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Abstract
The variations in dendritic branch morphology and spine density provide insightful information about
the brain function and possible treatment to neurodegenerative disease, for example investigating
structural plasticity during the course of Alzheimer's disease. Most automated image processing
methods aiming at analyzing these problems are developed for in vitro data. However, in vivo neuron
images provide real time information and direct observation of the dynamics of a disease process in
a live animal model. This paper presents an automated approach for detecting spines and tracking
spine evolution over time with in vivo image data in an animal model of Alzheimer's disease. We
propose an automated pipeline starting with curvilinear structure detection to determine the medial
axis of the dendritic backbone and spines connected to the backbone. We, then, propose the adaptive
local binary fitting (aLBF) energy level set model to accurately locate the boundary of dendritic
structures using the central line of curvilinear structure as initialization. To track the growth or loss
of spines, we present a maximum likelihood based technique to find the graph homomorphism
between two image graph structures at different time points. We employ dynamic programming to
search for the optimum solution. The pipeline enables us to extract dynamically changing information
from real time in vivo data. We validate our proposed approach by comparing with manual results
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generated by neurologists. In addition, we discuss the performance of 3D based segmentation and
conclude that our method is more accurate in identifying weak spines. Experiments show that our
approach can quickly and accurately detect and quantify spines of in vivo neuron images and is able
to identify spine elimination and formation.
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Introduction
The analysis of dendritic spine morphology is an important endeavor of neurobiology research
since over 90% of excitatory synapses in the brain occur on dendritic spines and protrusion
(Peters et al. 1991). Studies of dendritic structures are traditionally done in in vitro cell assays.
Recent publications indicate that the morphological characteristics of neuronal structure
viewed from in vitro microscopy are closely related to neural functions such as learning,
memory and attention (Segal 2005; Bourne and Harris 2008). In a live animal model, in vivo
imaging describes the actual micro-environment of living organisms under observation as
opposed to in vitro assays. In addition, the dynamics of disease processes and treatments can
be directly observed, which reveal characteristics undetectable in vitro. This motivates studies
of disease mechanisms and therapeutic effects on in vivo bioassays and imaging of disease
models. Although in vivo image data are studied in some pathophysiology research and
treatment hypothesis of neuron diseases, we rarely find literature that focus on the automated
processing of in vivo image data.

The study reported here aims to automate neuron image analysis of dendritic images of live
brain. The dataset employed (courtesy of Drs Tara Spires-Jones and Bradley Hyman) is from
an animal model of Alzheimer's disease (AD) that develops senile plaques and has plaque-
associated dendritic spine loss due to impaired spine stability near plaques (Spires et al.
2005; Spires-Jones et al. 2007). We intend to follow dendritic spines over time to identify
whether they are stable, eliminated, or if new spines form providing readout of structural
plasticity that could be used to understand the pathophysiology of AD and to investigate
therapies, such as antibody treatment. In vivo images allow tracking of morphological changes
of the spines before and after treatment. These image data which are collected from a living
animal model enable observation of dendritic spine dynamics. We collect neuron images from
a number of time points, assess the spine number and view spine formation and elimination
along the same dendrite segments. The challenge is to automate the spine quantification and
tracking of in vivo neuron image analysis in a robust and accurate manner.

Koh et al. (2001, 2002),Mosaliganti et al. (2006) and Yang et al. (2006) presented various ways
to perform image pre-processing, segmentation and tracking of neuron images. However, their
images were captured in vitro, where the data was acquired in a controlled environment outside
a living organism. Non-invasive real time imaging, in vivo, takes place inside a live organism
and allows scientists to witness the process in real-time without distortion which occurs when
removed from a live animal during in vitro imaging. To date we found only few works (Mizrahi
et al. 2006) on in vivo image analysis and automatic processing due to the poor quality of in
vivo image data as compared to in vitro images. The pipeline for the in vitro image data analysis
in Koh et al. (2001) and Mosaliganti et al. (2006) started with thresholding-based segmentation
to create binary images. Then a morphological thinning operator was applied on binary images
to acquire central lines of dendritic structures and a line structure filtering was applied to get
the backbone, detached spines and branch points. Cheng et al. (2007) adopted similar strategies
but defined more elaborate criteria such as signal to noise ratio (SNR) to differentiate spine
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structures from noise, which performed slightly better than the method in Koh et al. (2001).
Otsu's thresholding (Otsu 1979) adopted in above papers missed weak spines because the global
thresholding based method was unable to solve image inhomogeneity. Marker-controlled
watershed is another approach for biomedical image segmentation. But it is very difficult to
set the appropriate markers for neuron dendrite images. These image segmentation techniques
applied to in vitro images do not work well on in vivo images because in vivo image data are
very noisy, blurred and inhomogeneous.

Matching spines for different time points is another task which assists in estimating whether
the treatment is effective or not. In Al-Kofahi et al. (2002), there was an assumption of constant
number of spines at different times. However in our studies, we do not have any prior
knowledge on the number of spines. In addition, the literature on cell and other structure
tracking methods usually employed Kalman filtering and mean-shift methods (Yang et al.
2006), both of which required a long time sequence. In our case, there are only two or three
time points available. The tracking methods requiring long sequence of time points are not
appropriate.

This paper addresses a new pipeline for automated segmentation and tracking of spines from
3D in vivo optical images of neurons. Figure 1 illustrates the whole process of our proposed
strategy. Since it is difficult to directly segment foreground spine structures due to poor quality
of in vivo data, we directly detect central lines of dendritic backbones and spines. Then, a
modified Local Binary Fitting (LBF) energy level set formulation with adaptive variances for
the Gaussian kernel of each pixel is proposed to segment the dendritic spines using the central
line as level set initialization. This method can detect weak spines and successfully avoid
uncorrelated structures. We, then, extract morphological features about the spines, such as area
and length, which we utilize later in spine tracking. Using the central lines of the dendritic
structure and shape information of spines, we propose a spine tracking method based on
maximum likelihood estimation (MLE, Kay, 1993) and dynamic programming (DP, Bertsekas,
2000). Our proposed approach is able to identify changes in spine number caused by spine
formation or elimination. The tracking is based on properties of branch points on the central
lines as well as their corresponding spine morphological features. A probabilistic model and
graph homomorphism are employed to match the spines under the framework of MLE and DP.

The paper is organized as follows. Section 2 describes our approach in detail. Here, we explain
acquisition of images, extraction of dendritic structure central lines, detection of spines and
dendritic boundaries, extraction of branch point attributes and tracking of spines. The
experimental results and validation are presented in the Experimental Results and Validation,
Section 3. Algorithm-based issues and scientific generalizations are discussed in Discussion,
Section 4. We conclude our work in Conclusion, Section 5.

Materials and Methods
In this section, we first describe how we acquire and pre-process our neuron images. Then we
present each step for spine detection and tracking of these images in detail. Figure 1 displays
a flow chart of our approach. We start with curvilinear structure detection to get the essential
information about points and lines. Then spine boundaries are detected by the proposed aLBF
level set model. We extract shape information of the spines, which finally allows us to match
spines at different time points and to model the dynamics of the dendritic structures. We also
briefly describe a 3D level set method of spine segmentation as a comparison with our proposed
spine extraction method at the end of this section.
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Image Acquisition
The image data were collected at the MassGeneral Institute for Neurodegenerative Disease,
Massachusetts General Hospital by Drs Tara Spires-Jones and Bradley Hyman. Anesthetized
mice with a cranial window were positioned on a multi-photon microscope. Surgical details
are provided in Spires et al. (2005). Green fluorescent dextrans were injected into primary
somatosensory cortex. Emitted light in the ranges of 380 to 480 nm, 500 to 540 nm, and 560
to 650 nm was collected by three photomultiplier tubes. To avoid photo damage, lowest laser
power that could detect all spines was used for acquisition. Z-stack images were collected with
an inter-slice interval of 0.5 μm and each stack contained 15–20 images. The dendrites were
reimaged under the same conditions 1 h later. Dendrites were analyzed in green channel images.
The xy resolution of the image data was 0.06 μm/pixel. The image sizes are 512 by 512.

Image Pre-processing
In vivo images exhibit noise, blurs and sharp variations in intensity. Image pre-processing is
therefore necessary before further analysis. Our pre-processing involves the following steps:
We first deblur the 3D image data, project the 3D stack of each time point into 2D, and then
register 2D images of different time points in the same data set.

Deblurring—Because of the relative movement between different frames in the same stack
and corruption by noise, the projection of the original image is blurred. We deblur 3D images
by deconvolving with a Gibson's point spread function (PSF, Gibson and Lanni 1991) to correct
artifacts introduced by breathing and heartbeat. In our data, main structures appear at the middle
of the stacks. Gibson's PSF considers the non-stationarity of the PSF and asymmetry focal
plane. We use this property of Gibson's PSF to obtain optimum deblurring results at the middle
of the stack.

Projection—After deblurring, we use maximum intensity projection (MIP) to project 3D
images into 2D, which collects the maximum intensity along z-stack.

Registration—Figure 2a displays an overlapped image of two time points prior to
registration. Red pixels represent one time point and green pixels represent the other. The
yellow pixels in Fig. 2b stand for the overlap of two time points. We observe considerable
movement and small deformation between two time points, therefore image registration is
necessary. We apply the Iterative Closest Point (ICP) algorithm (Besl and McKay 1992) to
align the skeletons. ICP finds the closest point on a geometric entity, which is the foreground
object (dendritic structures in our case) in an image to a given point. The ICP algorithm always
converges monotonically to the nearest local minimum of a mean-square distance metric, and
the rate of convergence is fast (Besl and McKay, 1992). Here, we selecte three key points
marked by different signs in Fig. 2a on the dendritic structure at each time point as the control
points to guide the registration. Figure 2b shows an overlapping view of both time points with
ICP registration applied. Since no severe deformations are observed, we find it sufficient to
consider only rigid transformations with the ICP algorithm.

Backbone and Spine Detection
In our algorithm, it is important to first identify the following key structures: backbone, medial
axis and branch points. A backbone is the centerline of the dendrite structure. A medial axis is
the connected centerline of spines and dendrite structures. A branch point is a pixel which has
no less than three branches. In the following, we present our approach to backbone and spine
detection: curvilinear structure detection, followed by line linking and branch point detection.
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Curvilinear Structure Detection—A curvilinear structure is a line or a curve with some
width, such as dendritic structures in the neuron image and roads in aerial images (Carsten,
1998; Jang and Hong, 2002; Xiong et al. 2006; Zhang et al. 2007). A desired curvilinear
structure detector should be able to robustly distinguish lines with a certain range of width and
high curvature. In our problem, we would like to precisely detect the central lines of the neuron
structures. However, in Carsten (1998) there was a primary restriction on line width because
the method were designed to find narrow and long structures with small variation of widths
along the line direction. We adopt the strategy described in Xiong et al. (2006) and Zhang et
al. (2007) which allows an adaptive width. The steps are as follows:

1. Local point detection, direction estimation and linking: To detect the lines, we first
apply a Gaussian derivative kernel, which essentially smoothes (de-noises) the image
before obtaining its gradient. The variance of the Gaussian kernel should be large
enough to detect wide lines. However the thin structures or curves are blurred out. By
employing the Hessian matrix calculated for each pixel, we vary the variance of the
Gaussian kernel to find the largest eigenvalue and its corresponding eigenvector to
determine local direction of the line. The magnitude of the second derivative of the
image is considered as the strength map. The points with strengths larger than a given
threshold are identified as line points. This method overcomes the drawback of
Steger's method of a fixed line width. More importantly, our method works well for
the weak lines whose strengths are relatively small. To link the detected line points,
the user specifies two line strength thresholds for the starting and end points for a data
set. The linking starts at the points with strength values higher than upper threshold
and ends at points lower than the lower threshold. Figure 3 demonstrates the line
direction detection result. Figure 3a illustrates the relationship between the line
direction marked by the red arrow and its normal direction presented by the green
line. Figure 3b displays a magnified view of the spine. The blue points are the detected
center line points of the curvilinear structures and the cyan arrows denote normal
directions.

2. Backbone linking: As mentioned above, we classify structures into two classes:
backbone and spines. The backbone structures are detected lines with lengths larger
than a user specified threshold. It is possible that backbones are disconnected due to
noise and inhomogeneity. Therefore connection is necessary. We search for the points
which fit the predefined criteria for boundary points described in Zhang et al.
(2007) on the strength map. The boundaries are rough estimates of the line segment
positions marked as red dots in Fig. 3b. We link two backbone structures if their
estimated boundaries overlap in the eight-neighborhood area and linking radius is
smaller than the linking threshold. Here we employ the Bresenham line linking
algorithm (Bresenham 1965) to connect the backbone segments.

Figure 4a shows the line detection results of the MIP image of the R10XB data sets at time
point 1 without any post-processing. The blue lines denote the detected backbone while the
red ones indicate the spines. Ideally, according to our previous definition, the backbone should
be a smooth line without many trivial branches. However, due to attached spines to the dendrite
and the poor quality of the image, as shown in Fig. 4b, some spines are connected to the
backbone as branches. We could extract the backbone without branches by line filtering as
mentioned in Cheng et al. (2007). However, this is unnecessary because our objective is to
extract the medial axis of all the dendritic structure, including backbones and spines, then, more
significantly, to locate the backbone branch point. We will describe in the next part that, instead
of chopping off the branch, we link detached spines to the backbone.

Linking Detached Spines to the Backbone—Medial axis is a linked line structure of
detached spines and backbones. Figure 4b is the linked results of Fig. 4a, which displays the
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medial axis of the entire dendritic structure. In the part, we will explain in detail how we link
spine segments to the backbone.

We first describe how to identify a candidate end-point on the spine segment to link. For simple
cases where the spine segment has no branch, the closest end-point to the backbone is chosen
as the candidate for connecting. There are some special cases that are more complicated. The
first is that the central lines of the detached spines have more than one branch. In this case, the
end-point along the direction of the main structure would be chosen, because usually spines
do not curve sharply. Figure 5a illustrates this circumstance where branch 1 follows the true
direction. In Fig. 5 the cyan lines represent the backbone and the red line segments indicate
spines, while the yellow dots are end-points. Another case is that there are two possible
branches that are following the ‘right’ direction. As shown in Fig. 5b, branch 3 and branch 4
are both smooth extensions of the line before branching. We choose the branch with the smallest
distance from the branch end points along its direction to the backbone. As illustrated in Fig.
5b, branch 3 would be our choice since line section 33′ is shorter than 44′, which indicates
smaller distance. We formulate the previously described problem as follows:

(1)

where pi represents the end-points on the proximal-end-of-spine branch to the backbone, Vbp
and Vpi denote the direction vectors at the spine branch-point and end-point respectively. C is
a threshold which determines whether a distance condition is required for identifying the end
point. b represents the backbone. The model can be easily extended to instances with more
than two branches.

Secondly, we describe the approach to connect spines to their corresponding backbone. With
pre-computed products, we remove spine structures which are away from the backbone based
on a distance threshold. After that, the candidate end-point are connected to the backbone
according to the end-points' direction with direction vector Vp. We examine each point on the
backbone to calculate the distance and the direction vector from the backbone point to spine
end-point with direction vector Vb. By taking the inner product, we find the largest magnitude
of inner products and define the corresponding point at the backbone as a branch point for the
spine. Then we use the Bresenham line linking algorithm to connect two points to get the medial
axis of the neuron structure. In the case that there are multiple backbone segments, we avoid
cyclic structures by choosing the candidate point which has the smallest distance to the spine
end-point. We formulate the problem of locating the branch point j on the backbone for a given
spine end-point i as follows:

(2)

where Vpi denotes the direction vectors of a given end-point on the spine and Vbj represents
the direction vector of a candidate branch-point on the backbone.

Here, we would like to add one more comment on the direction of the end-points. As shown
in Fig. 3b, where cyan arrows present the normal direction, the end-point p is oriented
perpendicularly to the other line-points in the same line structure. In this instance, we use the
averaged direction vector of neighbors of the end-point. In Fig. 3b, the average of the direction
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vectors of two points in the yellow circle would be utilized as the end-point direction vector.
We summarize the above description as follows:

(3)

where Vep stands for the direction vector of the end-point and Vn is the average of the direction
vector of the neighboring points mentioned above. The threshold, which is a measure of
similarity of the endpoints' directions, is determined by experiments on several data sets.

Branch Point Detection—In this section, we describe the method for detecting branch
points on the central lines of neuron structures. There are two types of branch points on the
backbone. One is generated by attached spines and the other appears after connecting detached
spines to the backbone. Different strategies are adopted to detect two categories as follows.

A template of n-by-n matrix of 1 s is applied to the backbone to identify branch points
introduced by attached spines. Points with the largest magnitude of a template image on the
backbone are considered as branch points. If two or more points have the same value, the
neighboring information is used to choose the point with a larger value to its left or right as the
branch point. One or 2 pixel uncertainty of the branch points is acceptable because: (1) the
probabilistic model for tracking in the next section is robust to 10–20 pixel variance; (2) the
registration inaccuracy is larger than 1 pixel; (3) the neighboring attribute for tracking, such
as curvature and the direction of the branch point would not fluctuate much in a small
neighborhood.

Another kind of branch point is generated by linking detached spines to the backbone. As
described in the previous part of detached spine linking, we locate the branch point on the
backbone of its matching spine end point by finding the maximal inner product between two
vectors: Vp and Vb. The process is illustrated in Fig. 5c. The pink arrow is the direction of the
spine end point and the orange ones are the other kind described in the above paragraph. We
choose point B at the backbone as the branch point of its corresponding spine.

The central line of the dendritic structures, the branch points of spines and backbones are now
available for subsequent processing. Figures 6 and 7 respectively illustrate line detection results
of two images, which we will discuss thoroughly in the results section. We can easily measure
the spine length on the medial axis by removing the backbone (Cheng et al. 2007).

Boundary Detection with an aLBF Level Set Model
In order to obtain shape information of the spines, we need to accurately locate the boundaries
of the dendritic structures. The boundaries can provide information such as area and perimeter
which are more explicit to biologists than the medial axis.

The previous extracted medial axis provides a good approximate of dendritic structure and can
be used as an initialization for most active contour methods, such as edge based models. The
energy function of the piecewise constant (PC) model (Chan and Vese 2001) is

(4)
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where I(x) is the image domain. μ ≥ 0, υ ≥ 0, λ1 ≥ 0, λ2 ≥ 0 are fixed parameters. in(C) and out
(C) stand for regions inside and outside of the contour C. c1 and c2 are average intensities in
in(C) and out(C). Li et al. (2007) modified the model (4) to solve inhomogeneity by defining
a local binary fitting (LBF) energy function for each point given by

(5)

where I(x),λ1 and λ2 are the same parameters as those in the PC model. Kσ(x) is a Gaussian
kernel with variance σ, whose value is decreased as |x| increases. Its expression is given by (6).
f1 (x) and f2 (x) are the average intensity inside and outside the contour C and with the effect
of the local kernel Kσ(x), they are actually the average intensities near point x. The local
Gaussian kernel is defined as:

(6)

The LBF model outperforms the PC model in LBF's strength in processing inhomogeneous
images. However, we need to set λ1 and λ2 large to detect all the dendritic structures, including
weak spines with low intensities. But large λ1 and λ2 can also detect low intensity noise and
irrelevant structures. On the other hand, small λ1 and λ2 will constrain the zero level set to high
intensity regions, which tends to miss some important structures. We solve this problem by
adaptively changing σ of the Gaussian kernel while setting λ1 and λ2 large enough to detect all
the structures. To do this, we first define the following function to calculate σ for each pixel.

(7)

where x represents pixel, σx is the variance of the Gaussian kernel at each pixel, dx is the distance
between pixel and the medial axis. gx is the magnitude of the gradient at each pixel. σs is the
starting variance value of the Gaussian kernel on each pixel except for the medial axis points
whose variance is σc. We named our modified LBF model as adaptive LBF (aLBF) model.
The meaning of Eq. 7 is that when the pixel is far away from the medial axis, the image is
smoothed to avoid irrelevant structures and noise. At the same time, since gradients indicate
edges, the variance should be small enough to be sensitive to these edges. For points on the
medial axis, which is the initialization of the level set formulation, we also employ a small σ
to make sure that the weak boundaries are detected. To save calculation cost, if σx is larger
than a given threshold σmax, we set it to σmax. In this formulation, the LBF energy for each
pixel in Eq. 7 becomes:

(8)
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Figure 8 shows a comparison between LBF and aLBF segmentation results and details will be
provided in the results section. With segmented images we can calculate signal to noise ratio
(SNR) which is an important measurement of system robustness. SNR is defined as SNR =
10log10(Ps/Pn) where Ps is the power spectrum of the signal while Pn is the counterpart of
noise. Here the signal is segmented dendritic structures and noise is the background.

Extraction of Morphological Information of Spines and Branch Points
The dendritic structure information obtained so far includes medial axes, branch points and
boundaries of the dendritic structure. With this information, we can quantify some
morphological characteristics, such as spine area and attributes of branch points which include
curvatures, positions and branch directions.

When the medial axis image is overlapped with the boundary image, which is illustrated in
Fig. 9a, the medial axis passes through the spine region detected by the aLBF method. We
calculate the spine area in the following manner: (1) remove aLBF detected regions without
intersections with the medial axis and remove the isolated regions where other regions intersect
with the same branch. The result is shown in Fig. 9b; (2) extract regions that are detached from
the main structures. These are the detached spines, whose areas are calculated as areas of the
corresponding detached spines; (3) calculate attached spine areas. Since branch points located
on the backbone are available, we follow the attached spine detection method described in
Cheng et al. (2007) to identify the attached spines. The results are shown in Fig. 9d. The red
regions are the attached spines that are detected by the automated method.

Now the detached spines and attached spines are successfully quantified in spine areas. By
representing each branch point as spines, we build an attribute vector V which will be used for
spine tracking. For each branch point, six attributes are defined: the Euclidean positions xi and
yi, the curvature κi, the normalized spine area āi, and the direction information oi and ωi. We
represent each set as:

(9)

where m is the total number of branch points at each time point.

Next, we describe how to calculate the attribute vector of the i-th branch point. To simplify the
notation, we drop the ‘i’ in νi ≡ [xi, yi, κi, āi, oi, ωi] temporarily. The curvature of the i-th branch
point is given by

(10)

where the image domain is parameterized by t and x˙σ(t) = x(t) × g˙σ(t), x¨σ(t) = x(t) × g¨σ(t)

where  is the Gaussian kernel with variance σ, which is different
from the σ in the aLBF level set part. y˙σ(t) and y¨σ(t) follow similar formulations as x(t). Here
the Gaussian kernel helps smooth the image and makes the algorithm numerically computable.

We normalize the spine area as:
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(11)

where αi is the area of each spine and αmin and αmax are the largest and smallest area
respectively.

For different time steps, the backbone shape will not change dramatically, hence the curvatures
of the corresponding branch points will not fluctuate significantly and neither does the area of
the spine region. oi is the tangent value which points from the branch point to a point several
pixels away. We compute oi as follows:

(12)

where xbp and xap denote the x-axis Euclidean position of the branch point and the point several
pixels away respectively and ybp and yap are the corresponding y-axis Euclidean positions. We
usually consider positions 5 pixels away, which is equal to the line length lower threshold.
Another reason is that usually the central line of the spine does not have a sharp curvature at
the beginning of the structure. However, when two branches point to opposite directions, we
cannot differentiate these directions only with oi. Therefore we add the left or right pointed
term ωi to remove this confusion. The left or right pointed term represents the branch's relative
location to the skeleton. We denote the left-pointed branch as −1 and the right-pointed as 1.
The term is determined using a technique similar to the one we used to detect the branch point.

Spine Tracking Based on Maximum Likelihood Estimation (MLE)
We represent the dendrite structure that we have extracted at each time point as a dendrite
graph Gi(V) of a dendritic structure comprised of the branch points and their attributes. We,
then, match two dendrite graphs G1 and G2 of time points T1 and T2 by establishing the graph
homomorphism (Hell and Nesetril 2004) between two graphs under with maximum likelihood
estimation (MLE).

With dendrite graph, we translate the tracking problem to a graph homomorphism problem by
representing each image as a graph with each branch point as a vertex. A graph homomorphism
is a mapping f : V1 → V2 from the dendrite graph G1 to G2. Most of the existing methods
assume constant number of branch points. However in our problem, there exist spine formation
and elimination due to the evolution of the neuron and the occurrence of spurious branch points.
We employ MLE-based techniques to find the best homomorphism between the two graphs,
which can solve spine evolution. Let (o, e) be a pair of vertices at two time points. ν0 is a point
in data set V1 of the first image and νe is a point in the evolved data set. The objective is to find
a mapping which maximizes the posterior p((o,e)|νe = f(νo)). According to Bayes' law, we get

(13)

where p(νe = f(νo)|(o,e)) is the likelihood, p(νe = f(νo)) is the evidence and p((o,e)) is a uniform
distributed prior. Therefore, our problem reduces to finding the best e that maximizes the
likelihood, which can be expressed as follows:
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(14)

We model this problem as a 6-dimensional Gaussian distribution with a diagonal covariance
matrix because the six attributes are uncorrelated with each other. In our experiments, we
assume the diagonal terms of the covariance matrix are [10 10 0.02 20 0.05 0.001]. 10 is the
variance of the Euclidean position of the branch points which allows 10-pixel movement due
to imperfect registration and noise to guarantee the robustness. The typical curvature of the
branch points in our problem is in the range of [0.01, 0.20]. Hence we assume the variance of
the curvature is 0.02. 20 is the variance for the area. As mentioned above, the mistake that
matches a left-pointed branch to a right-pointed one is considered unacceptable, so we assumed
a small variance for the left or right pointed term. We also set the variances for the tangent
value as 0.05 and the left or right pointed term as 0.001. All these parameters are optimally
determined by experiments. The Gaussian distribution N(0,Σ) is formed as

(15)

We developed a dynamic programming (DP, Bertsekas, 2000) solution to find the best e that
maximizes the likelihood robability p(νe = f(νo)|(o,e)) for all the branch points on the two
dendritic sections. We build the DP algorithm for our problem as follows,

1. Let d(ij) be the probability of p(νj = f(νi)|(i,j)). d(ij) serves as the decision in the DP.
S(i, j) is the score for the best correspondences of the spines 1 to i in V1 with spines
1 to j in V2. The score is considered as a state in DP.

2. The equation of state is

(16)

Equation 16 expresses how we update state when a new decision arrives. The termination
condition is to find S(n, m), where n and m are the total numbers of branch points in the two
data sets.

Spine Segmentation with 3D Level Set Approach
3D image based strategies segment dendritic structure without image projection. We employ
a LoG (Laplacian of Gaussian) based level set approach (Zhou et al. 2008) to segment neuron
dendrites, attached spines as well as detached spines. We will compare 3D level set
segmentation results with our proposed projected image based strategy to demonstrate the
capability of our method in the Discussion section.

The preprocessing starts with a 3D median filter with a kernel size of 3 × 3 × 3 to remove shot
noise introduced by imaging device. Then a top-hat operator is used to correct uneven
illumination degradation and enhance the images. Considering C as a closed contour and φ as
a signed distance function which is negative for points inside C, positive outside C and zero
at C, we define the energy function as:
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(17)

where λ, α and β are weighting constants for three energy terms respectively defined as:

(18)

(19)

(20)

(21)

Let Ω denote the image domain and I be an image, E(φ) is LoG energy while L(φ) and V(φ)
denote the area of zero level set surface and volume inside zero level set surface respectively.
Gσ1 is Gaussian kernel with standard deviation σ1 and n⃗ denotes the outer normal direction of
zero level set. δ is Dirac function, H is the Heaviside function and g is a positive non-increasing
function defined as: g(∇ I) = 1/(1 + |∇(Gσ2 × I)|p), in which Gσ2 is a Gaussian kernel with
standard deviation σ2. To minimize F(φ), the Euler-Lagrange equation for φ can be written as:

(22)

The first term of Eq. 22 aligns the curve close to the zero crossings along the edge. The second
term keeps the surface of the zero level set smooth all along the evolution. The third term is a
balloon force, which acts to speed up the evolution where the image gradient is small or slow
down the evolution where the gradient is large.

Experimental Results and Validation
Results for Dendritic Structure Detection

Figures 6 and 7 show the dendritic structure detection results. Figures 6a and 7a are raw images
without processing. Figures 6b and 7b illustrate the line detection results without post-
processing. The cyan lines denote the backbone and the attached spine structures, while the
red lines represent the detached spines. There are some line segment far away from the main
dendritic structures and they are considered as noise which can be easily filtered. Figures 6c
and 7c show the dendritic structures after linking detached spines to the backbone. The manual
spine detection results are displayed in Figs. 6d and 7d.
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In Fig. 6, by comparing c and d, we could tell that using our algorithm, we can detect all the
spines marked manually by the biologist. The manual detection is performed in 3D without
knowing the automated detection results. An expert observes several neighboring slices before
marking each spine. The expert can zoom in every region during the observation. In addition
to the manually marked spines, our method detected spines marked by capital letters, which
are considered as false positives. The expert cannot confirm whether spine A is a positive one
because it is overlapped with some uncorrelated structures even in the 3D domain. For spine
B, we noticed that the expert first marked it and then deleted it based on the 3D information.

Figure 7 presents the dendritic structure detection result for the same data set at time point 2.
From the result shown in (b), we could tell that we successfully detected the central line of this
spine (Spine A in Fig. 7c). By comparing (c) with (d), we can see that our method finds all of
the spines except the one manually marked as number 6. Note that spine number 6 is parallel
to the backbone. The error appeared in the line linking process because of the parallelism.
Another false positive happened at spine B which was ignored by the expert since it was too
small.

Results for Dendritic Structure Boundary Extraction
Figure 8 shows the results of the standard LBF model and proposed modified aLBF model
using the same parameter settings. The red contours in both images depict boundaries. Here,
we set λ1 and λ2 to the smallest value that can identify the weak spines A and B marked by
yellow circles in Fig. 8a. These two spines have relatively lower average intensities than the
other spines. In Fig. 8b, with the same λ1 and λ2 setting, our method can identify spine A and
B more accurately. The accuracy is important for spine tracking. We can see that in Fig. 8a
there are more irrelevant structures and noises detected at the northwestern part than that at the
same position in Fig. 8b, as well as in some other locations. Furthermore, the boundaries
identified by aLBF were tighter and more precise than its counterparts in LBF. This desired
property is an outcome of our adaptive setting for σ. Therefore, the aLBF model outperforms
the LBF level set method in detecting weak spines.

Figure 10 displays the value of σ in the whole image domain. As mentioned above, we set the
σ as σmax if it is larger than σmax. From Fig. 10a, a 3-D view of σ, we can tell that when the
pixel is far away from the main structures, σ is set to σmax. The value of σ near the medial axis
varies according to Eq. 7. In Fig. 10, the red color denotes the large value while the blue one
represents small.

Results for Spine Tracking
In this section, we present the spine tracking results with our MLE based method. Figure 11
shows the tracking result of two time points in data set R10XB. As the cyan two-way arrows
illustrate, we find 14 pairs of the matching spines at two time points. Their branch points are
circled by green rings. Yellow squares in the left image, which present the first time point,
denote the spines for which we cannot find their evolved versions. They are considered as
eliminated spines or false detected spines of our method. On the other hand, in the right image,
the pink triangles at the second time point highlight the spine branch points without matching
spines with its previous time point, which are newly formed ones. By comparing with the
manual results, we notice that we successfully match 14 of the 17 spine pairs and locate one
disappeared spine at the first time point and one newly grown spine at the second time point.

Validation
To evaluate our proposed algorithm for dendritic backbone and spine detection, we compare
our results with manual labeling by visual inspection done by an expert. The protocol of
derivation of manual results is described in early part of this section. The validation process is
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designed as follows: we randomly select eight neuron images from a total of 14 images
available to us. Eight images are four pairs of two time point data sets. Each pair of images
was taken from different regions or different dendrites of mouse brain. For each image we
randomly select one dendrite region to lighten the burden of the manual process. We manually
label spines in each selected dendrite and use the results as the ground truth. Our proposed
algorithm is then applied to each dendrite and results are compared with the manual results.

The manual method detected 107 spines while the automated method detected 115 spines.
Among these spines, a total of 103 spines were detected by both methods; four additional spines
were detected only by the manual method and they were false negatives which we fail to
identify using the automatic method; 12 spines were detected only by the automated method
and they were found to be false positives. As mentioned above, some of the false positives are
introduced by noise and some are too small for the expert to mark. Table 1 quantitatively
summarizes the results.

Figure 12 shows manual spine labeling results for two time points in data set R10XB. The
manual labeling of the spines strictly follows the shape of the spines until the edge becomes
too weak. Figure 13 illustrates the spine length comparison between the manual and automatic
methods. From Fig. 13c we notice that in most cases, the spine lengths of the automatic method
are shorter than the manual measurement. However, a small part of the automatic results are
far larger than the manual ones because of noise and uncorrelated structures linked to the spines.
From Fig. 13a, b, respectively the CDF (Cumulative Distribution Function) comparison and
the quantile–quantile plot, we conclude that the manual and automatic results follow the same
uniform distribution. The spine areas calculated from the automated and manual method are
consistent. For attached spines, results are similar in both methods. For detached spines, manual
results are larger than automated ones because our neurologist included the area between
detached spines and dendrites. The comparison of R10XB time point 2 is illustrated by Fig.
14. KS (Kolmogorov–Smirnov) test confirms that automated and manual area measurements
are drawn from the same distribution.

To validate the tracking results, we compare our results with manual results. We use the same
data sets as those used in the spine detection validation part. The results are listed in Table 2.
From Table 2 we observe that the total number of matched spines is 51 and our method
identifies 43 of them. Compared with the manual results of two eliminations and three
formations, our results are 15 and 14 respectively, much larger than the manual ones. The errors
mainly introduced by the false positives in the spine detection as well as imperfect registration
results. The errors in elimination are induced by false negatives in the first time point or by
wrong matching results with time point 2. The errors in formation are caused by false positive
detection of spines and also due to errors in tracking. Dynamic programming is a forward
optimization technique, assuming that the solution previous to the current decision is optimal
and it would not resort to the former decision to update current state. Therefore although it is
a global optimization technique, matching errors may occasionally occur during the
optimization process. A possible solution to improve the tracking performance is to incorporate
more time points and integrate all information to eliminate false positives with “future” time
point information. The false negatives can be corrected if the same spine appears in the previous
time and the subsequent time but not in the current time point. Once we derive the accurate
spine detection result with multiple time points instead of only two, dynamic programming
will be able to find the global optimal solution.

Parameter Selection
Table 3 lists typical parameter values used in this work. The standard deviation for the Gaussian
kernel is determined automatically in the curvilinear structure detection part. Other parameters
for the curvilinear structure detection, such as the upper threshold, the minimum line length,
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and the linking distance, can be fixed loosely using a large range and do not affect the final
results significantly. This conclusion is derived by a large number of test experiments. The
parameters for the backbone and spine detection include the weakness threshold and the
minimum backbone length. These two parameters may vary for different images, but can be
fixed for a set of images from the same biological experiment, or images with similar intensity
distributions. In addition to the detection part, the parameter settings for the aLBF level set are
also listed in Table 3. The other unmentioned parameters are the same as the original LBF
model in Li et al. (2007). The average running time is only in minutes for processing a
512*512*10 neuron image with a Pentium IV 2.8G Hz processor for the selected parameters.

Discussion
3D based segmentation methods are employed in in vitro neuron spine detection. We also
employ a 3D level set method to segment dendritic structures in in vivo data. A rotated version
of our 3D segmentation result of R10XB time point 2 is shown in Fig. 15a. The uncorrelated
structures far away from the dendrite were filtered. We could tell that the structure surfaces
were smooth. However, this method failed in detecting the weak spines, which are marked by
yellow circle in Fig. 15b. We marked the corresponding region in Fig. 15a where we could not
see the spine. In 3D space, signals of this spine in each slice are very weak and they are
contaminated by noise. However, in MIP projection, the largest intensities of each column of
voxels are recorded in the projection image, thus the weak signal can be detected in the 2D
MIP image. We then quantify the spines to get volumes (Zhou et al., 2008) and add this feature
to the branch point feature vector. The variance of the Gaussian assumption for volumes in
MLE model is set to 20. The tracking result is the same as previously reported results for data
set R10XB and in other data sets.

This result indicates that if in vivo images are directly segmented and quantified in 3D, due to
the low SNR, weak signals can be missed. Thus far, volume information does not improve the
tracking result. Therefore, only 3D based methods may not be the optimal solution and in some
case they are inferior to 2D based methods. Possibly a hybrid method including both 2D and
3D could improve spine detection as well as spine tracking. In addition, when 3D curvilinear
structure detection is mature enough to detect lines with different widths in 3D space in a low
SNR environment, we might generalize our whole pipeline to 3D.

Another issue is time series of images. The interval of our in vivo image data is 1 h. There are
two time points in every data set. The details about these data sets are provided in Validation
part in Section IV. If we keep this interval, the algorithm will be able to process data of multiple
time points two by two and a summarization of the time series is necessary to incorporate time
series information together. The time series information helps to eliminate false positives and
false negatives. If the interval is larger, such as one day, the deformation and shifting make the
problem much more difficult. A more complex non-rigid registration strategy should be
necessary, as well as segmentation methods which are robust to changing and lower SNRs.
Moreover, unlike in in vitro imaging, it is very challenging to keep the object stable for days
to record the same regions of interest using in vivo imaging. Therefore, although time series
images might be a potential improvement to derive better results, the difficulties of in vivo
imaging should be addressed first.

The last issue we discuss is the robustness of our system. Signal to noise ratio (SNR) is an
important criterion to quantify the quality of an image as well as a measurement of system
robustness. In order to find a SNR threshold which approximately indicates how bad an image
our system is able to process robustly, we tested the SNR of our validation data sets and images
contaminated by additive Gaussian noise.
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A box plot of SNRs of eight images used as validation data is presented in Fig. 16a with average
SNR 24.2dB. We noticed that L10XBT1 had the worst SNR of 19.58dB. For image R10XBT1
and R10XDT2, the SNR are as low as 22.34dB and 21.92dB respectively, which was
coincidental with the relatively large false detection error in spine detection. In addition,
Gaussian additive noise with zero mean and different variance was added to R10XDT1, an
image with relatively higher SNR (26.68) in our data set and results were illustrated by Fig.
16b. The SNR dramatically dropped when the variance increased from 1e-5 to 1e-3. When
contaminated images were processed by our system, the false detection rate rises in accordance
with the increase of Gaussian noise variance. We noticed that when SNR was larger than 10dB,
the detection rate was higher than 75%. Therefore, we adopted 10dB as a SNR cut-off value
for our system.

Conclusion
In this paper, we have presented a novel strategy for spine detection and tracking for in vivo
neuron images. There is little work in in vivo neuron image processing and quantification
available in the literature according to our knowledge. The pipeline presented here will help
neurologists automatically label and quantify small spines and find matching spine pairs at
different time points. It overcomes the difficulties of poor image quality and extracts neuron
dynamic changes from the real-time in vivo data. The algorithm detects the dendritic backbones
and the detached spines from noisy and low contrast in vivo image data of live mice of an AD
model. It is able to quantify the spine length and area, with the proposed adaptive local binary
fitting (aLBF) level set method. The proposed aLBF model can accurately locate the boundary
of dendritic structures using the central line of curvilinear structure as the initialization. Then,
we present a maximum likelihood estimation based tracking algorithm to track the evolution
of spines at different time points and employ dynamic programming to find the solution. Our
tracking algorithm is able to detect spine elimination and formation. The algorithm is highly
automated and fast. It requires minimum human interaction. With the results derived from the
proposed pipeline, biologists can study the pathology of certain types of neuron diseases and
sketch the spine dynamics without manually labeling and pairing spine structures.
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Fig. 1.
The pipeline of the proposed spine detection and tracking strategy
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Fig. 2.
Illustration of registration. a Before registration. The two colors represent two time points.
Control points are paired with different marks; b After registration. Yellow denotes the overlap
of green and red
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Fig. 3.
a Illustration of line direction and normal direction; b illustration of line detection algorithm.
The cyan arrows denote the normal direction. Red dots are the rough estimates of the boundary
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Fig. 4.
a Original spine and backbone detection results of R10XB time point one without post
processing. Cyan backbone; red spines; b line linking results of a
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Fig. 5.
Some possible situations in line linking: a two branches with obvious orientation differences;
b both branches are smoothly connected with the main structure; c illustration of branch point
selection on the backbone; our algorithm will choose the yellow marked point B. Purple
arrow is the direction of νp and orange arrows are the direction of νb
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Fig. 6.
Line structure detection results of data set R10XB, time point one; a original image; b the line
detection result without post processing; c medial axis derived by line linking. Branch A and
B are false positive detected branches; d manual labeling result
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Fig. 7.
Line structure detection results of data set R10XB, time point two; a original image; b the line
detection result without post processing; c medial axis derived by line linking; d manual
labeling result
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Fig. 8.
Comparison of a LBF level set model and b aLBF level set model. The yellow circled
regions are weak spines
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Fig. 9.
a Overlapped view of the medial axis and boundaries detected by aLBF; b result after filtering
the un-intersected region and redundant region; c a view of detached spine regions; d a view
of attached spine regions; the spines are presented in red
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Fig. 10.
The value of sigma. a 3-D view; b 2-D view
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Fig. 11.
Tracking results for the two time points in data set R10XB. Cyan arrows denote the matching
relationship. Green circles denote branch points that can find its matching point. Yellow
squares represent the eliminated spines or noise while purple triangles are the newly
formulated spines
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Fig. 12.
Manually labeled results for two time points in data set R10XB
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Fig. 13.
a CDF of spine length distribution; b quantile–quantile plot of spine length; c spine length
comparison between manual and automatic results
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Fig. 14.
Area comparison between automated and manual method on data R10XB, time point 2

Fan et al. Page 31

Neuroinformatics. Author manuscript; available in PMC 2010 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 15.
a A Rotated view of LoG 3D level set segmentation of R10XB time point 2; b image R10XB
time point 2 overlapped with medial axis. The yellow circles indicate the corresponding
position in the two images
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Fig. 16.
a Box plot of SNR of the validation data set; b SNR changes with additive white noise with
different variance
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Table 1

Comparison of spine detection results between manual and the proposed automatic method

Image name Spine number (manual) Spine number (our method)

Total number False positive (wrong detection) False negative (missing)

R10XAT1 6 7 1 0

R10XAT2 6 6 0 0

R10XBT1 17 20 3 0

R10XBT2 17 18 2 1

R10XDT1 10 10 0 0

R10XDT2 10 12 3 1

L10XBT1 20 21 2 1

L10XBT2 21 21 1 1

Total 107 115 12 4

Neuroinformatics. Author manuscript; available in PMC 2010 May 18.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fan et al. Page 35

Ta
bl

e 
2

C
om

pa
ris

on
 o

f t
ra

ck
in

g 
re

su
lts

 b
et

w
ee

n 
th

e 
m

an
ua

l a
nd

 th
e 

pr
op

os
ed

 a
ut

om
at

ed
 m

et
ho

d

D
at

a 
se

ts
 n

am
es

Sp
in

es
 n

um
be

r 
(m

an
ua

l)
Sp

in
e 

nu
m

be
r 

(o
ur

 m
et

ho
d)

M
at

ch
ed

E
lim

in
at

io
n

Fo
rm

at
io

n
M

at
ch

ed
E

lim
in

at
io

n
Fo

rm
at

io
n

R
10

X
A

6
0

0
5

2
1

R
10

X
B

16
1

1
14

6
4

R
10

X
D

10
0

0
8

2
4

L1
0X

A
19

1
2

16
5

5

To
ta

l
51

2
3

43
15

14

Neuroinformatics. Author manuscript; available in PMC 2010 May 18.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fan et al. Page 36

Ta
bl

e 
3

Pa
ra

m
et

er
 se

tti
ng

s u
se

d 
in

 o
ur

 m
et

ho
d

Pa
ra

m
et

er
T

yp
ic

al
 V

al
ue

D
es

cr
ip

tio
n

Pa
ra

m
et

er
T

yp
ic

al
 V

al
ue

D
es

cr
ip

tio
n

U
pp

er
/lo

w
er

 th
re

sh
ol

d
3/

1
C

ur
vi

lin
ea

r s
tru

ct
ur

e 
de

te
ct

io
n

La
m

bd
a1

/ L
am

bd
a2

3/
3

aL
B

F

Li
nk

in
g 

di
st

an
ce

/ L
in

e 
le

ng
th

5/
5

C
ur

vi
lin

ea
r s

tru
ct

ur
e 

de
te

ct
io

n
M

ax
im

al
 v

al
ue

 o
f s

ig
m

a
20

aL
B

F

M
in

im
um

 b
ac

kb
on

e 
le

ng
th

80
C

ur
vi

lin
ea

r s
tru

ct
ur

e 
de

te
ct

io
n

St
ar

tin
g 

si
gm

a
10

aL
B

F

V
ec

to
r i

nn
er

 p
ro

du
ct

 d
iff

er
en

ce
0.

1
Sp

in
e 

Li
nk

in
g

Neuroinformatics. Author manuscript; available in PMC 2010 May 18.


