Skip to main content

Advertisement

Log in

Clinical Diagnosis Based on Bayesian Classification of Functional Magnetic-Resonance Data

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We describe a method for classifying subjects based on functional magnetic-resonance (fMR) data, using a method combining a Bayesian-network classifier with inverse-tree structure (BNCIT), and ensemble learning. The central challenge is to generate a classifier from a small sample of high-dimensional data. The principal strengths of our method include the nonparametric multivariate Bayesian-network representation, and joint performance of feature selection and classification. Preliminary results indicate that this method can detect regions characterizing group differences, and can, on the basis of activation levels in these regions, accurately classify new subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Binder, J., Koller, D., Russel, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29, 213–244.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 532.

    Article  Google Scholar 

  • Buckner, R. L., Snyder, A. Z., Sanders, A. L., Raichle, M. E., & Morris, J. C. (2000). Functional brain imaging of young, nondemented, and demented older adults. Journal of Cognitive Neuroscience Supplement, 12(2), 24–34.

    Article  Google Scholar 

  • Casey, B. J., Cohen, J. D., OCraven, K., Davidson, R. J., Irwin, W., Nelson, C. A., et al. (1998). Reproducibility of fMRI results across four institutions using a spatial working memory task. NeuroImage, 8(3), 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R., & Herskovits, E. H. (2005a). A Bayesian network classifier with inverse tree structure for voxelwise magnetic resonance image analysis. In Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (pp. 4–12). New York, NY, USA.

  • Chen, R., & Herskovits, E. H. (2005b). Graphical-model based morphometric analysis. IEEE Transaction on Medical Imaging, 24(10), 1237–1248.

    Article  Google Scholar 

  • Chen, R., & Herskovits, E. H. (2007). Graphical-model-based multivariate analysis of functional magnetic resonance data. NeuroImage, 35, 635–647.

    Article  PubMed  Google Scholar 

  • Cheng, J., & Greiner, R. (1999). Comparing Bayesian network classifiers. In Proceedings of UAI-99 (pp. 101–108).

  • Cooper, G.F., & Herskovits, E. H. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.

    Google Scholar 

  • Esposito, M. D., Zarahn, E., Aguirre, G. K., & Rypma, B. (1999). The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. NeuroImage, 10(1), 614.

    Article  Google Scholar 

  • Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. In IEEE-Nuclear Science Symposium and Medical Imaging Conference (pp. 1813–1817).

  • Ford, J., Farid, H., Makedon, F., Flashman, L. A., McAllister, T. W., Megalooikonomou, V., et al. (2003). Patient classification from fMRI brain activation maps. In Sixth International Conference on MICCAI.

  • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In International Conference on Machine Learning (pp. 148–156).

  • Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131–163.

    Article  Google Scholar 

  • Friston, K. J. (2004). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.

    Article  Google Scholar 

  • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modeling. Neuroimage, 1273–1302.

  • Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197–243.

    Google Scholar 

  • Herskovits, E. H. (1991). Computer-based probabilistic-network construction. PhD thesis, Stanford University.

  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324.

    Article  Google Scholar 

  • Kohler, S., McIntosh, A. R., Moscovitch, M., & Winocur, G. (1998). Functional interactions between the medial temporal lobes and posterior neocortex related to episodic memory retrieval. Cerebral Cortex, 8, 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Koller, D., & Sahami, M. (1996). Towards optimal feature selection. In Proceedings of the 13th International Conference on Machine Learning (pp. 284–292).

  • McIntosh, A. R., Grady, C. L., Ungerleider, L. G., Haxby, J. V., Rapoport, S. I., & Horwitz, B. (1994). Network analysis of cortical visual pathways mapped with PET. Journal of Neuroscience, 14(2), 655–666.

    PubMed  CAS  Google Scholar 

  • Morris, J. C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414.

    PubMed  CAS  Google Scholar 

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann.

  • Statistical Parametric Mapping. (2005). http://www.fil.ion.ucl.ac.uk/spm/.

  • Tegeler, C., Strother, S. C., Anderson, J. R., & Kim, S. G. (1999). Reproducibility of BOLD-based functional MRI obtained at 4T. Human Brain Mapping, 7(4), 267–283.

    Article  PubMed  CAS  Google Scholar 

  • Thiesson, B. (1995). Accelerated quantification of Bayesian networks with incomplete data. In Proceedings of the First International Conference on Knowledge Discovery and Data Mining (pp. 306–311). AAAI Press.

  • Zhang, L., Samaras, D., Tomasi, D., Volkow, N., & Goldstein, R. (2005). Machine learning for clinical diagnosis from functional magnetic resonance imaging. In IEEE Proceedings of CVPR (pp. 1211–1217).

Download references

Acknowledgements

This work was supported by The Human Brain Project, National Institutes of Health grant R01 AG13743, which is funded by the National Institute of Aging, the National Institute of Mental Health, and the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Herskovits, E.H. Clinical Diagnosis Based on Bayesian Classification of Functional Magnetic-Resonance Data. Neuroinform 5, 178–188 (2007). https://doi.org/10.1007/s12021-007-0007-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-007-0007-2

Keywords

Navigation