überdies ein grosses Hochrechnungsgewicht, so sprechen wir von einer einflussrei-
chen Beobachtung, die einen erheblichen Einfluss auf die Schätzer ausüben kann
(verzerrte Schätzung und/oder aufgeblähte Varianz des Schätzers). Wir zeigen auf,
dass es in solchen Situationen vorteilhaft ist, robuste Schätz- und Anpassungsme-
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thoden (alignment/calibration methods) zu verwenden, weil sie durch einflussreiche
Beobachtungen weniger stark beeinträchtigt werden.

1 Introduction

Health care policymakers have long been concerned with health care financing ar-
rangements (e.g., per capita premiums, taxes, contributions from social security)
and the effect of these arrangements on the receiver of health care. In the light of
rising health care expenditures, the effects of financing arrangements on income
distribution have recently attracted attention from policymakers. Because various fi-
nancial arrangements have different implications for an individual’s balance between
payments made to and health care received from health care insurance, analysis of
redistributive effects is worthwhile.

The early literature on redistribution in health care has mainly focused on indi-
vidual financing arrangements and whether their redistributive effect is progressive
or regressive with respect to income (e.g., Doorslaer et al. 1999). A limitation of this
approach is how to aggregate the redistributive effects of separate financial arrange-
ments to obtain the overall effect. Simply aggregating separate effects is not sensible
because the financial arrangements are interdependent. Another weakness is the re-
liance on mainly aggregate-level data, which makes an examination of redistribution
effects for subpopulations impossible.

To overcome these limitations, researchers have adopted a microsimulation ap-
proach; e.g., Grabka (2004) and Drabinski (2004). Microsimulation models are use-
ful in redistribution analysis because they enable the simulation of policy effects on
a sample of economic agents (e.g., individual or households) at the individual level.
The overall analysis then comprises an evaluation of the consequences induced by
a policy or a policy reform on indicators of the activity or welfare for each individ-
ual agent in the underlying microdata (Bourguignon and Spadaro 2006; Spielauer
2011).1 For a recent survey on the application of microsimulation models in health
care research, we refer to Schofield et al. (2018).

Microsimulation studies are typically based on survey samples (e.g., households)
on top of which the simulation runs. We are interested to study sample averages of
the redistribution effects by breakdown variables (gender, age, income group, etc.).
Thus, a qualitatively good baseline survey (i.e., absence of outliers and measurement
errors) is indispensable to obtain reliable simulations because outliers and other data
imperfections tend to bias the estimates.

In the early days of microsimulation, researchers have often been satisfied if their
simulation model runs and approximately tracks observed data. Data quality and
sound statistical inference have received microsimulation modelers’ attention—at
least— since the paper of Klevmarken (2002). Much of the research in this area
has been devoted to alignment (also known as calibration or benchmarking) meth-
ods that attempt to align estimated characteristics (e.g., mean or total) with known
population values; see Creedy and Tuckwell (2004) and references therein. These

1 See Hannappel and Troitzsch (2015) for a recent survey article on microsimulation in German.
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alignment methods do not explicitly address survey errors such as systematic under-
representation of particular groups of agents or individuals; instead, they correct dis-
crepancies between the baseline survey and known population values by reweighting
the survey data. In general, the methods proved successful in improving simulation
accuracy for a wide range of applications.

When alignment cannot be achieved with standard methods, Myck and Najsztub
(2015) show that calibrating or reweighting the data sequentially over several stages
may be beneficial. The authors prove the effectiveness of sequential calibration for
a household survey that suffers from under-representation of high-income groups. In
our application, we encounter the same problem: High-income households are under-
represented in the baseline survey, compared with data from tax registers. Although
calibration corrects the under-representation problem, it cannot achieve alignment of
estimated average income in the right tail of the distribution with known population
values without distorting the empirical distribution. Thus, there is a tradeoff: Either
average income is aligned but the empirical distribution is severely distorted or vice
versa. The problem is rooted in the inability of the (standard) calibration method to
cope with skewed heavy-tailed distributions.

The first purpose of this paper is the introduction of a parametric Pareto model to
describe the right tail of the income distribution. With the help of the tail model, we
adjust the sample distribution such that average income in the top income bracket
is aligned with known values from tax data. Our key contribution is a new method
based on order statistics from the Pareto model; this contribution is an extension of
our earlier model (Schoch et al. 2013; Müller and Schoch 2014a).

The second goal of the paper also refers to the treatment of skewed heavy-tailed,
outlier-prone distributions. However, in this case, the baseline survey has fortunately
been enriched with individual data on health care costs through record linkage. Thus,
modeling cost data is unnecessary because the true cost data are available. Unfor-
tunately, the heavy-tailed population distribution in conjunction with the baseline
survey’s small sampling fraction make standard estimation procedures very unreli-
able. We address this problem and propose robust estimating and alignment methods
to cope with skewed heavy-tailed distributions. Although the combination of survey
data with other sources through record linkage has been investigated, for exam-
ple, Lohr and Raghunathan (2017) and Thompson (2019), the topic of this study has
not been addressed.

To facilitate the methodological discussion, we apply the methods and techniques
to our microsimulation model on compulsory health care insurance in Switzerland.2

The remainder of the paper is organized as follows. In Sect. 2, we provide back-
ground information on compulsory health care insurance in Switzerland. In Sect. 3,
we explain the microsimulation model. In Sect. 4, we discuss how the Pareto tail
model for income can correct the under-representation of low- and high-income
groups and adjust for nonresponse bias. In Sect. 5, we study the problem of out-
liers that result from record linkage of heavy-tailed population distributions to the
baseline survey. Finally, in Sect. 6, we conclude by discussing the major findings.

2 All computations in this article were made with the R statistical software; see R Core Team (2019).
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In Appendix A, we describe the microsimulation model briefly; Appendix B
provides an introduction to the Deville–Särndal calibration method.

2 Institutional setting of compulsory health insurance

Basic compulsory health care insurance (CHI) in Switzerland is a package of insur-
ance benefits that must be offered by any insurance provider to any person without
selection.3 In particular, all insurance contracts that qualify for CHI must not be
subject to health assessments or similar gatekeepers to inhibit enrolment in an insur-
ance plan. Any type of price discrimination or positive risk selection with respect
to an individual’s age, gender, or health condition is prohibited.4 CHI is compul-
sory for all permanent residents in Switzerland. Hence, each individual is obliged
to purchase a CHI contract from one of the 56 insurance providers who qualified
for CHI in 2016 (BAG 2018). Family members are insured individually. CHI is not
sponsored by employers. Individuals are free to choose and change their insurer and/
or insurance contract once per year, but they must sign on with an insurer operating
in their canton.5 As a result, the provision of health care is heavily decentralized,
and cantons exercise great control over health care (Crivelli et al. 2006).6

The benefits of CHI are identical for all insured persons throughout the country in
the event of illness, accident, and maternity. Although the benefits are identical for
all insured persons, CHI offers a set of insurance plans—among which individuals
are free to choose—with different financing. The set of plans consist of a heavily
regulated basic insurance (franchise ordinaire, CHF 300 deductible) and five special
insurance plans that rebate the premium in exchange for greater financial liability
(higher degree of cost sharing through higher deductibles when individuals first
incur costs; Table 1) or for accepting a limited choice of providers (managed-care
arrangements).

CHI premiums are unrelated to earnings but are raised as per capita premiums. To
mitigate the regressive effect of the premiums, eligible low-income individuals are
entitled to premium reductions or subsidies (individuelle Prämienverbilligung). The
subsidies are co-financed by the cantons and the federal government but eligibility
criteria, subsidy amount, and payout procedures differ by canton.

3 With regard to the total healthcare expenditures of CHF 80.5 billion in 2016, the costs covered by CHI
were CHF 43.9 billion in 2016 or approximately 55% (BAG 2018). The remaining CHF 36.9 billion
is funded through supplementary insurance contracts, which complement CHI (e.g., insurance plans that
cover alternative medicine, specialized inpatient hospital care plans, dental insurance). Supplementary
insurance contracts are subject to a risk assessment and are available only to persons who undergo medical
examination.
4 A risk adjustment scheme among insurance providers (Risikoausgleich) reduces insurance companies’
incentives to select positive risks.
5 A CHI contract entitles the insured to visit any healthcare provider in their canton, and if they prefer,
treatment outside their canton is available by paying for the difference between the prices charged in
outside hospitals and reimbursements available in their canton.
6 For a comparative review of the Swiss healthcare system, see OECD (2011).
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Table 1 Franchise, premium rebates, and maximum deductible for adults (in CHF; 2016)

Franchise 300 500 1000 1500 2000 2500

Premium rebatesa 0% 8% 20% 30% 40% 50%

Max. deductibles 700 1200 1700 2200 2700 3200

Source BAG (2017)
aRebates refer to the CHF 300 franchise ordinaire

2.1 Redistributive effects in the system of compulsory health care

Compulsory health care is financed through mixed sources. From the perspective
of individuals seeking health care, insurance providers are the main provider of
reimbursement for basic health care expenditures. Reimbursements cover a portion of
health care costs, and the insured pays the remainder of the incurred cost through cost
sharing (the amount depends on the insurance policy) and out-of-pocket payments
(OOP).

From a citizen’s point of view, individuals contribute to the total health care
expenditures in two ways: As health care insurance holders, they finance the sys-
tem through premium payments (and cost sharing); as taxpayers, they establish the
financial basis for health care providers in the cantons (e.g., hospitals) and social in-
surances (old-age and invalidity, means-tested supplementary benefits, and premium
reductions). Fig. 1 shows the major financial flows in the system.

Contributions to and financial aids from the system differ greatly in order of mag-
nitude (see balance sheet representation of CHI in Table 2). More importantly, the
various financial sources have different implications for a household’s balance be-
tween payments made to and financial support received from the system and hence
for redistributive effects. Based on theoretical reasoning, we know that the (flat-
rate) premium payments exercise a fairly strong regressive effect (i.e., the financial

Fig. 1 Major financial flows in
compulsory health care (source:
Schoch et al. 2013) Health care 
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Table 2 Balance sheet representation of compulsory health insurance (in CHF; 2016)

Items Debit (�109) Credit (�109)

Premium for compulsory health insurancea 28.6

Cost sharing (deductible and co-payments) 4.3

Out-of-pocket paymentsb 0.2

Taxes (federal, cantonal, and municipality level) 10.7

Health care benefits received by insured persons 39.4

Premium reductions paid to low-income people 2.2

Premium reductions through means-tested benefitsc 2.3

Total 43.9 43.9

Source BAG (2018)
aThis amount corresponds to the payments made by the health insurers to the system.
bEstimated amount; the methodological details are outlined in Schoch et al. (2013).
cSupplementary, means-tested benefits can be claimed when old-age or invalidity pensions fall below
specified limits.

burden decreases in relative terms with growing income). The regressive effect is
somewhat mitigated for low-income adults by premium reductions but tends to af-
fect middle-class families. Taxes, by contrast, exert a progressive effect with respect
to income: Households in high-income brackets contribute a disproportionally large
share to total health care expenditures. Although theoretical reasoning may pro-
vide crude insights into the redistributive effect of a single financial element (e.g.,
taxes), it cannot demonstrate how the different financing elements interact and what
redistributive net effect results. Notably, an analysis of aggregate data also cannot
accomplish this. The availability of micro-level household (and personal) data is
indispensable for studying redistributive effects in detail.

3 Microsimulation model

A household- or person-level dataset that contains data on all relevant financial
elements of the CHI system (i.e., taxes, insurance premiums, etc.) is not available.
Therefore, we must use simulation-based approaches or data combination techniques
(e.g., record linkage) to study redistributive effects.

Our baseline survey dataset is the 2016 edition of the European Statistics on In-
come and Living conditions (SILC; Swiss Federal Statistical Office), which refers to
the permanent resident population living in private households.7 SILC is designed as
a household survey and provides a rich set of sociodemographic and income-related
variables.8 The sampling design of SILC 2016 is a stratified random sample with
proportional allocation; stratification is along the seven major regions (BFS 2016).
SILC 2016 has a sample size of 17880 individuals who live in 7761 households. In
relative terms, the sample covers a sampling fraction of approximately 0.2% of the

7 Individuals with permanent residence in collective households (e.g., nursing homes or prisons) are not
included in the population definition.
8 SILC 2016 is organized as a rotational panel survey. We do not make use of this property.
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Swiss resident population. As a consequence of proportional sample allocation, the
realized sample sizes for small cantons are small (e.g., 20 households in Uri and in
14 Appenzell Innerrhoden). Because of the very small sample sizes, canton-specific
investigations require the application of small-area estimation methods. We do not
address canton-level estimation; see Schoch et al. (2013) for further details.

3.1 A static microsimulation approach

In this paper, we focus on a static microsimulation model. However, the survey-
related methodological issues we address concern dynamic simulation models to
the same extent. The main purpose of static analysis is to simulate the distribu-
tional incidence of current policies and the impact on individuals and households
of policy changes. Static models have no temporal dimension; instead, they focus
on distributions and outcomes for a particular point in time (in our case, the year
2016). Moreover—and in contrast to dynamical models—individual and household
characteristics and behaviors are considered exogenous in static microsimulation (Li
et al. 2014).9

From a methodological perspective, the following two techniques are available to
enrich the baseline survey data with supplementary individual- or household-level
data:

(i) microsimulation,
(ii) record linkage (at the level of individuals).

When studying only the distributional incidence of current policies, technique (ii) is
preferred because it augments the baseline data with observed data. However, linking
data from auxiliary sources to survey data presents methodological difficulties (see
Sect. 5). Moreover, in the vast majority of incidence analyses, record linkage is
technically infeasible or prohibited by data-protection laws or both. In these cases,
or when we want to investigate policy changes or counterfactual policy scenarios,
microsimulation is the only feasible technique.

Regarding CHI simulation, Fig. 2 shows all variables that must be included
into the SILC baseline survey for distributional analysis. In our earlier incidence
analysis (Schoch et al. 2013), all listed variables were simulated for each individual
or household in the sample (see Appendix A for a model overview). In the current
model, the insurance-related variables (e.g., premium; see variables left of arrow “A”
in Fig. 2) could be taken from a recently established register on compulsory health
care, maintained by the Swiss Federal Office of Public Health.10 The remaining
variables (see arrow “B”) are subject to microsimulation at the level of individuals
or households.

9 Bourguignon and Spadaro (2006) distinguish between arithmetic and behavioral models. The latter type
of models include a detailed representation of the behavioral response of individuals and households to
changes, whereas arithmetic models ignore behavioral responses.
10 The BAGSAN register is a compilation of individual-level administrative records collected by insurance
providers. The record linkage to SILC 2016 was effected by the Swiss Federal Statistical Office. Linkage
is based on a unique person-specific identifier (AHV-Nummer = Sozialversicherungsnummer). The match
was successful in 99.2% of all cases.
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Fig. 2 Simulation or data combination strategies to enrich the SILC 2016 survey with financial data
related to compulsory health care insurance

3.2 Finite population inference

Inference in microsimulation models is in principle no different from (ordinary)
inferential statistics, but inference aspects have often been neglected. Researchers
have often been satisfied if their simulation model runs and approximately tracks
observed data (Klevmarken 2002). The insufficient attention to statistical inference
is undesirable and unjustified because standard software allows for the routine com-
putation of sampling variances (Figari et al. 2014).

To address statistical inference in microsimulation models, we first note that
design-based inference11 is the relevant mode of inference for survey-based mi-
crosimulation because the model builds on top of baseline survey data. Second, we
follow Klevmarken (2002) to distinguish between two modes of simulation:

(i) simulation based on a set of deterministic rules,
(ii) model-based simulation (stochastic).

Simulation based on set a of deterministic rules is nonstochastic by design; here,
stochastic refers to the notion of a super-population model, in the sense of Godambe
and Thompson (1986). That is, we assume—in principle—that we can perform
simulation by applying deterministic rules to observed variables. For illustration
purposes, we consider the following example: Given pre-tax income and relevant
socioeconomic variables, tax payments can be computed for each individual in the
sample by using a set of rules that describe the taxation regime. From the perspective
of sampling theory, the simulated tax payments are regarded as constants. The
only stochastic element is induced by the sampling design, which is not affected
by simulation. Consequently, we can estimate the total of a simulated variable by
the Horvitz–Thompson estimator.12 Statistical inference then refers to the sampling
distribution of the estimated total under the sampling design in use. This approach
to inference is certainly useful when the rules underlying simulation are assumed to
be deterministic or at least predominantly deterministic.

Inference for model-based simulation is far more intricate because the (super
population) model induces an additional stochastic element to the stimulation. This
additional randomness accounts for uncertainty that is integral to the statistical

11 Design-based inference is also known as finite population sampling or randomization inference; see
e.g., Särndal et al. (1992, Chap. 2).
12 Likewise, we can estimate other design-based characteristics, e.g., population mean by the Hajek esti-
mator; cf. Särndal et al. (1992, Chap. 5.7).
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model. When the parameters that characterize the simulation model can be estimated
from a different dataset, we may attempt to incorporate model uncertainty from the
estimation exercise into our simulations.13

Regarding our CHI microsimulation model, the two most important variables for
CHI financing volume—and subject to microsimulation—are taxes (24.4% share of
total finances) and premium reductions (5.0% share). These variables are of a pre-
dominantly deterministic nature in the aforementioned sense. Hence, standard sam-
pling inference applies. Regarding means-tested benefits, our earlier model (Schoch
et al. 2013) included means-tested benefits as a separate financing instrument. In the
current model, only premium reductions financed through means-tested supplemen-
tary benefits are considered.14 Their share is 5.3% of total financial flows in CHI.
More importantly, the simulated values are of predominantly deterministic nature.

The last financial element subject to simulation is OOP, which cannot be deduced
from a set of deterministic rules. Instead, OOP depend on individual behavior, per-
ception of health risks (e.g., self-assessed health condition, prevalence of chronic
conditions), household composition, endowment of resources, and limitations be-
cause of financial constraints. Therefore, stochastic models or heuristics15 must be
applied for simulation purposes, which implies that inferential statistics cannot re-
late only to randomization inference. However, because the contribution of OOP
to the system is virtually negligible (share of 0.5%), we neglect the model-based
contribution to statistical uncertainty. This approach incurs some error; however, the
amount of uncertainty not properly accounted for is negligible.

3.3 Unbiasedness of estimates from the baseline survey

So far we have implicitly assumed that the baseline survey dataset provides unbiased
(or nearly so) estimates of population characteristics. Under a broader perspective,
we define the total survey error as the difference between the population character-
istic and the sample-based estimate of that characteristic. The total survey error is
a measure of quality and can be further subdivided into sampling error and non-
sampling error. The sampling error is under the control of the survey statistician.
Nonsampling errors are virtually unpredictable and difficult to control. They refer
to the entire survey process and comprise the following types or errors: specifi-
cation errors, measurement errors, sampling frame errors, nonresponse errors, and
processing errors; see e.g., Biemer and Lyberg (2003, Chap. 2).

Next, we assume that the specification, measurement, sampling frame, and pro-
cessing errors are negligible. Therefore, the nonresponse error becomes the focus.
We do not claim that all error components other than nonresponse errors are absent;

13 In our earlier model (Schoch et al. 2013), we modeled the insurance-related variables with data from
the Swiss Health Survey. Next, we applied the estimated models to the baseline survey data for predictions
and simulations.
14 The current simulation deviates from earlier versions in terms of scope. It restricts attention exclusively
to CHI-related policies and does not incorporate social welfare in a broader sense (e.g., means-tested
benefits and allowances from social security).
15 Viable empirical information on the distribution of OOP is scarce. Therefore, we used primarily heuris-
tic models in the modeling process; see Schoch et al. (2013) for further details.
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we only point out that nonresponse dominates total survey error. Regarding our
baseline survey, SILC 2016, we can provide verified reasons that substantiate the
negligibility assumption.16

In the presence of nonresponse, survey estimates tend to be biased. As a di-
rect consequence, all simulation models built on top of the baseline survey data
are—as a rule—at risk of generating simulated values whose estimated population
characteristics are also biased; cf. Myck and Najsztub (2015).17 How can we tell
that the baseline survey is at risk of producing biased results? Although we can-
not answer this question for the entire dataset, we can study individual variables.
Of particular importance are variables that serve as inputs for the simulation, for
instance, household income. For each variable, we can check whether certain es-
timated characteristics (e.g., mean or total) are aligned or benchmarked with their
known population values. When the characteristics are not properly aligned, we may
calibrate the sampling weights such that alignment with the population is achieved
using the calibration method of Deville and Särndal (1992); see Klevmarken (2002)
or Creedy and Tuckwell (2004) for a discussion of the method in microsimulation.18

Two further points are notable. First, statistical inference for a variable of interest
is considerably more difficult if that variable has been directly subject to calibration.
The original Deville–Särndal method only covers the case, where calibration is
conducted with respect to auxiliary variables but not the variable of interest. Second,
calibration or reweighting cannot always completely remove the bias, as we explore
in Sect. 4.

4 Correcting for nonresponse bias in the baseline survey

In survey research, we distinguish between unit and item nonresponse. Unit non-
response refers to households (or individuals) who do not participate in the survey
because of explicit refusal or unavailability. Item nonresponse occurs when some
of the sampled households who agreed to participate in the survey refuse to answer
specific questions (see e.g., Groves and Couper 1998, Chap. 1).

When considering income-related nonresponse, strong empirical evidence has
been presented that item nonresponse is more accentuated for households in the tails
of the income distribution (Biewen 2001). Frick and Grabka (2005) draw the same

16 SILC is the reference source for comparative statistics on income distribution and social inclusion in
the European Union and associated countries. It is more an entire framework than a just a common survey
because it is based on a harmonized (among European countries) set of variables and common concepts,
guidelines, and procedures (cf. specification, measurement, and processing errors). The sampling frame of
Swiss SILC is derived directly from population registers, which are far less prone to coverage errors than
establishing the frame on grounds of phone directories; for further details see the SILC quality report, BFS
(2017).
17 For example, suppose that the sample estimate of the pre-tax income distribution is heavily biased.
Under that circumstance, a rule-based tax simulation would inevitably produce a faulty distribution of tax
payments.
18 Unless otherwise indicated, we write “Deville–Särndal calibration” for ease of simplicity to mean the
calibration under the chi-squared distance measure (possibly imposing some bounds on the weights); see
also Appendix B.
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conclusion for the German Socio-Economic Panel. They demonstrate that house-
holds’ propensity to not answering income-related questions is nearly twice as high
in the top income decile compared with a median-income household. Consequently,
differential or selective item nonresponse can lead to biased estimates.

Although survey teams undertake great efforts to avoid or correct for unit nonre-
sponse, it is practically unavoidable. More importantly, when survey compliance is
correlated with the variables of interest, there are serious concerns about biases in
survey-based inference for these variables, as demonstrated in a theoretical model
by Korinek et al. (2006). The authors also provide substantial empirical evidence
that unit nonresponse is indeed income dependent. That is, Korinek et al. (2006)
find a significantly negative income effect on survey compliance: survey response
probability decreases with increasing income. Thus, sample estimates of income
characteristics tend to be heavily downward biased. Consequently, we must reckon
with biased simulation results because income and other variables possibly affected
by nonresponse enter microsimulation as model input.

4.1 Empirical evidence of under-representation in the tails

Unlike surveys, tax registers are not limited by under- or over-representation. Thus,
tax register data are a trusted benchmark against which we can compare proportions,
means, or totals estimated from surveys, to detect potential nonresponse bias and
other survey-related errors.

When comparing estimated shares of households from the 2016 SILC survey
against aggregated tax data (ESTV 2017) by income brackets, we find that the es-
timated shares of households in both tails of the income distribution are noticeably
under-represented.19 Fig. 3 illustrates this finding for the case of married couples;
similar patterns of under-representation are found for taxable entities other than
married couples (not shown). Also in Fig. 3, the estimated shares of the households
in the lower half of the income distribution tend to be slightly over-represented in
SILC. The under-representation of the top income bracket is not only a problem
observed in the Swiss SILC data, but also in other countries; see e.g. Törmälehto
(2017) who presents empirical evidence of under-representation in EU-SILC 2012
for all European and associated countries. Though, the degree of under-representa-
tion varies considerably between countries.

4.1.1 Alignment by calibration and reweighting

We attempt to calibrate the weights of the SILC sample data such that the frequency
distribution of households by income brackets is aligned with the income distribution
resulting from the tax register. We easily achieve this objective when the household
shares by income bracket are considered calibration targets (among other totals and
proportions); see Schoch et al. (2013) for more details. However, this approach
makes the sampling weights dependent on the income variable, which implies that

19 Empirical evidence of under-representation of wealthy households was found in Müller and Schoch
(2014b), who studied asset data in SILC.

K



Treatment of sample under-representation and skewed heavy-tailed distributions in... 279

[0
, 2

0)

[2
0,

 2
5)

[2
5,

 3
0)

[3
0,

 3
5)

[3
5,

 4
0)

[4
0,

 4
5)

[4
5,

 5
0)

[5
0,

 5
5)

[5
5,

 6
0)

[6
0,

 6
5)

[6
5,

 7
0)

[7
0,

 7
5)

[7
5,

 8
0)

[8
0,

 8
5)

[8
5,

 9
0)

[9
0,

 9
5)

[9
5,

 1
00

)

[1
00

, 1
20

)

[1
20

, 1
50

)

[1
50

, 2
00

)

[2
00

, m
ax

.]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

income brackets (in CHF 1000)

Tax data
SILC

Fig. 3 Share of households by income brackets (in CHF 1000) for tax data and the SILC 2016 survey
(source: SILC and ESTV (2017), Normal- und Sonderfälle)

statistical inference becomes technically much more challenging (unless we neglect
the dependency introduced through calibration). Myck and Najsztub (2015) propose
a different but closely related approach: Calibrate the weights over several stages
on variables from administrative records to correct the under-representation of high-
income groups. In our application, the indirect calibration method of Myck and
Najsztub (2015) was inferior.20

Although calibration aligns the estimated household shares by income brackets
with known values, we continue to observe an anomaly in the top income bracket:
Estimated average income in the top income bracket is only CHF 315096 (af-
ter calibration) and therefore too small by approximately 25% compared with the
value reported in the tax register data (i.e., CHF 394370; ESTV 2017). Conse-
quently, this underestimate of average income implies—based on progressive tax-
ation—downward biased results for the simulation of taxes (and other simulated
variables). What can we do to rectify the anomaly? Does it help to run another
round of calibration, but with average income as the calibration target?

The calibration method is not appropriate to overcome the underlying problem,
which manifested itself because of an underestimate of average income. The under-
lying problem is that too few high- and ultrahigh-income households were included
in the sample for mainly two reasons: (i) these households are rare, and the SILC
sampling design did not oversample this special group; and (ii) survey compliance
decreases with increasing income (see the aforementioned discussion). These find-
ings are substantiated when we compare the estimated frequencies of ultra-high-
income households in SILC with the results in Foellmi and Martínez (2017). Thus,
we should—loosely speaking—add some high- and ultra-high-income households
to the sample to correct for the deficiency. Calibration and similar reweighting

20 The results of applying the calibration method of Myck and Najsztub (2015) were inferior in terms of
achieving the alignment targets and preventing excessively large weights.
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techniques do not succeed because they only modify the “importance” of existing
households in the sample. Even worse, these methods can distort the observed in-
come distribution in their attempt to align the estimated sample mean in the top
income bracket with the known population value.

Indeed, our numerical analysis (Schoch et al. 2013) shows that calibration tends to
increase the weights of observations with high incomes in the top income bracket.
Although weight adjustment ensures that the sample average in the top income
fulfills the benchmark, it overemphasizes high-income households whose income
is still small compared with the households that should have been in the sample
in greater number. Since our primary interest is not average income but the entire
income distribution (for simulation purposes), any distortion of the distribution is
problematic; hence, reweighting methods are not a viable option.

4.2 Pareto tail modeling

The complete tax-data distribution of income is unavailable to us. Therefore, we
cannot use it to adjust the SILC income distribution in the right tail. In the absence
of empirical data, we thus assume that the right tail of the income distribution can
be described by a parametric Pareto distribution. With the help of the tail model, we
adjust the sample distribution such that average income in the top income bracket
(i.e., above CHF 200000) is aligned with the known value from the tax data.

Pareto tail models have been a productive assumption in many applications, for
example, Dell et al. (2007) show that a Pareto tail model describes top incomes
in Switzerland well; see also Foellmi and Martínez (2017). The assumption has
also been beneficial in robust statistics; see e.g., Cowell and Victoria-Feser (2007)
and Alfons et al. (2013).

To fix notation, we let the income of household i be represented by random vari-
able Xi (i D 1; :::; n), which is defined on the positive real line. Let fXi ; i � 0g
denote a sequence of independent and identically distributed random variables with
cumulative distribution function F . Many of the empirically studied parametric in-
come distributions (e.g., Singh–Maddala, Dagum and Generalized Beta) have heavy
tails. In particular, their tail decay as a power law F .X � x/ � L.x/ � x�.�C1/

as x ! 1, where � > 0 is a parameter and L.y/ denotes a regularly varying
function (Kleiber and Kotz 2003, Chap. 3.3). The tail behavior of such income
distributions can be described by a Pareto distribution

F� .x/ D 1 �
�
x

x0

���

.x � x0/; (1)

where x0 > 0 is a threshold and � > 0 is the shape parameter of the Pareto
distribution. The corresponding density function is given by f� .x/ D �x�

0 =x
�C1

(for x > x0) and is shown in Fig. 4 for some values of the parameter � (the threshold
x0 is kept fixed at x0 D 1 for the sake of comparison). We observe that smaller values
of � decrease the density at x0 and simultaneously imply a heavier tail.
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Fig. 4 Pareto density function as a function of variable x for three values of the shape parameter � (the
threshold x0 is kept fixed at x0 D 1)

4.2.1 Parametrization of the Pareto tail model

To use the Pareto tail model, we must determine or estimate the model parameters
from tax data. The threshold x0 is fixed at CHF 200000 because this marks the
beginning of the top income bracket. To determine the shape parameter � , we use
average income as published by the federal tax authority; see ESTV (2017). Next,
we relate the empirical average to the expected value of a Pareto random variable X
with law X � F� .x/. Under this law, the expected value conditional on � is (Kleiber
and Kotz 2003, p. 71)

E� .X/ D �x0

� � 1
.for � > 1/: (2)

Putting the empirical average in place of the expected value and substituting
CHF 200000 for x0, we can solve Equation (2) for � . Furthermore, since average
income in the top income bracket (from tax register data) is known for each canton,
we compute canton-specific parameter estimates (the threshold x0 is the same for
all cantons; Table 3). The estimated shape parameters show great variation among
the cantons: from 1.42 (canton SZ) to 2.72 (canton JU). For these cantons, the 99%
income quantile under the Pareto tail assumption is, respectively, CHF 5.12 million
(SZ) and CHF 1.09 million (JU).

4.2.2 Incorporating the Pareto tail assumption into the simulation model

Because the Pareto model is only used for tail modeling, all incomes below the
threshold of CHF 200000 are not affected, and estimation for the lower part of
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Table 3 Estimated shape parameters � by canton

ZH BE VD AG SG GE LU BL TI VS FR SO TG

2.18 2.46 2.42 2.62 2.27 2.34 2.18 2.35 1.98 2.15 2.55 2.34 2.25

(continued)

NE BS GR SZ ZG SH JU AR GL NW OW UR AI

2.63 1.81 2.27 1.42 1.59 2.50 2.72 2.21 2.53 1.56 1.79 2.56 1.77

Computation based on ESTV (2017)

the distribution refers to the empirical distribution. Regarding the right tail of the
distribution, three approaches are worth considering:

(i) imputation of randomly drawn observations from the Pareto model;
(ii) semi-parametric estimation; and
(iii) imputation of expected order statistics from the Pareto model.

In approach i), we replace the observed incomes above the threshold x0 with ran-
domly drawn values from the Pareto tail model F� in (1). This approach has been
used by, for example, Alfons et al. (2013), in robust statistics; see also Törmälehto
(2017) for an application to EU-SILC. Usually, the empirical mean of the imputed
observations is not perfectly aligned with the expected value. However, alignment
can be achieved by scaling the values slightly. In our earlier model, we used this
method with canton-specific parameter values; see Schoch et al. (2013). The major
advantage of method (i) is that it generates a corrected income variable that can then
be used in the simulation as if it were the original variable. A disadvantage is that
the households are assigned randomly drawn income values that may not be related
to their originally observed income. Thus, a relatively poor household can be turned
into a high-income household (and vice versa). This is normally not an issue, unless
the simulated results are to be studied for fine-grained subpopulations.

The second approach is a semi-parametric estimating method and is inspired
by Cowell and Victoria-Feser (2007). This approach directly sets in at the stage of
estimation and—so to speak—skips the imputation stage. Denote by F.x/ the entire
income distribution, which is defined as a mixture distribution,

F.x/ D
�
Fn.x/ if x < x0;
Fn.x0/C f1� Fn.x0/g � F� .x/ if x � x0; (3)

with the empirical distribution function Fn.x/ D
P

i2swi1fxi � xg=Pi2swi ,
where summation is over all elements in the sample s, wi is the sampling weight,
and 1f�g denotes the indicator function. Any characteristic of interest (e.g., arith-
metic mean) that can be expressed as a statistical functional T W G ! RC of
a distribution function G can be computed at the distribution defined in (3). For in-
stance, the (weighted) sample mean—computed at an arbitrary distribution G—can
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be expressed as a statistical functional T .G/ D R
xdG.x/ where integration is over

the positive real line. When T is computed at F defined in (3), we obtain

T .F / D 1P
i2swi

.
X
i2s

wixi1fxi � x0g C �x0

� � 1

X
i2s

wi1fxi > x0g/; (4)

which highlights that T .F / is a weighted average of the empirical mean for incomes
below threshold x0 and the expected value in the right tail under the Pareto model.
We observe that this method does not explicitly replace or impute incomes in the
baseline dataset.21

The third method is new, according to our review of the literature. For ease
of discussion, we neglect the canton-specific tail models and work with a nation-
wide model only. Let X1Wn; :::; XnWn denote the n order statistics (i.e., observations
sorted in ascending order) of the observed income variable in the right tail (i.e., for
x> x0). Under the Pareto model in (1), the expected value of the k-th order statistic
is (David and Nagaraja 2003)

E� .XkWn/ D x0nŠ

.n � k/Š �
�.n � k C 1 � ��1/

�.nC 1 � ��1/
DW �kWn .for 1 � k � n/; (5)

where � denotes the Gamma function.22 For the imputation approach, we replace
all empirical income order statistics X1Wn; :::; XnWn in the baseline data by the ex-
pected values �1Wn; :::; �nWn (under the Pareto tail model). This method has several
advantages over the other two approaches. First, the arithmetic mean of the imputed
�i Wn’s (i D 1; :::; n) is equal to the (overall) expected value under the Pareto model
defined in (1), that is, the mean of the imputed observations is automatically aligned
with the benchmark from tax data.23 Second, the imputation strategy preserves the
households’ income ranks. A relatively poor household is not turned into a high-
income household (and vice versa). Lastly, the changes in income generated by im-
putation are small; to observe this, we computed the percentage change in income
between the empirical and the imputed value for all 271 households in the top in-
come bracket (Fig. 5). Observe that the changes are displayed by income quantiles.
For incomes below the third quartile, the changes are less than 21.5 percentage
points. The largest change in income for an individual household is an increase of
239.4%, which reflects the fact that households with especially high incomes were
under-represented in the original data.

21 The weighted average in (4) can be easily computed. When the functional of interest is more compli-
cated, notably, if it depends on a known function h W R ! R (e.g., average tax payments depend on
income and other variables), we have Th.F / D R

h.x/dF .x/ and the functional may not have a closed-
form solution. In this case, we may use numerical integration methods to evaluate Th.
22 When n is large, we can approximate the factorial and the (log) Gamma function using Stirling’s ap-
proximation (or a more refined approximation).
23 The alignment property only holds for the arithmetic mean but not necessarily for the weighted mean.
However, this is not problematic and can be addressed by scaling the imputed values slightly such that the
weighted mean is aligned with the benchmark. In our case, the scaling factor is 1.0023.
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4.3 Empirical illustration

As an illustration of the methods, we simulated average tax payments in favor of
the system of CHI. Tax payments include federal, cantonal, and municipality taxes
and are simulated from pre-tax income (and other variables). In Fig. 6, we show
average tax payments in favor of CHI for households in different income brackets,
once with and once without Pareto tail correction. Tax payments in the top income
bracket are substantially underestimated when the correction is not considered. The
correction method used in the display of Fig. 6 is based on method iii), that is,
imputation by expected order statistics from the Pareto model. However, the two
other methods yield similar results (not shown) because the display uses a rather
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income brackets; tax payments are computed with and without Pareto correction
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coarse income bracketing. When we specify smaller income brackets (e.g., in 0.5%
steps), the imputations of method (i) show a nonsmooth behavior in the right tail,
which is undesirable.

5 Register data and record linkage (with heavily skewed data)

Individual health care cost data are typically not available from household surveys
because interviewees do not know the amount of costs they incurred in a calen-
dar year. This was the case in our earlier simulation model (Schoch et al. 2013);
therefore, we simulated individual health care costs.24 The major difficulty in this
modeling exercise was the replication of the outlier-prone, heavily right-skewed and
zero-inflated distribution of the cost data. Zero-inflation occurs because the majority
of individuals did not use any health care-related services; hence, no costs were
incurred. By contrast, medical treatment for a few people incurred tremendous costs
(outliers).

As we pointed out in Sect. 3, insurance-related data (i.e., premium, franchise,
and health care costs) are now available from a register on compulsory health care.
Moreover, the Swiss Federal Statistical Office linked the register data to the 2016
SILC survey through record linkage. Thus, we can avoid modeling the cost data
because the true cost data are available. It cannot get any better than this, right?

Unfortunately, linking register data to an existing survey dataset is insufficient to
guarantee good results. The nature of the baseline survey is not affected by record
linkage, that is, the baseline survey still covers only a small, randomly selected
part of the underlying population (� 0.2% sampling fraction). A sampling fraction
of 0.2% implies—under the simplifying assumption of simple random sampling
without replacement—that on average each person receives a sampling weight of
approximately 476.25 Thus, each sampled person is said to represent approximately
476 individuals in the population.

Moreover, we may think of linking health care costs to the survey as if we had
directly sampled from the very skewed cost population distribution. As a result, we
obtain a sample that shows high sampling variability. Even more problematic is the
analysis of such data for breakdowns or domains of interest (e.g., breakdown by
gender or age group) because outlying values tend to be more influential in smaller
samples. For instance, if a person in a subpopulation has incurred a huge amount
of health care costs (e.g., several hundred thousands of CHF), that individual’s
value represents (under our simplified calculations) the values of 476 individuals in
the population and therefore exerts a tremendous influence on the subpopulation’s
distribution of health care costs. The compound effect of an outlying observation
and a large weight can completely ruin an estimate. Thus, we clearly cannot let such
extreme data or outliers be untreated.

24 We modeled individual health care costs with the help of explanatory variables such as number of doctor
visits, length of stay in hospital, etc. (conditional on, e.g., age, gender).
25 In the calculation, we neglected stratification and assumed equal weighting (and absence of nonresponse
adjustment).

K



286 T. Schoch, A. Müller

Fig. 7 Slicing the baseline
survey data: The top plane or
slice shows the relation between
the variables (health care) cost
and age (group). The population
means (and totals) of health care
costs are known for the marginal
distribution by age group but not
for all other breakdown variables
(like income, etc.)

outlier marginal totals 
(or means)

For the time being, an outlier (or extreme value) shall mean an atypical and/
or influential observation in the sample (a more formal outlier definition will be
given later). Also, for ease of discussion, we consider the specific situation shown in
Fig. 7. The figure shows a schematic representation of the (health care) cost data in
the baseline survey, cut into slices by breakdown variables (age, income, etc.). The
top plane shows the slice cost � age (group). This slice is special for two reasons.
First, variable age (group) is used in the microsimulation as a breakdown variable to
study the redistributive effects by age. Second, the population means of health care
costs by age groups are known (from administrative CHI data). Hence, no estimation
is required for the analysis of health care cost by age group (unless we are interested
in a characteristic other than the arithmetic mean), yet this setting enables us to adjust
the cost data (or, equivalently, the sampling weights) such that the weighted sample
means (by age group) are aligned with the known population values. The adjusted
data then allow us to obtain (presumably) more accurate estimates of average health
care costs for other breakdown variables, whose population cost averages are not
known (e.g., income, see Fig. 7), compared to not having adjusted the data in the
first place (i.e., not having utilized the auxiliary information of the top slice). Such
methods refer to the calibration principle of Deville and Särndal (1992, p. 376) that
“weights that perform well for the auxiliary variables also should perform well for
the study variable” (under the assumption that the study variable is correlated with
the auxiliary variables).

It is crucial that the alignment methods applied at the top slice (to stick with our
visual metaphor in Fig. 7) work properly, for otherwise alignment issues transmit to
other slices causing distorted estimates there. Thus, we must avoid that an alignment
problem in one place turns into an estimation problem at another place. For that
matter it is of crucial importance how an alignment method achieves its goal in the
presence of outliers. The naive alignment approach which scales the cost data (or
weights) by Ny=bNy, where Ny and bNy denote, respectively, the population mean
and the weighted sample mean of health care cost (for some age group), ensures
that alignment is achieved for this breakdown variable. However, outliers in the data
may exercise a huge impact on bNy and thus on the scaling factor. To see this,
consider the age group of 41–45 years old women. For this group, the population
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mean of cost is Ny D 3102 CHF. The sample mean amounts to bNy D 5421
CHF, which is an overestimate by approximately 75% because of (most notably)
one heavy outlier; see Fig. 7. The resulting scaling factor is approx. 0.57, which
implies that all observations—even the “good” ones—(or their sampling weights)
are heavily shrunken. Such heavy shrinkage may cause disastrous underestimation
for other breakdown variables. This problematic behavior is not limited to the naive
method. Even more sophisticated alignment methods are not immune to this. In fact,
any alignment method which is based on non-robustly estimated characteristics will
be influenced by outliers. This is also the case for the (traditional) Deville–Särndal
calibration method (Duchesne 1999).

Before we address alignment and estimation methods that can cope with outliers,
it is helpful to formalize our definition of outliers.

5.1 Representative and nonrepresentative outliers

Compared with “classical” statistics, outliers are a different concept in design-based
survey sampling. In the sampling context, outliers are extreme values selected from
the population under study that deviate from the bulk of data. Following Chambers
(1986), distinguishing representative from nonrepresentative outliers is helpful. Rep-
resentative outliers are extreme but correct values and are thought to represent other
population units similar in value. A nonrepresentative outlier is an atypical or ex-
treme observation whose value is either deemed erroneous or unique in the sense
that there is no other unit like it.26

Furthermore, and in contrast to classical statistics, we also must consider the sam-
pling weights because design-based estimators are functions of the weights and the
observed values. Depending on the type of estimator, observations not considered
outliers (e.g., situated in the bulk of the data) can still heavily influence the esti-
mate because of their large sampling weight. We call such observations influential
values (Lee 1995). Conversely, outliers well separated from the majority of obser-
vations are not necessarily influential when they have small weights. The problem
worsens if large values have large sampling weights.

Outliers and influential values are typically dealt with in two separate steps:
detection followed by treatment. Another option is the application of robust es-
timation techniques (e.g., M -estimators; see below), which combine the steps of
detection and treatment. All techniques aim to avoid untreated outliers and influ-
ential values because these can heavily compromise the variance–bias profile—or
equivalently the mean square error (MSE)—of the estimator of interest. So, leaving
erroneous outliers untreated implies biased estimates and inflated variance of the
estimator. In case of representative and nonrepresentative outliers, the situation is
more complicated because the outliers’ influence on the MSE depends on the sample
size (Hulliger 1995; Lee 1995). If the sampling fraction is large or the sample size is

26 For the sake of illustration, consider that person in the population who incurred the largest amount
of costs. If this particular person gets selected into the sample, it receives a weight of approximately 476
(under our simplified calculations). Now, it is evident that this person is a non-representative outlier because
it does not represent approximately 476 individuals with the same amount of costs.
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large, the problem is less troublesome. When the sample size is small, however, and
whence—as a rule—the variance is the dominant factor in the MSE, small biases
introduced through robustification (e.g., reducing values or shrinking weights) can
be worthwhile if the variance can be significantly reduced. Thus, for small samples,
there is a tradeoff between variance and bias. However, in some cases, the introduced
bias can be substantial and may render a robust procedure grossly inefficient. This
phenomenon occurs all the more as the sample size increases because the variance
decreases, but the bias typically does not. As a result, the bias tends to dominate the
MSE for large samples.27

5.2 Robust estimation and alignment methods

In contrast to our discussion on Pareto tail modeling for income, we have no com-
parable parametric model for health care cost because empirical and theoretical
evidence on the distributional shape of health care costs is scarce (compared with
the well-studied Pareto assumption in income research). Thus, we adopt robust non-
parametric methods.

In what follows, yi (i 2 s) denotes the variable of interest (health care cost). The
goal is to obtain y-totals (or means) as weighted linear statistics of the sample data,
which are

(i) outlier resistant (robust),
(ii) and (if applicable) aligned with known population totals (or means).

We deliberately speak of weighted linear statistics, not estimators in order to cover
estimation and alignment methods. That is, when a statistic is used to estimate
an unknown population parameter or characteristic, it is called an estimator. Unlike
estimation methods, the population parameter or characteristic of interest is a known
quantity in the application of alignment methods. Therefore, the device to achieve
alignment is not called an estimator. We use the term aligned value to denote the
sample-based weighted linear statistic (e.g., weighted mean), which is based on the
modified observations or weights to achieve alignment. Clearly, the aligned value is
equal to the known population quantity (if alignment was successful).

For estimation methods, we demand only that requirement (i) is met (i.e., outlier
robustness, see enumeration above), whereas for alignment methods, both require-
ments (i) and (ii) must be fulfilled. By way of illustration, consider the visual
metaphor of the data slices in Fig. 7. Since the population means are known for the
top slice (i.e., cost � age), estimation is pointless and we focus only on outlier
resistant alignment. For all other slices, the goal is robust estimation of the y-total

27 Such troublesome situations have been of great concern to advocates of robust methods. For in-
stance, Chambers (1986) proposes a robust estimator in which the incurred bias is estimated by a robust
technique and then “added back” to some extent to the robust estimator; the resulting estimator is called
bias-corrected. Hulliger (1995) suggests another solution to the problem, insofar as he considers a set
of eligible estimators that include the nonrobust, but consistent, estimator (e.g., Horvitz–Thompson esti-
mator). His method is called minimum estimated risk estimator and is an adaptive procedure because it
searches for an optimal variance–bias configuration among the set of eligible estimators.
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or -mean (taking the modified sampling weights or observations into account that
have been obtained at the top slice).

To fix notation, let wi denote the sampling weight (i 2 s). We denote by w�
i

outlier resistant weights (that are possibly adjusted to meet alignment goals), and
which are defined as w�

i D uiwi , where the ui ’s are factors to downweight outliers
and achieve alignment. We will discuss the choice of the ui ’s later. By the identity

X
i2s

w�
i yi D

X
i2s

wiy
�
i (6)

we see that the estimated y-total can equivalently be represented with the help of
modified observations y�

i D yiui .28 Also, we may regard the y�
i ’s as imputed values

which are free from outliers and ensure (together with the wi ’s) that the alignment
goals are achieved (granted that alignment goals were imposed). More importantly,
we have the freedom to work, in the later course of the simulation, with the tuples
.w�

i ; yi /, .wi ; y
�
i /, or directly with the ui ’s.

Next, we address three methods to compute the ui ’s (and thus the y�
i ’s or w

�
i ’s).

5.2.1 Robust estimation

For the further course of discussion, it is helpful to focus on robust M -estimators
in the context of finite population estimation (although these estimators do not
seek alignment with known population values). We restrict attention to the robust
Horvitz–Thompson (HT) estimator of Hulliger (1995) because it is outlier resistant
and it can be written as a weighted linear estimator.

Let  denote the Huber  -function defined as  .x; k/ D minfk;max.�k; x/g
for x 2 R, where k > 0 is a robustness tuning constant; we let b� be a preliminary
robust estimate of scale, for example, the interquartile range of the cost data yi .
The robust estimator of the weighted mean is the solution b�k of the estimating
equation (Hulliger 1995)

X
i2s

wi 
�yi � �

b� ; k
�
D 0. (7)

The tuning constant k determines the amount of robustness we want to achieve.29

Estimator b�k can be expressed as a weighted estimator,

b�k D
P

i2swiuiyiP
i2swiui

where ui D  .ei ; k/

ei

with ei D yi �b�k

b� ; (8)

and can thus be brought into the form of (6). The ui take values in the interval Œ0,1�.

28 Likewise, we have a Hajek type estimator for the mean,
P

i2sw�

i
yi=

P
i2sw�

i
.

29 A small value of k reduces the influence of outliers and influential observations. By contrast, if k ! 1,b�k is equal to the Hajek mean. Computations are performed with the R package robsurvey of Hulliger
et al. (2019).
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5.2.2 Robust adaptiveM -estimator with an alignment penalty

In this paragraph, it is assumed that the population y-mean, Ny D P
i2Uyi=N ,

is a known quantity (U denotes the set of population indices). Observe that the
estimator b�k , which is defined as the solution to the estimating equation in (7),
does not impose alignment goals. As a result, b�k may differ considerably from
Ny. In order to incorporate the auxiliary information that Ny is known, we propose
to compute an adaptiveM -estimator that minimizes an approximate estimate of the
mean squared error of b�k ,

bMSE.b�k/ D cvar.b�k/C .b�k � Ny/2; (9)

where cvar denotes the estimated variance. Observe that the squared bias term on
the r.h.s. of (9) is evaluated with respect to the known population mean Ny. The
squared bias works like an alignment penalty that penalizes estimates that deviate
too much from Ny. Formally, we seek the M -estimator which minimizes (9) on the
set of tuning constants fk W k 2 RCg. The optimal estimator is b�kopt , where

kopt D arg min
k2RC

bMSE.b�k/: (10)

The proposed estimator is inspired by the minimum estimated risk estimator in Hul-
liger (1995); our method differs from Hulliger’s insofar that he defines the squared
bias as .b�k � b�/2, where b� is the weighted sample mean. For ease of refer-
ence, we call the estimator b�kopt

with kopt defined in (10) the minimum risk M -
estimator (MRM). Although the MRM estimator is not explicitly aligned or bench-
marked with Ny, it often coincides with Ny (or is at least close to the benchmark);
see empirical illustration, below. Furthermore, deviations of b�kopt

from Ny are
unproblematic (or even intended) provided that the MSE of b�kopt

is considerably
smaller than the MSE of any competing estimator. That is, we deliberately relax the
alignment requirement slightly whilst the gains in MSE outweigh the incurred bias.

In the presence of outliers and influential values, the MRM estimator tends to be
superior in terms of MSE compared with competing methods (see below). However,
it can be heavily biased when the population mean Ny is much larger than b�kopt

;
whence, the squared bias dominates the MSE and the MRM estimator does not
achieve any gains in MSE over the weighted sample mean (yet, the MRM estimator
is never inferior to the weighted sample mean).

5.2.3 Robust self-calibration

In this paragraph, we introduce a robust calibration method that explicitly ensures
alignment (under the assumption that the (sub-) population quantities Ny and N are
known).30 To this end, we follow Duchesne (1999), who proposed a robustification
of the (traditional) calibration method of Deville and Särndal (1992). In practice, the

30 If the (sub-) population size N is unknown, it can be replaced by the estimate bN D P
i2swi .
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traditional calibration (see Appendix B) is used to re-weight a vector of auxiliary
variables, say, xi 2 Rp (i 2 s)—not the variable of interest, yi—such that the
sample x-totals are aligned with their population values. Our approach, however,
seeks calibration or alignment directly for the study variable yi . Therefore, we call
the method (robust) self-calibration.

We follow Duchesne (1999) and fix a set of tuples of constants f.qi ; ri / W i 2
sg. The choice of the constants will be discussed later.31 Next, we define—still
following Duchesne (1999)—a set of weights fvi W i 2 sg and consider minimizing
the distance function

P
i2s

.vi–ri /2=qi subject to alignment or calibration constraints

(s.t.c.). This choice of distance function is problematic because the resulting weights
vi can be negative. In order to restrict the calibrated weights vi to the interval ŒL; U �,
where L and U are pre-determined boundaries (0 � L < U < 1), we consider
instead the following minimization problem

min
1

2

X
i2s

h.vi ; qi ; ri / s.t.c.

2
4

P
i2s

viP
i2s

viyi

3
5 D

2
4 NP

i2U

yi

3
5 ; (11)

where minimization is with respect to the vi ’s, and

h.vi ; qi ; ri / D
8<
:
.vi–ri /2

qi

if vi 2 ŒL; U �;
1 otherwise:

(12)

The distance function in (12) is due to Duchesne (1999), and it is a slight modifica-
tion of Case 7 in Deville and Särndal (1992). We impose two calibration constraints;
see r.h.s. of (11). Observe that our second constraint is specified with respect to the
study variable, yi , not an auxiliary variable (this marks the major difference to
the proposal of Duchesne 1999). Together, the two constraints ensure that the Ha-
jek estimator of the y-mean,

P
i2sviyi=

P
i2svi , is aligned with the population y-

mean.32

The choice of the constants .qi ; ri / is of great importance in order to achieve
robustness. We take .qi ; ri / D .uiwi ; uiwi / for all i 2 s, where ui D  .ei ; kopt/=ei
with ei D .yi � b�kopt

/=b� and b�kopt
is the M -estimator with kopt defined in

(10). Observe that this choice implies that qi D ri (i 2 s), which is sensible
and easy to compute but may not be the best specification possible. That is to
say, it can sometimes be advantageous to take the constants to be .wiui ; wiu

0
i /,

where u0
i D  .ei ; k

0/=ei with k0 other than kopt . However, this approach poses
the difficulty of choosing the tuning constant k0. We stick with the choice qi D ri

31 The constants define the class of QR estimators in the sense of Wright (1983), and QR estimators can
be regarded as calibration estimators (Duchesne 1999).
32 For reasons of efficiency (see e.g., Särndal et al. 1992, 182), we prefer the Hajek mean over the
Horvitz–Thompson estimator of the mean.
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because of its simplicity, and then we solve (11) to get the calibrated weights vi
(i 2 s).

In the later course of the simulation, we are free to work with the tuples .vi ; yi /

or .wi ; y
�
i /, where y

�
i D yiu

�
i with u�

i D vi=wi , or we may store the u�
i ’s in the

baseline survey for future usage (i 2 s).

5.3 Empirical illustration

We study the empirical performance of the three methods for estimation and align-
ment of health care cost by age group (cf. top slice in Fig. 7). Clearly, estimation is
actually not needed because the population means (by age group) are known quan-
tities. Therefore, we are mainly concerned whether the methods achieve alignment.
Fig. 8 shows the aligned values or estimates of average cost by age group for several
methods. The known population means are shown as a thick grey line. From the vi-
sual display, we observe that the weighted sample mean overestimates the population
mean for the age group of 41–45 years old women by approx. 75% (i.e., CHF 5421
vs. 3102) because of a few outliers. A similar behavior—albeit less pronounced—is
apparent for the age groups 26–30, 46–50 and 51–55 years. The estimates of the
minimum riskM -estimator (MRM) are robust against outliers and influential values,
and the estimates coincide with (or are at least close to) the population means in the
age groups below 54 years. For the age groups above 54 years, however, the MRM
estimator underestimates the population means quite noticeably. The reason for this
behavior lies in the nature of the method. As anM -estimator, the method works by
downweighting outlying observations; yet, for the age groups above 54 years, the
method should actually react by up-weighting (which it is incapable of doing by
design).33 The method robust self-calibration produces values which are perfectly
aligned with the known population means (as expected). If alignment is the only
method selection criterion, we prefer robust self-calibration over the other methods.

For a comprehensive assessment of the estimation/ alignment methods, we shall
also study the methods’ MSE. To fix notation, let b� denote a generic estimator
or alignment method. We estimate the MSE of b� by cvar.b�/ C .b� � Ny/2.
For the weighted sample mean (Hajek estimator) and the MRM method, we use
standard (approximate) variance calculation procedures to compute cvar.b�/; see
e.g. Särndal et al. (1992, 182). Since robust self-calibration is not an estimating
method, the aligned means have zero variance.34 However, we shall nevertheless
compute an approximate variance estimate for the robust self-calibration method.
The variance estimator mimics the variance of the Hajek estimator, though it neglects

33 In principle, an M -estimator may result in a behavior that corresponds to up-weighting. To this end,
the M -estimator must downweight small values more than large values; hence, the estimate increases
compared to a weighting scheme that downweights only large outliers. However, for our data, we were
unable to tune the method in order to achieve such behavior.
34 The zero variance property is a direct implication of the calibration constraints. To see this, consider
(11) and note that the second constraint imposes estimator

P
i2sviyi to be aligned with

P
i2U yi , which

is a population quantity; hence, it has zero variance.
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Fig. 8 Estimates (or aligned values) of average health care cost for women (by age group) for several es-
timation and alignment methods; the known population means are shown as a thick grey line; source: BAG
(2017)

the fact that the calibrated sampling weights are dependent on the yi ’s. As a result,
the approximate variance estimator tends to underestimate the true variance.35

Table 4 shows the relative MSE (relMSE) for the methods in Fig. 8. The relMSE
is the ratio of an estimator’s MSE to the MSE of robust self-calibration. Values
smaller (larger) than 1.0 indicate that the method under study is more (less) efficient
than robust self-calibration. First, we note that the weighted sample mean (avg,
Hajek estimator) is extremely inefficient compared with all other methods. Second,
when avg < Ny (see last column of Table 4), the MRM estimator is as inefficient as
method avg. In these cases, the estimate b�kopt

is equal to avg because the penalty
term (squared bias in the MSE, see Eq. 9) dominates the MSE and pulls the estimate
onto avg. The MRM estimator can—in principle—escape from this trap if it would
downweight small observations more than large outliers. However, it is not capable
of doing so in our application. By contrast, MRM is more efficient than the robust
self-calibration method in all cases where avg > Ny. For some age groups, the
gains in efficiency over self-cal are considerable (partly because we have tuned self-
cal rather conservatively)36. Third, although method self-cal does not achieve the
most efficient estimate/aligned value for one particular age group, it clearly shows
the best ensemble efficiency (i.e., mean or total efficiency over all age groups). That
is, self-cal achieves a fairly good compromise. Moreover, and when alignment is
of key importance to the microsimulation modeler, self-cal is the preferred method
because it ensures alignment at reasonable efficiency. For simulations with small

35 The (standard) approximate residual variance estimator for the MRM method also tends to underesti-
mate the variance. Therefore, the variance estimators for MRM and the robust self-calibration method are
on an equal footing.
36 See our discussion on the choice of the constants qi D ri in Sect. 5.2.3.

K



294 T. Schoch, A. Müller

Table 4 Estimates (by age
group) of the relative mean
square error (relMSE) for the
methods robust self-calibration
(self-cal), minimum risk M -
estimator (MRM), and the
weighted sample mean (avg);
relMSE is computed with respect
to method self-cal; see text for
further explanations

Age Relative mean square error avg < Ny
group self-cal MRM avg

0–18 1.00 4.66 4.66 yes

19–25 1.00 1.21 1.21 yes

26–30 1.00 0.64 13.05 no

31–35 1.00 1.26 1.26 yes

36–40 1.00 0.51 1.91 no

41–45 1.00 0.33 49.11 no

46–50 1.00 0.78 4.15 no

51–55 1.00 0.96 4.32 no

55–60 1.00 1.32 1.32 yes

61–65 1.00 1.20 1.20 yes

66–70 1.00 0.97 0.97 yes

71–75 1.00 1.65 1.65 yes

75– 1.00 16.30 16.30 yes

sample sizes (not the case in our application), efficiency consideration become more
important than perfect alignment; hence, MRM is a good choice.

Next, we address the robust estimation problem when the population means are
unknown (see slices other than the top slice in Fig. 7). This time we consider estima-
tion of average health care cost by household type. Clearly, we cannot use alignment
methods. In principle, we could estimate average cost by a robust estimator of the
Hajek mean for each category of variable household type. There is nothing wrong
with this approach, except that it does not incorporate the auxiliary information from
the alignment exercise at the top slice (to stick with the visual metaphor). In other
words, this approach does not utilize the calibration principle of Deville and Särn-
dal (1992, p. 376) that “weights that perform well for the auxiliary variables also
should perform well for the study variable”. Thus, we estimate the average costs by
household type with the Hajek type estimator

P
i2swiuiyi=

P
i2swiui , where the

ui ’s depend on the method under consideration. For method avg, we have ui � 1;
for MRM and self-cal, we take the ui ’s that have been generated in the previous
alignment exercise. Now, we cannot examine how close an estimate is to the popu-
lation value since the latter is unknown. Therefore, we focus our discussion on the
efficiency of the methods, measured by the variance of the estimators. We computed
the relative variances (relVAR) with respect to method self-cal. Thus, values smaller
(larger) than 1.0 indicate superior (inferior) efficiency compared with method self-
cal; see Table 5.

The extreme outlier that we have already encountered in the alignment exercise
(cost � age group; see also Fig. 7) shows up in the household type “families with
two or more children”, and it inflates the estimated variance for the weighted sample
mean (avg). The two other methods are robust against the outlier(s). Also, see from
Table 5 that the MRM estimator has a smaller variance than method self-cal in
households with children (and vice versa). This pattern is caused by the alignment
methods and then “imported” to the current situation. That is, the MRM estimator
was superior (with a few exceptions) in terms of efficiency for age groups below
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Table 5 Estimated relative variance (relVAR) of the weighted sample mean (Hajek estimator) of health
care costs by household type, where the weights are taken from robust self-calibration (self-cal), minimum
risk M -estimator (MRM), or just the sampling weights (method avg); relVAR is computed with respect to
method self-cal

Household type self-cal MRM avg

Single-parent families 1.00 0.98 1.00

Families with 1 child 1.00 0.99 1.28

Families with 2 or more children 1.00 0.91 3.14

Singles 1.00 1.11 1.09

Couples (no chilren) 1.00 1.13 1.01

Pensioner households 1.00 1.09 1.02

54 years (see Table 4). This effect then carries over to the current estimation problem
because individuals in households with children (i.e., parents) range typically in age
brackets below 54 years; as a result relVAR is lower. Since self-cal and MRM are
so close in terms of relative variance, it is hard to prefer one method over the other.
However, if take up the discussion of the previous paragraph, we may favor method
self-cal if we value alignment (at the top slice) more than efficiency (and vice versa).
Notably, in very small samples, efficiency considerations become more important
and thus MRM is preferred over method self-cal.

6 Conclusion

The credibility of microsimulation modeling with the research community and poli-
cymakers depends on the availability of high-quality baseline surveys and the appli-
cation of sound statistical methods. In this paper, we addressed two potential quality
issues that both relate to skewed heavy-tailed distributions.

First, we reviewed how the presence of unit nonresponse can lead to biased sim-
ulation and estimates. In our application, we found that the top income bracket (and
to a lesser extent also households in the lowest income bracket) are significantly
under-represented in the baseline survey, compared with tax register data. Notably,
we discovered that too few high- and ultra-high-income households were included
in the sample because—as the literature shows—survey compliance decreases with
increasing income. Other survey-related errors may have contributed to the under-
representation of the top income bracket. Altogether, the estimate of average income
underestimates the known population average. Based on progressive taxation, un-
derestimation of the average implies downward-biased results for the simulation of
taxes (and possibly other simulated variables). Although the Deville–Särndal calibra-
tion eliminated under-representation of the top income group, it could not achieve
alignment of estimated average income in the right tail of the distribution with
known population values without distorting the empirical distribution. The problem
is rooted in the inability of the calibration method to cope with skewed heavy-tailed
distributions. To overcome the problem, we introduced a parametric Pareto model to
describe the right tail of the income distribution. With the help of the tail model, we
adjusted the sample income distribution in the tail such that average income in the
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top income bracket was aligned with known values. Henceforth, income data from
the adjusted sample is more representative for the population distribution in terms
of the first moment and with respect to tail probabilities. Our method of imputing
expected order statistics from the Pareto distribution in place of the empirical order
statistics has two major advantages over random imputation: the ranks of the ob-
served household incomes are preserved, and the differences between observed and
imputed values are small (except for the highest order statistics).

Under-representation of the top income bracket is a common issue of household
surveys and is not limited to the Swiss SILC survey. This claim is substantiated by,
for instance, the analysis of Törmälehto (2017) who presents empirical evidence of
under-representation for 31 countries in the 2012 EU-SILC data, and the theoretical
arguments in Korinek et al. (2006). Since sample surveys in general have difficulties
in capturing top incomes, our method can be a useful tool for microsimulation
modelers working with survey income data.

The second contribution of the paper also refers to the treatment of skewed heavy-
tailed distributions. Here, we are concerned with variables from an outlier-prone,
skewed population distribution that have been added to the baseline survey by record
linkage. In our empirical application, individual health care costs from register data
have been linked to the baseline survey. Because the baseline survey is a random
sample with a small sampling fraction, the sampling weights (i.e., the inverse of
the sample inclusion probabilities) are relatively large. An outlying observation in
the cost data together with a large sampling weight can thus heavily influence
or even ruin a sample estimate of the mean, total, or any similar characteristic. In
contrast to our discussion on Pareto tail modeling for income, we have no comparable
parametric model for health care cost; therefore, we adopt robust non-parametric
methods.

In terms of methods, we distinguish between estimation and alignment methods
for health care costs (by breakdown variables like age, income or household type).
Alignment methods seek modifications of the data or the sampling weights such that
the sample characteristics (e.g., mean or total) are aligned with known population
values; hence, no estimation is required (unless we are interested in characteristics
other than the ones that were benchmarked). However, the population characteristics
of health care costs are only known for some breakdown variables. In our application,
health care costs are known by age group, but not for other breakdown variables
like cost � household type. Therefore, we cannot impose alignment goals
for average health care costs by household type. However, and by referring to the
calibration principle of Deville and Särndal (1992, p. 376), that “weights that perform
well for the auxiliary variables also should perform well for the study variable”, we
seek alignment for cost � age group and then use the modified observations
(or weights) for the analysis of cost � household type.

Alignment and estimation methods are required to be outlier resistant. When
non-robust alignment methods are applied to achieve alignment for one breakdown
variable (e.g., cost � age group), the cost data or weights are at risk of be-
ing distorted in the presence of outliers, which in turn may cause biased estimates
for other breakdown variables (e.g., cost � household type). Thus, we must
avoid that an alignment problem in one place turns into an estimation problem at
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another place. Any method that is based on non-robustly estimated sample-based
characteristics (namely, the naive alignment method and the Deville–Särndal cali-
bration method) is not protected against the presence of outliers. Therefore, we have
proposed two alignment methods which are outlier resistant: robust self-calibration
(self-cal) and the minimum riskM -estimator of the mean (MRM). The latter method
is inspired by Hulliger (1995).

Our empirical analysis shows that the method self-cal achieves alignment with
known population characteristics for reasonable levels of efficiency (mean square
error, MSE) in the presence of outliers. In contrast, the weighted sample average
is heavily influenced by outliers and is very inefficient. The MRM estimator does
not impose explicit alignment goals and still produces estimates that are very close
to the known population values with one exception: the MRM estimate is not even
close to the benchmark when the sample mean is considerably smaller than the
known population mean (formally, bNy < Ny). Apart from this case, the MRM is
superior in terms of MSE. That being said, we prefer method self-cal over MRM
when the sample size is relatively large for the following reasons: Self-cal achieves
the alignment goals and its ensemble efficiency (i.e., total or mean efficiency over
all categories of a breakdown variable, e.g., household type) is superior; in other
words, self-cal achieves a good efficiency compromise. If, however, the sample size
is small, efficiency considerations become more important. Hence, we favor the
MRM estimator when bNy > Ny because it exhibits gains in MSE over self-cal,
and we suggest self-cal for the cases where bNy < Ny. Our methods are universally

Amount of finance (in CHF 1 000, equivalized)

poorest 10%
10%-20%
20%-30%
30%-40%
40%-50%
50%-60%
60%-70%
70%-80%
80%-90%
90%-97%

richest 3%

-15 -10 -5 0 5 10

Municipal taxes
Cantonal taxes

Federal taxes

Premium

Premium reductions

Health care benefits

Balance (saldo)

OOP

Fig. 9 Redistributive effects: Balance between payments made to and benefits received from CHI by
household income bracket (see text for further explanations).
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applicable to outlier-prone and skewed data when achieving alignment goals is
demanded.

To illustrate the impact of the discussed methods, we study the redistributive ef-
fects in CHI by household income. Fig. 9 shows a comparison of average payments
made to the system (taxes, premium, OOP) versus average financial aids (e.g. pre-
mium reductions) and average health care benefits received from CHI by income
bracket. Payments and benefits are equivalized by the EUROSTAT equivalization
scale37 for reasons of comparison. Moreover, Fig. 9 does not contain confidence
intervals for ease of simplicity. We observe from the display that households above
the 40%-50% income bracket are net payers (see balance/ saldo). It is also notewor-
thy that households in the top income bracket make (mainly through taxes) a major
financial contribution to the system. If the Pareto tail adjustment for the income
distribution is omitted, we would observe significantly underestimated tax payments
in the top income bracket. Fig. 9 shows other interesting facts—to be discussed
elsewhere. We refer the reader to Schoch et al. (2013), where we study other break-
downs (e.g., gender, household composition) and more sophisticated measures of
the redistribution effects (e.g., Gini coefficient).
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Appendix

A Model overview

In this paragraph, we give a brief overview of the microsimulation model. All
simulations refer to the baseline survey; we do not simulate at the level of the
population.

Simulation model (SILC 2016 data)

Let sH and sI denote, respectively, the sample of households and individuals of the
baseline survey. We denote by f a generic function. We write variablei to mean

37 This scale is also called OECD-modified scale and assigns a value of 1.0 to the household head, a value
of 0.5 to each additional adult member and 0.3 to each child.
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the value of a (generic) variable for individual or household i . For ease of display,
we work with umbrella terms, e.g. income shall stand for—depending on the
context—gross, net personal or household income (incl. employee income, benefits
or losses from self-employment, pensions, old-age benefits, housing allowances,
inter-household cash transfers, etc.), or disposable household income, etc.

Taxes: For each individual i living in household h 2 sH , tax payments are
simulated (separately at the federal, cantonal and municipality level) by

taxi  f .incomei ; place of residencei ; household typei ;

marital statusi ; agei ; cantoni /

The totals of the simulated tax revenues (at the federal, cantonal and municipality
level) are aligned with the known population totals.

Premium reductions: For each couple or family h 2 sH (or individual i 2 sI ), it
is determined whether it is entitled to premium reductions (and if so to what extent),
using

premium reductionsi  f .incomei ; cantoni ; place of residencei ;

household typei ;marital statusi ;

tax deductioni ; family allowancesi ;

number of childreni /:

In addition, for each child or young adult (18–25 years old) j in family or household
h, it is checked whether child or young adult j is entitled to personalized premium
reductions if the family is not eligible,

premium reductionsj  f .incomej ; agej ; place of residencej ;

undergoing educationj ;cantonj /:

The averages of the simulated premium reductionsi and premium
reductionsj are aligned with the known population averages by canton 	
age group, where age group is one of the categories: child, young adult or
adult.

Deductible and premium of CHI: For each individual i 2 s, the deductible
(choices: 300, 500, 1000, 1500, 2000 or 2500CHF) and the premium are taken from
register data and matched to the baseline survey by record linkage,

.deductiblei ; premiumi / register dataŒ.deductiblei ; premiumi /�;

The frequency distribution of deductiblei is aligned with the known frequency
distribution (by canton	age group, where age group is one of the categories:
child, young adult or adult).
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Health care costs: For each individual i 2 s, the amount of incurred health care
costs are taken from register data and matched to the baseline survey by record
linkage,

health care costi  register dataŒhealth care costi �;

and the averages of health care costi are aligned with the known population
averages (by sex 	 canton 	 age group) using the methods discussed in the
paper (variable age group is a categorical variable with age binned into brackets
of size 5 years, incl. the boundary intervals Œ0,18� and Œ76;max�).

Out-of-pocket payments (OOP): For each individual i 2 s, the out-of-pocket
payments are simulated by

out-of-pocket paymentsi  f .deductiblei ; health care costi incomei ;

household typeimeans-tested benefits

from OASIi /;

where OASI denotes old-age and survivor’s insurance. Total OOP is aligned with
the known population total (by canton).

Breakdown variables for the analysis

The redistributive effects are studied by contrasting 1) payments to the system (taxes
at the federal, cantonal and municipality level, out-of-pocket-payments, premiums)
with 2) financial benefits received from the system (premium reductions, health care
benefits and means-tested benefits to finance out-of-pocket payments) by breakdown
variable; see Fig. 9. Our basic model implements the following breakdown variables:

(i) individual level
(a) age (categorical variable with 12 categories)
(b) gender (men and women)
(c) nationality (Swiss and foreigner)
(d) health status (categorical variable with 5 categories)

(ii) household/family level
(a) equivalized disposable household income (categorical variable with 11

categories)
(b) household type (categorical variable with 6 categories; e.g., couples with-

out children)
(c) cross (or Cartesian) product of household type and equivalized disposable

household income

The effects for these breakdown variables have been published in Schoch et al.
(2013) and BAG (2018). Our model is technically not limited to this choice of
breakdown variables.
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Earlier simulation model of Schoch et al. (2013)

In our earlier model, register data were not available. Therefore, the variables
deductiblei , premiumi , and health care costi were simulated. We ad-
here to the notation introduced above.

Deductible and premium of CHI: For each adult i 2 s, the CHI deductible
(choices: 300, 500, 1000, 1500, 2000 or 2500CHF) is simulated by

deductiblei  f .incomei ; agei ; health statusi ; health care costsi ;

educationi ;sexi ; nationalityi ; cantoni /:

The frequency distribution of deductiblei is aligned with the known frequency
distribution. The same method was used to simulated deductibles of children. The
premium (which depends on deductiblei ) is simulated by

premiumi  f .incomei ; agei ; place of residencei ; cantoni ;

deductiblei /;

and average simulated premiumi is aligned with the known population averages by
deductible	canton	age group, where age group is one of the categories:
child, young adults or adult.

Health care costs: For each individual i 2 s, the incurred health care costs were
simulated by

health care costi  f .number of doctor visitsi ; health statusi ;

chronic diseasesi ;number of days

with in-patient treatmenti ; agei ; sexi ;

restriction in everyday life due to illnessi ; /;

and average of simulated health care costi is aligned with the known popula-
tion averages by sex	canton	age group; variable age group is age grouped
into brackets of size 5 years (incl. the boundary intervals Œ0,18� and Œ76;max�).

Means-tested benefits from old-age and survivor’s insurance (OASI) to fi-
nance OOP:

OASI-benefitsi  f .incomei ; household typei ; agei ; allowances from

OASIi /;

where OASI denotes old-age and survivor’s insurance. The total is aligned with the
known population total (by canton).

B Calibration estimation

In this paragraph, we give a brief overview of the traditional calibration method
of Deville and Särndal (1992, from here on DS92). Suppose that a sample s of size
n has been drawn from population U (of size N ). In the sample, we observe the
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variable of interest yi 2 R and a vector of auxiliary variables xi 2 Rp (i 2 s).
The population x-totals, T x D

P
i2Uxi , are assumed to be known; by contrast, the

population y-total Ty is unknown.
In practice, the calibration method is mainly used for two reasons: (i) Alignment:

The data are re-weighted such that the estimated x-totals are aligned with the known
T x (i.e., the sampling weights are modified to incorporate auxiliary information). (ii)
Efficiency: The calibrated weights are used to compute linearly weighted estimates,
e.g., to estimate the y-total, under the hypothesis that “weights that perform well
for the auxiliary variables also should perform well for the study variable” (DS92,
p. 376).

The calibration method of DS92 seeks to compute modified weights vi (i 2 s) that
differ from the initial sampling weights wi as little as possible and which maintain
the calibration constraints on the r.h.s. in (13). Formally, DS92 suggest solving the
optimization problem,

min
1

2

X
i2s

.vi � wi /
2

wi

subject to the constraints
X
i2s

vixi D T x; (13)

for the weights vi (i 2 s). The new weights can then be used in place of the original
sampling weights. Moreover, DS92 introduce the class of calibration estimators,

bT y;cal D
X
i2s

viyi ; (14)

for estimating the population y-total. For the distance function in (13), i.e. the ob-
jective function of the minimization problem, the estimator in (14) coincides with
the generalized regression estimator (GREG). Hence, bT y;cal inherits the nice prop-
erties of the GREG (i.e., efficient incorporation of auxiliary variables, asymptotic-
design unbiasedness, etc.) and is (usually) more efficient than the Horvitz–Thompson
estimator of Ty when yi and xi are correlated. The distance function in (13) has
the disadvantage that some of the weights vi can be negative. As a remedy, DS92
propose alternative distance functions which ensure positivity of the weights. The
calibration method of DS92 is not robust against outliers or influential values in yi
or xi (or both); see Duchesne (1999).
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