Skip to main content

Advertisement

Log in

Synthetic Biology and the Translational Imperative

  • Review Paper
  • Published:
Science and Engineering Ethics Aims and scope Submit manuscript

Abstract

Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may—together with financial and organizational problems—be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the “translational imperative.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson, T. (2002). Lifestyle drug market booming. Nature Medicine, 8(9), 909.

    Article  Google Scholar 

  • Balas, E. A., Boren, S. A. (2000). Managing clinical knowledge for health care improvement. In J. Bemmel, A. T. McCray (Eds.), Yearbook of medical informatics 2000: Patient-centered systems (pp. 65–70). Stuttgart, Germany: Schattauer Verlagsgesellschaft mbH.

  • Belardelli, F., Rizza, P., Moretti, F., Carella, C., Galli, M. C., & Migliaccio, G. (2011). Translational research on advanced therapies. Annali dell’Istituto Superiore Di Sanita, 47(1), 72–78.

    Google Scholar 

  • Birbaumer, N. (2006). Breaking the silence: Brain–computer interfaces (BCI) for communication and motor control. Psychophysiology, 43(6), 517–532.

    Article  Google Scholar 

  • Bonaci, T., Herron, J., Matlack, C., & Chizeck, H. J. (2015). Securing the exocortex: A twenty-first century cybernetics challenge. IEEE Technology and Society Magazine, 34(3), 44–51.

    Article  Google Scholar 

  • Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A., & Weiss, R. (2014). Realizing the potential of synthetic biology. Nature Reviews Molecular Cell Biology, 15(4), 289–294.

    Article  Google Scholar 

  • Collins, F. S., Green, E. D., Guttmacher, A. E., & Guyer, M. S. (2003). A vision for the future of genomics research. Nature, 422(6934), 835–847.

    Article  Google Scholar 

  • Contopoulos-Ioannidis, D. G., Alexiou, G. A., Gouvias, T. C., & Ioannidis, J. (2008). Life cycle of translational research for medical interventions. Science, 321(5894), 1298–1299.

    Article  Google Scholar 

  • Cribb, A. (2010). Translational ethics? The theory-practice gap in medical ethics. Journal of Medical Ethics, 36(4), 207–210.

    Article  Google Scholar 

  • DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics, 47, 20–33.

    Article  Google Scholar 

  • Dougherty, D., & Conway, P. (2008). The “3T’s” road map to transform US health care: The “how” of high-quality care. JAMA, 299(19), 2319–2321.

    Article  Google Scholar 

  • Drugs for Neglected Diseases initiative. (2016). 7 New treatments delivered, recommended, and implemented. Retrieved 17/01/2017, 2017, from http://www.dndi.org/treatments/.

  • El-Mosleh, J. (01 Feb 2016). Immunicum AB: Immunicum’s adenovirus technology gets green light for clinical study. Retrieved 12/03/2016, from http://www.finanznachrichten.de/nachrichten-2016-02/36308178-immunicum-ab-immunicum-s-adenovirus-technology-gets-green-light-for-clinical-study-252.htm.

  • Engel-Glatter, S., & Ienca, M. (2017). Life scientists’ views and perspectives on the regulation of dual-use research of concern. Science and Public Policy. https://doi.org/10.1093/scipol/scx050.

  • European Commission. (2014). Opinion on synthetic biology I definition. Retrieved 09/08/2016, from http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_044.pdf.

  • European Commission Press Centre. (2013). EATRIS: Bridging the gap between medical research and clinical applications. Retrieved 03.05.2017, 2017.

  • Fang, F. C. (2010). Lost in translation—Basic science in the era of translational research. Infection and Immunity, 78(2), 563–566.

    Article  Google Scholar 

  • Folcher, M., Oesterle, S., Zwicky, K., Thekkottil, T., Heymoz, J., Hohmann, M., et al. (2014). Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nature Communications, 5, 5392.

    Article  Google Scholar 

  • Gaggioli, A., & Riva, G. (2008). Working the crowd. Science, 321(5895), 1443.

    Article  Google Scholar 

  • Heidari, R., Shaw, D. M., & Elger, B. S. (2016). CRISPR and the rebirth of synthetic biology. Science and Engineering Ethics, 23, 1–13.

    Google Scholar 

  • Heng, B. C., Aubel, D., & Fussenegger, M. (2015). Prosthetic gene networks as an alternative to standard pharmacotherapies for metabolic disorders. Current Opinion in Biotechnology, 35, 37–45.

    Article  Google Scholar 

  • Herper, M. (2016). Juno therapeutics stops trial of cancer-killing cells after 3 patient deaths. Forbes Retrieved 11/08/2016.

  • Hörig, H., Marincola, E., & Marincola, F. M. (2005). Obstacles and opportunities in translational research. Nature Medicine, 11(7), 705–708.

    Article  Google Scholar 

  • Hotez, P. J., & Pecoul, B. (2010). “Manifesto” for advancing the control and elimination of neglected tropical diseases. PLOS Neglected Tropical Diseases, 4(5), e718.

    Article  Google Scholar 

  • Ienca, M., & Haselager, P. (2016). Hacking the brain: Brain–computer interfacing technology and the ethics of neurosecurity. Ethics and Information Technology, 18, 1–13.

    Article  Google Scholar 

  • Iorns, E. (12 June 2013). Research 2.0.1: The future of research funding. Soapbox science Retrieved 12/03/2016, from http://blogs.nature.com/soapboxscience/2013/06/12/research-2-0-1-the-future-of-research-funding.

  • Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J., & Fussenegger, M. (2010). Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nature Biotechnology, 28(4), 355–360.

    Article  Google Scholar 

  • Khoury, M. J., Gwinn, M., Yoon, P. W., Dowling, N., Moore, C. A., & Bradley, L. (2007). The continuum of translation research in genomic medicine: How can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genetics in Medicine, 9(10), 665–674.

    Article  Google Scholar 

  • Kimmelman, J. (2005). Recent developments in gene transfer: Risk and ethics. BMJ, 330(7482), 79–82.

    Article  Google Scholar 

  • Kimmelman, J. (2007). Clinical trials and SCID row: The ethics of phase 1 trials in the developing world. Developing World Bioethics, 7(3), 128–135.

    Article  Google Scholar 

  • Kimmelman, J. (2008). The ethics of human gene transfer. Nature Reviews Genetics, 9(3), 239–244.

    Article  Google Scholar 

  • King, N. M. (2002). RAC oversight of gene transfer research: A model worth extending? The Journal of Law, Medicine and Ethics, 30(3), 381–389.

    Article  Google Scholar 

  • Kis, Z., Pereira, H. S., Homma, T., Pedrigi, R. M., & Krams, R. (2015). Mammalian synthetic biology: Emerging medical applications. Journal of the Royal Society, Interface, 12(106), 20141000.

    Article  Google Scholar 

  • Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T. S., Cantor, C. R., et al. (2004). Programmable cells: Interfacing natural and engineered gene networks. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8414–8419.

    Article  Google Scholar 

  • König, H., Frank, D., Heil, R., & Coenen, C. (2013). Synthetic genomics and synthetic biology applications between hopes and concerns. Current Genomics, 14(1), 11–24.

    Google Scholar 

  • Maienschein, J., & Maienschein, J. (2009). Whose view of life? Embryos, cloning, and stem cells. Cambridge: Harvard University Press.

    Google Scholar 

  • Maienschein, J., Sunderland, M., Ankeny, R. A., & Robert, J. S. (2008). The ethos and ethics of translational research. The American Journal of Bioethics, 8(3), 43–51.

    Article  Google Scholar 

  • Morin, K. (2008). Translational research: A new social contract that still leaves out public health? The American Journal of Bioethics, 8(3), 62–64.

    Article  Google Scholar 

  • Morris, Z. S., Wooding, S., & Grant, J. (2011). The answer is 17 years, what is the question: Understanding time lags in translational research. Journal of the Royal Society of Medicine, 104(12), 510–520.

    Article  Google Scholar 

  • Pober, Jordan S., Neuhauser, Crystal S., & Pober, J. M. (2001). Obstacles facing translational research in academic medical centers. The FASEB Journal, 15, 2303–2313.

    Article  Google Scholar 

  • Purnick, P. E., & Weiss, R. (2009). The second wave of synthetic biology: From modules to systems. Nature Reviews Molecular Cell Biology, 10(6), 410–422.

    Article  Google Scholar 

  • Redford, K. H., Adams, W., & Mace, G. M. (2013). Synthetic biology and conservation of nature: Wicked problems and wicked solutions. PLoS Biology, 11(4), e1001530.

    Article  Google Scholar 

  • Reis, S. E., Berglund, L., Bernard, G. R., Califf, R. M., FitzGerald, G. A., & Johnson, P. C. (2010). Reengineering the national clinical and translational research enterprise: The strategic plan of the national clinical and translational science awards consortium. Academic Medicine: Journal of the Association of American Medical Colleges, 85(3), 463.

    Article  Google Scholar 

  • Resnik, D. (1994). Debunking the slippery slope argument against human germ-line gene therapy. Journal of Medicine and Philosophy, 19(1), 23–40.

    Article  Google Scholar 

  • Ross, W. D. (1930). The right and the good. Oxford: The Clarendon Press.

    Google Scholar 

  • Rössger, K., Charpin El Hamri, G., & Fussenegger, M. (2013). Reward-based hypertension control by a synthetic brain–dopamine interface. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18150–18155.

    Article  Google Scholar 

  • Sands, G. J., & Means, P. A. (2007). Ethical and legal issues in the conduct of cancer clinical trials. Cancer clinical trials: Proactive strategies (pp. 219–229). Berlin: Springer.

    Book  Google Scholar 

  • Savulescu, J. (2001). Harm, ethics committees and the gene therapy death. Journal of Medical Ethics, 27(3), 148–150.

    Article  Google Scholar 

  • Scarff, L. (June 15 2013). iCancer hits its goal raising £2 million. Retrieved 16/03/2016, from http://icancer.org.uk/icancer-hits-its-goal-raising-2million/.

  • Schmid, F. (2010). “Molecular prosthesis against gout.” Retrieved 30/03/2016, from http://www.ethlife.ethz.ch/archive_articles/100329_fussenegger_paper_fs/index_EN.

  • Shao, J., Xue Shuai, Yu., Yuanhuan, Guiling, Yu., Xueping, Yang, Bai, Yu., Sucheng, Zhu, et al. (2017). Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Science Translational Medicine, 9(387), eaal2298.

    Article  Google Scholar 

  • Shih, J. J., Krusienski, D. J., & Wolpaw, J. R. (2012). Brain–computer interfaces in medicine. Mayo Clinic Proceedings, 87(3), 268–279.

    Article  Google Scholar 

  • Silber, B. M. (2010). Driving drug discovery: The fundamental role of academic labs. Science Translational Medicine, 2(30), 30cm16.

    Article  Google Scholar 

  • Sofaer, N., & Eyal, N. (2010). The diverse ethics of translational research. The American Journal of Bioethics, 10(8), 19–30.

    Article  Google Scholar 

  • Sugarman, J., & McKenna, W. G. (2003). Ethical hurdles for translational research. Radiation Research, 160(1), 1–4.

    Article  Google Scholar 

  • Sung, N. S. (2003). Central challenges facing the national clinical research enterprise. JAMA, 289(10), 1278.

    Article  Google Scholar 

  • Thomas, J. (2013). Why synthetic artemisinin is still a bad idea—A response to rob carlson. from http://www.etcgroup.org/content/why-synthetic-artemisinin-still-bad-idea-response-rob-carlson.

  • Trochim, W., Kane, C., Graham, M. J., & Pincus, H. A. (2011). Evaluating translational research: A process marker model. Clinical and Translational Science, 4(3), 153–162.

    Article  Google Scholar 

  • Tufts Center for the Study of Drug Development. (18 Nov 2014). Cost to develop and win marketing approval for a new drug is $2.6 billion. Retrieved 11/03/2016, from http://csdd.tufts.edu/news/complete_story/pr_tufts_csdd_2014_cost_study.

  • US Department of Health and Human Services Food and Drug Administration (2004). Innovation or stagnation: Challenge and opportunity on the critical path to new medical products.

  • US Department of Health and Human Services Food and Drug Administration (2006). Guidance for industry, investigators, and reviewers exploratory IND studies.

  • US Food and Drug Administration. (2004). FDA’s critical path initiative. Retrieved 03.05.2017, 2017.

  • Van Erp, J. B. F., Lotte, F., & Tangermann, M. (2012). Brain–computer interfaces: Beyond medical applications. IEEE, 45(4), 26–34.

    Google Scholar 

  • Westfall, J. M., Mold, J., & Fagnan, L. (2007). Practice-based research—“Blue highways” on the NIH roadmap. JAMA, 297(4), 403–406.

    Article  Google Scholar 

  • World Health Organization. (2004). The world medicines situation. Retrieved 17/03/2016, from http://apps.who.int/medicinedocs/en/d/Js6160e/.

  • Xie, M., Ye, H., Wang, H., Hamri, G. C.-E., Lormeau, C., Saxena, P., et al. (2016). β-cell–mimetic designer cells provide closed-loop glycemic control. Science, 354(6317), 1296–1301.

    Article  Google Scholar 

  • Zerhouni, E. (2003). The NIH roadmap. Science, 302(3), 63–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Folcher.

Ethics declarations

Funding

This work was supported by grant No. 137194 of the Swiss National Science Foundation.

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari Feidt, R., Ienca, M., Elger, B.S. et al. Synthetic Biology and the Translational Imperative. Sci Eng Ethics 25, 33–52 (2019). https://doi.org/10.1007/s11948-017-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11948-017-0011-3

Keywords

Navigation