Skip to main content

Advertisement

Log in

Automatic Segmentation of the Human Brain Ventricles from MR Images by Knowledge-Based Region Growing and Trimming

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Automatic segmentation of the human brain ventricular system from MR images is useful in studies of brain anatomy and its diseases. Existing intensity-based segmentation methods are adaptive to large shape and size variations of the ventricular system, but may leak to the non-ventricular regions due to the non-homogeneity, noise and partial volume effect in the images. Deformable model-based methods are more robust to noise and alleviate the leakage problem, but may generate wrong results when the shape or size of the ventricle to be segmented in the images has a large difference in comparison to its model. In this paper, we propose a knowledge-based region growing and trimming approach where: (1) a model of a ventricular system is used to define regions of interest (ROI) for the four ventricles (i.e., left, right, third and fourth); (2) to segment a ventricle in its ROI, a region growing procedure is first applied to obtain a connected region that contains the ventricle, and (3) a region trimming procedure is then employed to trim the non-ventricle regions. A hysteretic thresholding is developed for the region growing procedure to cope with the partial volume effect and minimize non-ventricular regions. The domain knowledge on the shape and intensity features of the ventricular system is used for the region trimming procedure. Due to the joint use of the model-based and intensity-based approaches, our method is robust to noise and large shape and size variations. Experiments on 18 simulated and 58 clinical MR images show that the proposed approach is able to segment the ventricular system accurately with the dice similarity coefficient ranging from 91% to 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alegret, M., Junqué, C., Pueyo, R., Valldeoriola, F., Vendrell, P., Tolosa, E., et al. (2001). MRI atrophy parameters related to cognitive and motor impairment in Parkinson’s disease. Neurologia (Barcelona, Spain), 16(2), 63–69.

    CAS  Google Scholar 

  • Ames, D., & Chin, E. (1997). Neuroimaging and the psychiatry of late life. Cambridge: Cambridge University Press.

    Google Scholar 

  • Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59(2), 175–183.

    PubMed  CAS  Google Scholar 

  • Baare, W. F. C., Van Oel, C. J., Hulshoff Pol, H. E., Schnack, H. G., Durston, S., Sitskoorn, M. M., et al. (2001). Volumes of brain structures in twins discordant for schizophrenia. Archives of General Psychiatry, 58, 33–40. doi:10.1001/archpsyc.58.1.33.

    Article  PubMed  CAS  Google Scholar 

  • Baillard, C., Hellier, P., & Barillot, C. (2000). Segmentation of 3D brain structures using level sets and dense registration. IEEE Workshop Math. Methods Biomed. Image Anal., pp. 94–101.

  • Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. doi:10.1109/34.121791.

    Article  Google Scholar 

  • Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum.

    Google Scholar 

  • Brandt, M. E., Bohan, T. P., Kramer, L. A., & Fletcher, J. M. (1994). Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. Computerized Medical Imaging and Graphics, 18(1), 25–34. doi:10.1016/0895-6111(94)90058-2.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, P. F., Dean, D., Bookstein, F. L., et al. (1999). Three-dimensional magnetic resonance-based morphometric and ventricular dysmorphology in schizophrenia. Biological Psychiatry, 45, 62–67. doi:10.1016/S0006-3223(98)00067-5.

    Article  PubMed  CAS  Google Scholar 

  • Held, K., Kops, E. R., & Krause, B. J. (1997). Markov random field segmentation of brain MR images. IEEE Transactions on Medical Imaging, 16(6), 876–886. doi:10.1109/42.650883.

    Article  Google Scholar 

  • Holden, M., Schnable, J. A., & Hill, D. L. G. (2001). Quantifying small changes in brain ventricular volume using non-rigid registration. MICCAI, pp. 49–56.

  • Hou, Z., Huang, S., Hu, Q., & Nowinski, W. L. (2006). A fast and automatic method to correct intensity inhomogeneity in MR brain images. MICCAI, 2006, 324–331.

    Google Scholar 

  • Hulshoff Pol, H. E., Hoek, H. W., Susser, E., Brown, A. S., Dingemans, A., Schnack, H. G., et al. (2000). Prenatal exposure to famine and brain morphology in schizophrenia. The American Journal of Psychiatry, 157, 1170–1172. doi:10.1176/appi.ajp.157.7.1170.

    Article  PubMed  CAS  Google Scholar 

  • Kaus, M. R., Warfield, S. K., Nabavi, A., Black, P. M., Jolesz, F. A., & Kikinis, R. (2001). Automated segmentation of MR images of brain tumors. Radiology, 218, 586–591.

    PubMed  CAS  Google Scholar 

  • Liu, L., & Sclaroff, S. (2004). Deformable mode-guided region split and merge of image regions. Image and Vision Computing, 22(4), 343–354. doi:10.1016/j.imavis.2003.11.006.

    Article  Google Scholar 

  • Liu, J., & Nowinski, W. L. (2006). A hybrid approach to shape-based interpolation of stereotactic atlases of the human brain. Neuroinformatics, 4(2), 177–198. doi:10.1385/NI:4:2:177.

    Article  PubMed  Google Scholar 

  • Liu, J., Huang, S., Aziz, A., & Nowinski, W. L. (2007). Three dimensional digital atlas of the orbit constructed from multi-modal radiological images. International Journal of Computer Assisted Radiology and Surgery, 1(5), 275–283. doi:10.1007/s11548-006-0063-3.

    Article  Google Scholar 

  • Liu, J., Huang, S., & Nowinski, W. L. (2008a). A hybrid approach for segmentation of anatomic structures in medical images. International Journal of Computer Assisted Radiology and Surgery, 3(3–4), 213–219. doi:10.1007/s11548-008-0229-2.

    Article  Google Scholar 

  • Liu, J., Gao, W., Huang, S., & Nowinski, W. L. (2008b). A model-based, semi-global segmentation approach for automatic 3D point landmark localization in neuroimages. IEEE Transactions on Medical Imaging, 27(8), 1034–1044. doi:10.1109/TMI.2008.915684.

    Article  PubMed  Google Scholar 

  • Mangin, J. F., Frouin, V., Bloch, I., Regis, J., & Lopez-Krahe, J. (1995). From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision, 5, 297–318. doi:10.1007/BF01250286.

    Article  Google Scholar 

  • McAlonan, G. M., Cheung, V., Suckling, J., Lam, G. Y., Tai, K. S., Yip, L., et al. (2005). Mapping the brain in autism: A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain, 128(2), 268–276. doi:10.1093/brain/awh332.

    Article  PubMed  Google Scholar 

  • Nestor, S. M., Rupsingh, R., Borrie, M., Smith, M., Accomazzi, V., Wells, J. L., et al. (2008). Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain, 131(9), 2443–2454. doi:10.1093/brain/awn146.

    Article  PubMed  Google Scholar 

  • Newton, T. H., & Potts, D. G. (1978). Radiology of the skull and brain: Cisterns and ventricles, vol. 4 pp. 3494–3537. New York: Great Neck.

    Google Scholar 

  • Nowinski, W. L., & Thirunavuukarasuu, A. (2004). The Cerefy clinic brain atlas on CD-ROM. New York: Thieme.

    Google Scholar 

  • Nowinski W. L., Xia Y., Aziz A., & Hu, Q. (2003) Method and apparatus for extracting the cerebral ventricular system from images. PCT patent application (WO2004/0077359 published on 10 Sep. 2004, SG patent grant no. 114360 on 30 Nov. 2007).

  • Nowinski, W. L., Qian, G. Y., Hu, Q., Bhanuprakash, K. N., Ivanov, N., & Huang, S. (2005). Fast and automatic interpretation of normal morphological brain scans by using an atlas with non-linear warping. RSNA, 2005, 857.

    Google Scholar 

  • Nowinski, W. L., Qian, G. Y., Bhanu Prakash, K. N., Thirunavuu-karasuu, A., Hu, Q., Ivanov, N., et al. (2006). Analysis of ischemic stroke MR images by means of brain atlases of anatomy and blood supply territories. Academic Radiology, 13(8), 1025–1034. doi:10.1016/j.acra.2006.05.009.

    Article  PubMed  Google Scholar 

  • Papiol, S., Molina, V., Desco, M., Rosa, A., Reig, S., Gispert, J. D., et al. (2005). Ventricular enlargement in schizophrenia is associated with a genetic polymorphism at the interleukin-1 receptor antagonist gene. NeuroImage, 27(4), 1002–1006. doi:10.1016/j.neuroimage.2005.05.035.

    Article  PubMed  Google Scholar 

  • Pitiot, A., Delingette, H., Thompson, P. M., & Ayache, N. (2004). Expert knowledge-guided segmentation system from brain MRI. NeuroImage, 23, s85–s96. doi:10.1016/j.neuroimage.2004.07.040.

    Article  PubMed  Google Scholar 

  • Rais, M., Cahn, W., Van, N., Schnack, H., Caspers, E., Hulshoff, H., et al. (2008). Excessive brain volume loss over time in cannabis-using first-episode schizophrenia patients. The American Journal of Psychiatry, 165(4), 416–419. doi:10.1176/appi.ajp.2007.07071110.

    Article  Google Scholar 

  • Reddick, W. E., Glass, J. O., Cook, E. N., Elkin, T. D., & Deaton, R. J. (1997). Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Transactions on Medical Imaging, 16(6), 911–918. doi:10.1109/42.650887.

    Article  PubMed  CAS  Google Scholar 

  • Reig, S., Penedo, M., Gispert, J. D., Pascau, J., Sánchez-González, J., García-Barreno, P., et al. (2007). Impact of ventricular enlargement on the measurement of metabolic activity in spatially normalized PET. NeuroImage, 35(2), 748–758. doi:10.1016/j.neuroimage.2006.12.015.

    Article  PubMed  CAS  Google Scholar 

  • Schnack, H. G., Hulshoff, P. H. E., Baare, W. F. C., Viergever, M. A., & Kahn, R. S. (2001). Automatic segmentation of the ventricular system from MR images of the human brain. NeuroImage, 14(1), 95–104. doi:10.1006/nimg.2001.0800.

    Article  PubMed  CAS  Google Scholar 

  • Sclaroff, S., & Liu, L. (2001). Deformable shape detection and description via model-based region grouping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(5), 475–489. doi:10.1109/34.922706.

    Article  Google Scholar 

  • Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A., & Leahy, R. M. (2001). Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13, 856–876. doi:10.1006/nimg.2000.0730.

    Article  PubMed  CAS  Google Scholar 

  • Shen, D., Herskovits, E. H., & Davatzikos, C. (2001). An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structure. IEEE Transactions on Medical Imaging, 20(4), 257–270. doi:10.1109/42.921475.

    Article  PubMed  CAS  Google Scholar 

  • Soares, J. C., & Mann, J. J. (1997). The anatomy of mood disorders—Review of structural neuroimaging studies. Biological Psychiatry, 41, 86–106. doi:10.1016/S0006-3223(96)00006-6.

    Article  PubMed  CAS  Google Scholar 

  • Sonka, M., Tadikonda, S. K., & Collins, S. M. (1996). Knowledge-based interpretation of MR brain images. IEEE Transactions on Medical Imaging, 15(4), 443–452. doi:10.1109/42.511748.

    Article  PubMed  CAS  Google Scholar 

  • Staal, W. G., Hulshoff, H. E., Schnack, H. G., Hoogendoorn, M. L. C., Jellema, K., & Kahn, R. S. (2000). Structural brain abnormalities in patients with schizophrenia and their healthy siblings. The American Journal of Psychiatry, 157, 416–421. doi:10.1176/appi.ajp.157.3.416.

    Article  PubMed  CAS  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotactic atlas of the human brain. Stuttgart: Thieme.

    Google Scholar 

  • Tang, H., Wu, E. X., Ma, Q., Gallagher, Y., Perera, G. M., & Zhuang, T. (2000). MRI brain image segmentation by multi-resolution edge detection and region selection. Computerized Medical Imaging and Graphics, 24, 349–357. doi:10.1016/S0895-6111(00)00037-9.

    Article  PubMed  CAS  Google Scholar 

  • Wells, W., Grimson, W., Kikinis, R., & Jolesz, F. (1996). Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging, 15(4), 429–442. doi:10.1109/42.511747.

    Article  PubMed  CAS  Google Scholar 

  • Worth, A. J., Makris, N., Patti, M. R., Goodman, J. M., Hoge, E. A., Caviness, V. S., et al. (1998). Precise segmentation of the lateral ventricles and caudate nucleus in MR brain images using anatomically driven histograms. IEEE Transactions on Medical Imaging, 17(2), 303–310. doi:10.1109/42.700743.

    Article  PubMed  CAS  Google Scholar 

  • Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W. R., David, A. S., Murry, R. M., & Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. The American Journal of Psychiatry, 157, 16–25.

    PubMed  CAS  Google Scholar 

  • Xia, Y., Hu, Q., Aziz, A., & Nowinski, W. L. (2004). A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages. NeuroImage, 21(1), 269–282. doi:10.1016/j.neuroimage.2003.09.029.

    Article  PubMed  Google Scholar 

  • Yan, C., Song, N., & Zhang, T. (2003). Local entropy-based transition region extraction and thresholding. Pattern Recognition Letters, 24, 2935–2941. doi:10.1016/S0167-8655(03)00154-5.

    Article  Google Scholar 

  • Zhang, Y. J., & Gerbrands, J. J. (1991). Transition region determination based thresholding. Pattern Recognition Letters, 12, 13–23. doi:10.1016/0167-8655(91)90023-F.

    Article  CAS  Google Scholar 

  • Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through hidden Markov random field model and the expectation maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57. doi:10.1109/42.906424.

    Article  PubMed  CAS  Google Scholar 

  • Zou, K. H., Warfield, S. K., Bharatha, A., Haker, S. J., Wells III, W. M., & Jolesz, F. A. (2004). Validation of image segmentation quality index. Academic Radiology, 11(2), 178–189. doi:10.1016/S1076-6332(03)00671-8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding for this research by the Biomedical Research Council, Agency for Science, Technology and Research, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Huang, S. & Nowinski, W.L. Automatic Segmentation of the Human Brain Ventricles from MR Images by Knowledge-Based Region Growing and Trimming. Neuroinform 7, 131–146 (2009). https://doi.org/10.1007/s12021-009-9046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-009-9046-1

Keywords

Navigation