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Abstract
MEG and EEG measure electrophysiological activity in the brain with exquisite temporal
resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures
(fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is
becoming more widely recognized (e.g., Human Connectome Project). However, the available
analysis methods for solving the inverse problem for MEG and EEG have not been compared and
standardized to the extent that they have for fMRI/PET. A number of factors, including the non-
uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis
techniques which have not been tested on consistent datasets, making direct comparisons of
techniques challenging (or impossible). Since each of the methods is known to have their own set
of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are
announcing the establishment of a website containing an extensive series of realistic simulated
data for testing purposes (http://cobre.mrn.org/megsim/). Here, we present: 1) a brief overview of
the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3)
cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment
of analyses including independent component analysis (ICA), Granger Causality/Directed transfer
function, and single-trial analysis.

Introduction
There has been increased interest in the use of noninvasive functional imaging techniques
for characterizing cognitive deficits in clinical populations. Furthermore, there has been
renewed appreciation of the benefits for characterizing the fine temporal dynamics of these
deficits. For example, one cannot learn about the direction of information flow through the
brain, or information processing stages known to occur in various memory functions (e.g.,
identification, maintenance, recognition), without both excellent spatial and temporal
resolution. Although magnetoencephalography (MEG) and electroencephalography (EEG)
methods offer excellent temporal resolution, they face the greatest challenge to source
localization of the neuroimaging techniques since the well-known “inverse problem” (i.e.,
the reconstruction of the current distribution inside the brain based on measurements made
outside the head) is not as straightforward for MEG/EEG as it is for functional magnetic
resonance imaging (fMRI) and positron emission tomography (PET) methods, due to the
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physics of the problem. The inverse problem for MEG and EEG is mathematically ill-posed;
that is, it has no unique solution in the most general, unconstrained case (Hämäläinen et al.
1993). Therefore, suitable constraints have to be applied to render the solution unique
(Baillet et al. 2001).

For a number of reasons, discussed later, results from the varied inverse procedures have
never been tested and compared using a standard testbed of realistic simulated data. It is
standard practice in the MEG field to create computer-simulated data in order to test a newly
developed or revised inverse procedure, using data where the ground truth (i.e., the solution)
is known before testing it on empirical data where the ground truth cannot be known. Since
each of the MEG analysis methods is known to have its own set of strengths and weaknesses
[for some examples see (Liljestrom et al. 2005)], it would be beneficial to the community to
qualify and quantify them. Therefore, we are announcing the establishment of a website
containing a series of realistic simulated data for testing purposes (http://cobre.mrn.org/
megsim/). If an algorithm provides reasonable solutions to simulations then it is standard
practice to use the algorithms in simple sensory empirical data where the literature provides
information on the expected locations and time-courses of sources (e.g., non-human primate
studies) before attempting analysis of cognitive datasets where it is impossible to know the
ground truth. Therefore, we acquired simple somatosensory, auditory, and visual sensory
data on several participants for this purpose since it is best if the same empirical datasets are
shared across the community for comparison. If an algorithm fails to identify the simulated
sources and time-courses under realistic conditions (e.g., similar signal-to-noise ratio or
SNR as empirical data and real artifacts occurring at random intervals), then one cannot
expect to obtain correct or reasonable results in empirical data. The rationale and description
of the testbed created along with sample simulated cases emphasizing functional
connectivity and oscillatory activity are presented here. The single-trial datasets described
are suitable for a wide assortment of analyses including independent component analysis
(ICA), Granger Causality/Directed transfer function, and single-trial analysis.

Inverse Procedures
For investigators new to this field, we briefly outline the most common inverse methods
below. The source models and associated inverse algorithms fall into four broad categories.
First, there are models that use a relatively low-order parametric description of the currents
in order to produce an over-determined problem, i.e., the number of parameters to be
estimated in the model is less than the number of recording sites. The most frequently used
source model in MEG for clinical studies is a fixed set of equivalent current dipoles (ECDs)
located at various cortical locations whose moments (ECD amplitudes) vary with time
(Scherg and Von Cramon 1986; Mosher et al. 1992; Ermer et al. 2000). The term equivalent
means that coherent activation of a large number of pyramidal cells can be represented by a
point source at the detectors. Second, there are current reconstruction models that employ a
grid of elementary sources in a volume or on the cortical surface such that the number of
parameters to be estimated in the model is typically much greater than the number of
measurements. Because the solution, in this case, is under-determined, the weighted least-
squares criterion requiring that the prediction error is minimized, must be augmented with
an additional constraint to select the “best” current distribution among those capable of
explaining the data. In the case of the basic L2 minimum norm approach the mathematical
criterion is the solution that minimizes the power (L2-norm) of the dipole moment (Wang et
al. 1992; Dale and Sereno 1993; Hämäläinen and Ilmoniemi 1994; Ioannides et al. 1994;
Pascual-Marqui et al. 1994; Grave de Peralta-Menendez and Gonzalez-Andino 1998; Uutela
et al. 1999). The L1 minimum norm solution selects the source configuration that minimizes
the absolute value of the source strength (Uutela et al. 1999; Huang et al. 2006). Third, there
are spatial filter (e.g., beamformer) approaches that estimate activity at points or regions of
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interest, independent of one another. Beamformer output, for example, is a linear
combination of the external field measurements at each time sample, constructed with the
requirement that the focus is on the source of interest while minimizing contributions from
all other sources (Van Veen et al. 1997; Vrba and Robinson 2000; Sekihara et al. 2001).
That is, it allows signals of interest to pass through each volume grid node or cortical surface
location while suppressing noise and signals from other locations (i.e., spatial filter). Finally,
there are probabilistic approaches to the MEG/EEG source localization problem based on
Bayesian inference [e.g., (Jun et al. 2005; Wipf et al. 2010)]. Some of these approaches
result in a single best solution to the problem, while others use Markov Chain Monte Carlo
to produce a large number of likely solutions that both fit the data and any prior information
[e.g.,(Schmidt et al. 1999)].

Limitations of Inverse Procedures
Each of the inverse procedures has limitations associated with it. Critics of the earlier dipole
modeling approaches emphasize the difficulties in: 1) accurately localizing more than one or
a few point current dipoles; 2) using point current dipoles to localize extended sources; and
3) determining the number of sources to be included in the search a priori (Liu et al. 1998;
Fuchs et al. 1999; Uutela et al. 1999; Huang et al. 2006; Lin et al. 2006; Mattout et al. 2006).
Our greatest concern for the multidipole, spatiotemporal modeling methods is that under-
estimation of the number of true sources can severely compromise location and time-course
accuracy for the identified sources (Supek and Aine 1997; Greenblatt et al. 2005). This is
because multidipole modeling methods attempt to account for the entire measured signal via
a given number of sources, and the omission of one source will generally change the
position and/or magnitude of other sources to account for the signal from the omitted source.
This is not true for the minimum norm, beamformer, or Bayesian methods. In contrast,
critics of the minimum norm-based approaches state that: 1) the results often appear
smeared, even for point current sources and at times may become split across lobes which
produce spurious or ghost sources leading to imprecise estimated dynamics (David et al.
2002; Michel et al. 2004; Lin et al. 2006); 2) the constraints introduced are purely
mathematical with no physiological justification (Michel et al. 2004); 3) the solution is
biased toward superficial source locations leading to the application of depth weightings by
some groups (Ioannides et al. 1990; Lin et al. 2006); 4) the smeared or broadened effect
becomes more pronounced with a decrease in signal-to-noise, potentially leading to false
positive sources (Wischmann et al. 1995); and 5) it is severely under-determined thereby
requiring the use of regularization methods to restrict the range of possible solutions.
Although, the linearly-constrained minimum variance (LCMV) beamformer has higher
resolution than minimum norm-based methods when cortical sources are focal, the
underlying assumption is that neural sources are incoherent. Coherent signals will cause the
beamformer to fail in finding locations of other coherent sources due to partial cancellation
(Hui et al. 2010) which is a potential problem for cognitive data where coherence typically
abounds (i.e., working memory tasks). For example, in working memory studies, activity
tends to synchronize across many widespread brain regions for seconds (Aine et al. 2003).
However, several groups have recently introduced variants of the beamformer that can
reportedly deal with coherent sources, with some restrictions [e.g., (Dalal et al. 2006;
Brookes et al. 2007; Diwakar et al. 2011; Moiseev et al. 2011)]. Secondly, Hui and Leahy
(2006; Hui et al. 2010) also noted that beamformers may not be appropriate, in their current
form, for directly examining functional connectivity or cortical interactions, given the robust
cross-talk present in the data. The latter is true for minimum norm-based methods as well.
However, the general advantages of minimum norm and beamformer methods are that they
require less analysis time making them quicker to use and the number of sources to be
modeled does not need to be known a priori. Finally, less seems to be known about Bayesian
methods since they have not been widely applied to real experiments (Luck 2005). In part
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this may be due to a need for large computational resources since some versions utilize a
Markov Chain Monte Carlo approach to generate sets of activity parameters that are
distributed according to the posterior distribution (Schmidt et al. 1999).

The simulated datasets described here are designed to provide a wide range of realistic
examples which emulate brain activity. We specifically tried to design these simulations
such that a particular approach would not always be favored. We hope developers will
utilize these data to further develop and refine MEG analysis methods. Similarly, we hope
that users of the algorithms will compare and contrast their favored approaches with others.
Because we are avid users of a semi-automated, multidipole, spatiotemporal approach
[Calibrated Start Spatio-Temporal or CSST; (Ranken et al. 2002; Ranken et al. 2004)],
solutions shown throughout this document are from the CSST algorithm, for immediate
benchmark comparisons.

Barriers Addressed by Creating Realistic Simulated Datasets
One barrier encountered in the area of software development for electromagnetic measures
is the lack of an extensive, realistic simulated testbed for determining the success of the
algorithms and for comparing algorithmic performance with others (i.e., standardization).
Often developers test their algorithms using one or a few test cases that may or may not
closely emulate real brain activity and often these test cases are not readily amenable for
other developers to use. For example, white noise is often added to the data to simulate noise
normally contained in data. The addition of real brain noise (e.g., ongoing background
rhythms not related to the task) is more appropriate since real brain noise can have a
dramatic effect on the localization ability of algorithms. Furthermore, users of algorithms
would like to know how various analysis methods work in the modalities they are
investigating (e.g., auditory, visual, somatosensory) or in the specific areas of their research
interests (e.g., sensory or cognitive studies). Our realistic simulated datasets also show
tremendous differences in SNR across participants for similar source locations, due to signal
cancellation and summation associated with differences in cortical geometry [e.g., (Aine et
al. 1996; Amunts et al. 2000; Stephen et al. 2003)]. An algorithm may work well in one of
the scenarios listed above but may be less than optimal in others. The creation of realistic
datasets ranging from sensory to cognitive studies in auditory, somatosensory, and visual
modalities and from a number of participants can help developers tremendously in
understanding behaviors of their algorithms.

An additional barrier for MEG investigators is the fact that MEG systems made by different
manufacturers have different pickup coils, sensor arrays, noise cancellation methods, as well
as different software packages for data analysis. Many of the software implementations are
specific to one particular data storage format or noise cancellation method as well. These
factors make it extremely difficult to compare results or pool data across laboratories. If one
developer creates a simulated data set using the sensor geometry of the Elekta Neuromag
306 system, for example, then investigators using the VSM MedTech CTF 275 system
usually cannot use it because of file formatting barriers. We have been working on software
that is machine-independent (E. Best and D. Ranken) that can convert from one MEG
system format to another. A standard testbed that can be used by all developers and users
would be of great help to the MEG community, and hopefully to the EEG community in the
future.

Structural and Functional Connectivity
A current emphasis in neuroimaging is on structural and functional connectivity (e.g., the
NIH Human Connectome Project) including the role oscillatory activity plays during
cognition. Evidence now indicates that: 1) local field potentials, which provide a measure of
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mainly postsynaptic dendritic responses, show strong sub-threshold synchrony of ongoing
fluctuations in the cell's membrane potentials (Lampl et al. 1999); 2) local networks are
modulated by coordinated sub-threshold excitability changes (Engel et al. 2001); and 3)
action potentials generated by cortical cells align with the oscillatory rhythm enabling
neurons participating at the same oscillatory rhythm to synchronize their discharges with
high precision across cortical regions (Gray et al. 1989). Although the specific roles these
rhythmic activities play are still debated, numerous studies in monkeys and humans suggest
that oscillatory activity plays an important role in integrating neural activity from distant
cortical areas [e.g. (Jensen and Lisman 1998; Canolty et al. 2006; de Lange et al. 2008;
Osipova et al. 2008)], such as prefrontal and parietal cortices (von Stein et al. 2000). Others
add that these internally generated coherent fluctuations of excitability may also provide
context to sensory information and predictions about forthcoming events (top-down
processing) in order to guide behavior (Engel et al. 2001). Because of this increased interest
in functional connectivity, we present cases of realistic simulations using both short- and
long-range oscillatory activity (gamma and beta band) and cases where activity is correlated
during later intervals (e.g., simulating working memory).

Methods and Results
Simulated data were created using MRIVIEW and MEGAN software. A brief description of
these tools is provided below. MRIVIEW (Ranken and George 1993; Ranken et al. 2002) is
a software tool (http://cobre.mrn.org/megsim/tools/mriview/mriview.shtml) for integrating
volumetric MRI head data with functional information (e.g., EEG, MEG, fMRI). It provides
tools for visualizing MRI data in a variety of 2D and 3D formats, the latter of which is an
object-based environment that is used to combine structural MRI data with various
representations of brain functional data. A Coordinate Transformation interface allows users
to quickly perform MEG/EEG to MRI transformations, needed for both showing MEG/EEG
results on MRI based anatomy, and for setting up MEG/EEG forward models.

A Segmentation Interface module provides automatic and manual segmentation procedures
to support a variety of segmentation tasks, including: variable resolution grid creation for
CSST, gray/white matter segmentation, extraction of 3-layer surface models for BEM
analyses, and 5 (or more) tissue-type classifications for Finite Element Models (FEM) or
Finite Difference Head Models (FDM). A Forward Simulator is included for creating
multiple MEG and/or EEG focal or distributed-source regions of arbitrary size and
orientation for testing various inverse procedures (see Figure 1A). User-specified, ellipsoid
regions of gray/white matter boundary can be labeled and used to create simulated regions
of activity. We have used these tools previously for simulating epileptic spikes that were
then embedded in spontaneous activity from each subject (Stephen et al. 2003; 2005). In the
example shown in Figure 1A, a Freesurfer-segmented gray matter/white matter boundary for
the simulations (shown in red) was imported into MRIVIEW. The EEG forward solution
uses the Sun algorithm (1997) and the MEG forward solution uses the Sarvas formula
(1987). The simulated activation time-courses can be generated using multiple Gaussians or
a sinusoid (Fig. 1B), or they can be read from a file. Sensor geometries used by the major
manufacturers of MEG whole-head arrays (e.g., Elekta Neuromag Ltd, VSM MedTech CTF
Systems, 4-D Neuroimaging) for generating the forward fields are obtained from a sister
software package, MEGAN (E. Best), which organizes the data from the different MEG
systems into a consistent data format, netMEG, a self-documenting and highly portable file,
written using netCDF format. The simulated sensor measurements are obtained by summing
the forward fields from all of the simulated sources. Either simulated noise or real noise
from MEG/EEG acquisitions (Fig. 1C) can be added to the calculated forwards to generate
better simulations of empirical MEG/EEG data (Fig. 1D). MEGAN, http://cobre.mrn.org/
megsim/tools/MEGAN, is also written in IDL and allows one to conduct preliminary

Aine et al. Page 5

Neuroinformatics. Author manuscript; available in PMC 2013 April 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://cobre.mrn.org/megsim/tools/mriview/mriview.shtml
http://cobre.mrn.org/megsim/tools/MEGAN
http://cobre.mrn.org/megsim/tools/MEGAN


analyses on data from different MEG systems such as deletion of bad channels, digital
filtering and artifact rejection for retrospective averaging relative to a stimulus or response
record, visualization of a variety of forms (e.g., static field distributions, temporal waveform
displays and movie formats), and temporal analysis. The netMEG output file format can be
used by CSST, constrained linear inverse procedures, and Bayesian Inference analysis.

CSST (Calibrated Start Spatio-Temporal) Analysis
This multi-dipole, spatio-temporal approach has been automated, i.e., it takes the traditional
starting parameter guesses out of the hands of the investigator. CSST uses the Nelder-Mead
non-linear downhill simplex procedure to perform a spatial search (Nelder and Mead 1965)
and utilizes information based on a singular value decomposition (SVD) of the data matrix
for determining a range of number of sources to be localized. Advantages of the newer
CSST automated algorithm, compared to MSST (Multi-Start Spatio-Temporal) (Harrison et
al. 1996; Huang et al. 1998; Aine et al. 2000), lie in the fact that more fits to the data can be
accomplished in less time, while still employing a reduced chi-square statistic as the cost
function for obtaining the best fits to the data. CSST runs multiple instances of a downhill
simplex search from random combinations of MR-derived starting locations from within the
head volume, on a Linux PC cluster. General steps for processing the MEG and MRI data
are shown in Figure 2. A two stage simplex procedure is used to first rule out sub-optimal
solutions (i.e., it utilizes a coarse convergence criterion in the simplex procedure), and then
to refine the remaining solutions using a fine convergence setting. A parallel version of
CSST is currently running on the Linux clusters at the Mind Research Network (MRN),
using MPI to distribute the calculations across the processors, which could eventually
provide real-time, multi-dipole MEG analysis through the use of Graphics Processing Units
on multicore personal processors. CSST has been used extensively with both Neuromag 122
and CTF 275 MEG systems (Stephen et al. 2003a; 2003b; Stephen et al. 2005; Stephen et al.
2006; Aine et al. 2010). CSST has also been used to analyze Neuromag Vectorview 306-
channel data and has been thoroughly tested on EEG data (Susac et al. 2010; Golubic et al.
2011; Susac et al. 2011). Additional information on our analysis methods can be found in
Aine et al. 2010. Sphere and overlapping-spheres forward models are options within
MRIVIEW (Huang et al. 1999) but a Forward Interpolation capability (Ermer et al. 2001)
has also been implemented in CSST, allowing it to be used with BEM or FEM/FDM
forward models. CSST accuracy tests were performed on CTF 275 data obtained from a dry-
phantom current dipole generator, demonstrating 1 mm dipole source localization accuracy.

Simulated Data Sets
Empirical MEG/MRI datasets have been acquired for 5 participants under a partnership
formed between the MRN, Massachusetts General Hospital, University of Minnesota/
Veterans Affairs in Minneapolis, University of New Mexico, and Los Alamos National
Laboratory. Data were acquired using 3 different MEG systems (VSM MedTech 275,
Elekta-Neuromag 306, 4-D Neuroimaging 3600) and 3 different sensory paradigms (visual,
auditory and somatosensory) for each participant. These empirical data will be made
available via the MEG-SIM portal and will be discussed more completely later. A grant
from NIMH (R21MH080141) allowed us to then create realistic simulated data derived from
the real noise contained in the collected data and to establish a web portal for others to
access these simulated datasets. We refer to the testbed as ‘realistic’ simulated data because:
1) colored noise is used is most examples (i.e., spontaneous data containing correlated
noise); 2) the time-courses and source locations simulated are based on findings from
empirical data; 3) different-sized cortical patches are created from MRIs of individual
participants (i.e., the SNR and orientation of sources differ across participants); and 4) in
some cases each of the unique single trials, mimicking actual data acquisition, are provided.
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Focal vs. Extended Sources
Examining source extent in the simulated and empirical studies is important for evaluating
the suggestion that ECD modeling is limited due to its proposed inability to deal effectively
with extended sources (Dale et al. 2000; Hillebrand and Barnes, 2002; Lin et al. 2006;
Ahlfors et al. 2010; Golubic et al. 2011). The simulated data sets were constructed using two
different-sized patches of cortex determined via MRI (~4 mm2 and ~20 mm2) producing two
different source strengths (30 and 50 nAm). We used these values because: 1) our previous
empirical results suggest that those current strengths are typical of what is encountered in
sensory studies [e.g., figure 3 and table 2 in (Aine et al. 2006) and figure 4 and table 3 in
(Aine et al. 2005) show similar peak amplitudes for visual and auditory studies] and 2) the
sensory visual paradigm used to acquire data at each MRN partner site utilized small and
large stimuli (1.0° and 5.0° of visual angle) designed to activate ~4 mm2 of tissue and ~20
mm2 of tissue in primary visual cortex, according to the cortical magnification factors
presented in Rovamo and Virsu (1979). We attempted to equate the simulated and empirical
parameters since the goal was to produce both focal and extended activity. The
somatosensory study used electrical stimulation of the median nerve and the index finger, in
order to produce focal vs. extended sources. The auditory study used 3 pure tones and bursts
of white noise to evoke focal vs. extended activity.

Physiologically Plausible Time-courses
Figure 3 shows sample time-courses from both a monkey and a human (left and right
columns) in response to Walsh stimuli (visual). This spike-like activity followed by a slow
sustained response is quite common for sensory and cognitive studies. Recent monkey
studies suggest that the initial feedforward flow of information (i.e., the spike-like activity)
establishes the neuron's classical receptive field and its basic tuning properties typically
associated with pre-attentive processes (within 100 ms) (Lamme and Roelfsema 2000).
Visual cortical neurons remain active after their participation in the feedforward sweep
which allows information from horizontal and feedback connections to be incorporated into
the response (i.e., the slow sustained response); massive feedback projections carry
information from higher-order regions to forward projecting pyramidal cells of lower-order
areas (Cauller 1998). Attention and memory processes influence lower-level responses via
these horizontal and feedback connections which affects the late sustained activity following
the initial burst (Lamme and Roelfsema 2000; Mehta et al. 2000; Bisley et al. 2004). This
type of response profile is evident in many MEG visual and auditory studies (Portin et al.
1999; Aine et al. 2003; Vanni et al. 2004; Aine et al. 2005; Kovacevic et al. 2005) and were
therefore modeled in the simulated data for physiological reality.

Simulated Visual Data
Nine simulated visual datasets (1-sec epochs including equal pre- and poststimulus intervals)
were generated consisting of a range of source configurations from simple to complex using
small and large cortical patches. The locations and timing of the 3-7 simulated sources (see
Table 1) were generated based on our previous basic visual (Stephen et al. 2002) and visual
working memory studies (Aine et al. 2006). For example, time-courses associated with each
cortical source in visual cortex was delayed by 10 ms, as shown in table 1 in (Stephen et al.
2002). We varied the synchronicity of the latter portion of the time-courses across sets in
order to determine an algorithm's sensitivity to fine temporal changes. Parameters that vary
within and across datasets include: number of sources, focal vs. extended sources, current
strengths, and degree of synchronicity of sources and noise level or type of noise (white
noise or spontaneous noise). These 7 sets are being produced for 5 participants which result
in datasets derived from different cortical geometries and different SNRs. In addition, they
are being produced using CTF Omega 275, Vectorview 306, and Magnes 248
configurations. In each case, 100 single trials of real spontaneous background activity were
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averaged as a noise trial for each of 5 participants and for each of 3 MEG systems. At
present, a spherical head model was used for the simulations and modeled data; however, a
boundary element model (BEM) is available for future EEG and MEG simulations.

Visual Source Locations, Timing and Strengths
The following visual areas were approximated on the cortical surface of the participants; V1,
V2/V3, inferior lateral occipital gyrus (I.LOG), and intraparietal sulcus (IPS) (Stephen et al.
2002; Aine et al. 2006). To simulate a cognitive dataset three additional cortical regions
were added, dorsolateral prefrontal cortex (DLPFC), right hippocampus (RH), and anterior
cingulate (AC) since they have been shown to be responsive to visual working memory
tasks (Aine et al. 2003; Nyberg et al. 2003; Aine et al. 2006) and they provide a good test for
localizing deeper sources.

Visual Data Set 1 (A-B)
This set represents the simplest case where all 3 sources are asynchronous (10 ms delays in
onset times). In Set 1.A all sources are small cortical patches (4 mm2, 30 nAm) while in Set
1.B all sources are large cortical patches (20 mm2, 50 nAm). See Figure 4 (top row).

Visual Data Set 2
Two synchronous sources with one source half the intensity of the other (30 and 15 nAm),
overlapped with an asynchronous source (onsetting 10 ms later and 30 nAm strength) is
modeled in this set (see Figure 4 middle row). This source configuration has been used by us
extensively in the past since it provides a good test for resolving synchronous activity
(Supek and Aine 1997; Huang et al. 1998), but the present implementation is more realistic
in terms of the shapes of the time-courses and use of real noise. Note, binaural stimulation
also activates coherent sources of activity; only the sources are not as closely spaced (i.e.,
left and right Heschl's gyrus).

Visual Data Set 3 (A-B)
This set contains initial asynchronous activity (same as Set 1 A-B) from 3 sources which
become synchronous later in time (Figure 4 bottom row). There has been recent interest in
using MEG to identify large-scale interactions between brain regions in cognitive tasks
(neural networks) (David et al. 2002; Aine et al. 2003); synchronous late activity is often
witnessed in these types of tasks. As noted by David and colleagues (2002) some inverse
procedures are not designed to localize coherent sources (e.g., some LCMV beamformer
approaches). Our visual working memory studies usually reveal late synchronous activity
(Aine et al. 2003; 2006).

Visual Data Sets 4-6
In Set 4, six sources of activity are modeled where one pair of sources is synchronous (one
small and one large cortical patch with consequent differences in intensity). This type of
profile builds off of Set 3 by making it more consistent with our working memory studies
where initial asynchronous activity is followed by late activity in several disparate brain
regions (including dorsolateral prefrontal cortex, anterior cingulate and superior lateral
occipital gyrus) that become synchronous over time (Aine et al. 2003). Singer (1999), along
with many others, suggests that synchronous neuronal firing provides one mechanism for
binding the different features/attributes of stimuli across widespread cortical areas. Table 2
shows actual source locations, CSST estimated source locations, and errors when either
noise was absent (no-noise) or real noise was present. Average error across the 6 sources
was 0.1 mm for the no-noise condition and 6.8 mm for the real noise condition. This table
demonstrates that the presence of real noise does significantly affect source localization
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accuracy; however, our CSST solution for the real noise condition was still good for this
complicated dataset and inconsistent with previous critiques of dipole modeling approaches
that state dipole methods cannot accurately localize more than a few point sources of
activity.

Set 5 is the same as Set 4 with the addition of a source in right hippocampus (7 sources of
activity). Set 6 (not shown in Table 1) is a case where late activity (e.g., 400-600 ms) was
synchronous across four cortical sites (V1, I. LOG, IPS, and DLPFC), also seen in working
memory studies. The upper left panel of Figure 5 displays the locations of the cortical
patches (cortical patches are located at the cross-hairs) while the time-courses provided to
the cortical patches are shown beneath the MRIs. The averaged waveforms (128 trials with
signals embedded in real spontaneous noise) seen across 275 channels are shown in the
middle left column. CSST source locations are shown in the upper right panel (see tabled
values). The table shows the coordinates of the actual sources, the estimated source
locations, and the errors using Euclidean distance. Net source orientation errors (polar
coordinates) were 42.0° for V1, 58.2° for I. LOG, 20.9° for IPS and 48.0° for the DLPF
sources. The middle right panel shows the estimated time-courses and source locations. The
average error across all 4 sources was 6.7 mm with the greatest error for the I. LOG source.
The cross-correlations between time-courses are shown in the bottom row of this figure. We
examined early activity first (200-350 ms--bottom left panel) which shows that V1 activity
correlated highly with I. LOG (dark blue tracing), regions showing the initial spike-like
activity (~280 ms). IPS and DLPF cross-correlations were also highly correlated and near
the zero-lag (orange tracing). The maximal correlation coefficients of the other pairs of
sources were lower in value and were not near the zero-lag. In contrast, the late activity
(350-600 ms—bottom right panel) shows higher zero-lag correlation coefficients for activity
between the 4 brain regions (i.e., late activity was synchronous across brain regions) with
IPS and DLPFC revealing the highest correlation coefficient (orange tracing). These data are
also suitable for examining basic coherence between sensors.

Single-trial and Oscillatory Datasets (Sets 7-9)
Single-trial datasets reflecting functional connectivity in a working memory task were
created with and without oscillatory activity and are suitable for most types of analyses (i.e.,
ICA, time-frequency analysis, Granger Causality, etc). In each case, sources embedded
within 128 single trials of noise were jittered about their mean latency and amplitude. Set 7
is similar to Set 6 (VSM-CTF MEG System) only now each of the 128 single trials is
available. Again, the four cortical sites were: 1) primary visual cortex (V1); 2) inferior
lateral occipital gyrus (I.LOG); 3) intraparietal sulcus (IPS); and 4) dorsolateral prefrontal
cortex (DLPFC). The cortical patch current strengths were initially assigned values similar
to those we observe in our visual working memory studies (30-50nAm peaks) using the
MRIVIEW Forward Simulator (Ranken and George 1993; Ranken et al. 2002) and were
then randomly jittered about those values by up to +/- 50% across the single trials. Peak
latencies were also jittered across each trial by a randomly selected value up to +/- the full
width at half maximum (FWHM) divided by 2. To allow for traditional source analysis of
averaged evoked responses, the 128 single trials were then averaged together and written out
to the netCDF file format.

In Set 8, oscillatory activity was added to Set 7 time-courses (Figure 6). For the time-locked
oscillatory activity, V1, I. LOG, and IPS oscillated between 30-60 Hz (gamma band) across
the 128 trials while IPS and DLPFC oscillated between 14-28 Hz (beta band). Oscillatory
activity for DLPFC was delayed by 20 ms relative to IPS and IPS gamma activity was
delayed by 10 ms relative to IPS beta activity (see schematic in Fig. 6.A). The delays were
meant to reflect normal time delays between visual areas (Stephen et al. 2003). Gamma
activity mimicked local circuitry activity between V1, I. LOG, and IPS while beta activity
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mimicked long-range connections between IPS and DLPFC. For both beta and gamma
oscillations, the amplitudes were set at 10 nAm and were then jittered between 5-15 nAm
across the 128 trials. Note that the latencies, and therefore the phase of the oscillations, were
kept constant between brain regions, and also between trials. As with the first simulated data
set, the time-courses were constructed within MRIVIEW, however, they had to be
constructed independently; i.e., one time-course contained the evoked response plus real
noise while the other time-course contained the oscillations without noise. The two time-
courses were then added together using Matlab. Again, to allow for source analysis of the
averaged responses, the 128 single trials were averaged together to create a single averaged
trial, and were then written out to a netCDF file. Datasets for two subjects were created this
way.

Figure 6.B. shows the input signal at the sensor level across sources before oscillatory
activity was added. Sample single-trials are shown where peak amplitudes (of both the
evoked and oscillatory activity), peak latencies (of the evoked activity only), and frequency
of the oscillatory activity were jittered across trials so each single trial is unique. Finally, the
average of the 128 single trials is shown beneath. Figure 6.C and 6.D shows the output of
the CSST algorithm. CSST provides both the locations of the dipoles and the reconstructed
time-courses of activity. Table 3 contains the results of this analysis for the two visual/
working memory data sets that were created for the first subject (i.e., single trials averaged
with and without oscillatory activity). Our results show that CSST accurately reconstructs
both temporal and spatial characteristics of the simulated data sets, even with noisy and
oscillating sources. Time-frequency plots are shown in Figure 6.E for gamma and beta
bands. Gamma band activity is primarily seen in dipoles located in V1, I.LOG and IPS,
which is consistent with the simulated data. No gamma activity was provided to DLPFC and
correspondingly, gamma activity during this interval of time is essentially non-existent. It
appears that the initial spike-like activity in the time-course has a predominantly beta
component to it as seen in the V1 and I.LOG beta band plots. IPS and DLPFC, in contrast,
reveal beta band activity throughout the interval, which is consistent with the simulated data.
Our realistic simulated oscillatory activity will provide a very nice data set for testing
various frequency analyses and inverse procedures. Again, these data also come with all 128
unique individual trials for investigators wishing to try single trial analysis methods.

For the final simulated data set to be discussed (Set 9), the same set as Set 8 was created
with the difference that the noise trials and sensor configuration were taken from the
empirical resting data acquired using the Neuromag 306 system. In this case, a Matlab
program utilized the netCDF toolbox for manipulating the opening and closing of the
netCDF files containing the individual evoked waveforms and the individual oscillatory
waveforms, which were created at cortical locations similar to Set 7. The simulated data
were again created using MRIVIEW and MEGAN. Matlab was used to import the time-
courses of the individual areas of evoked activity which were then jittered (in the same way
as mentioned above) and combined with randomly selected instances of Neuromag 306
noise which was read into Matlab using Fieldtrip functions (http://fieldtrip.fcdonders.nl/).
One hundred single trials were created in this way, containing evoked and oscillatory
activity from DLPFC, V1, IPS, and ILOG. This was, therefore, an automation of what was
initially done with the previous single-trial data, Set 8. The 100 single trials were then
averaged together and saved to a netCDF file, to be used with CSST analyses, and to a
Neuromag 306 system fif file to be used with Curry, a commercial software package
(Compumedics Neuroscan, Charlotte, NC http://www.neuroscan.com/) for sLORETA and
SWARM analyses (Wagner et al. 2007). This is just one example of the different versions of
single-trial simulations that can be created and which will be placed on the MEG-SIM
website. Others to be included can have a variety of intra- and inter-trial variability, and/or
can be created for different brain regions altogether. As additional examples, we have
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created simulations with: 1) random jitter across sources within-trials for both induced
oscillatory and evoked activity; 2) constant phase across sources within-trial but jittered
across trials for both induced and evoked activity; and 3) constant phase lag between two
oscillating brain sources with a third source that has a random phase lag, in reference to the
other two active areas, in each trial. We have also created simulations in continuous fif
format with triggers indicating where the activity begins. This last example will be
especially useful for software packages that cannot read in single trial simulations.

Multidipole, spatiotemporal source localization was conducted for subject #2 (M072) using
the CSST algorithm for simulated data Sets 8 and 9 (CTF and Neuromag systems,
respectively). Table 4 shows the results from these analyses. Once again CSST appears to
determine the locations of the active cortical areas with a good degree of accuracy. We do
find obvious differences between the results for the CSST dipole fits for the two different
subjects. This was not surprising since the simulations were 1) created using each subjects’
MRI, therefore, the exact location of the cortical patch differs somewhat between subjects
which will result in different waveform distributions at the sensor level for the different
MEG systems; and 2) the V1 source was given a smaller initial amplitude (30nAm versus
50nAm) in subject #2 (M072), making it more difficult to identify. Furthermore, there is
also a slight variation in how accurately each source is located depending on the MEG
system used to collect the empirical data from which the noise trials were taken to create the
simulated data.

We next report the results of two L2 minimum norm-based current distribution analyses,
sLORETA and SWARM, available in Curry for the datasets made for subject #2 (M072). In
current distribution models, the cortex is divided up into a large number of elements, which
form the solution space. Since the primary source of the MEG signal is assumed to be
associated with postsynaptic currents, a current dipole is assigned to each of the many tens
of thousands of tessellation elements. Additionally, since the problem is under-determined
(i.e. there are fewer equations than unknowns), the weighted least-squares criterion requiring
that the prediction error is minimized must be augmented with an additional constraint to
select the best current distribution among those capable of explaining the data. In the case of
the basic L2 minimum norm approach, the mathematical criterion is the solution that
minimizes the power (L2-norm) of the dipole moment. After adding noise normalization,
statistical significance of current estimates relative to the level of noise can be determined
using “dynamic statistical parametric” maps; sLORETA is a variation of this approach
(Pascual-Marqui et al. 1994; 1999; Dale et al. 2000; Pascual-Marqui 2002; Wagner et al.,
2004; 2008), while SWARM (Wagner et al., 2007; 2008) is an sLORETA-based method
that provides current estimates instead of probabilities. Simulated data was read into the
Curry software package using either .ds files (for the CTF simulations) or .fif files (for the
Neuromag simulations). This allowed Curry to identify the correct coordinate system to use
when importing the data and additionally allowed digitized fiducials in the files to be used
for accurate alignment with the subjects MRI, which was also imported into Curry.

Figure 7 shows the results of the sLORETA and SWARM analyses carried out using the
Curry software package. The simulations made using the CTF system show results that are
more distributed in the IPS/I.LOG/V1 areas in both sLORETA and SWARM in comparison
to the simulations made with the Neuromag system, which shows more focal solutions. This
is not particularly surprising based on the fact that planar gradiometers are more sensitive to
signals directly below the sensors. We additionally provide the results at two different
cutoffs, to show that some activation may not be seen if the cutoff is too high, e.g. compare
the CTF sLORETA results in Figure 7, where the DLPFC area of activity is lost at the
higher cutoff. Figure 7 also shows that sLORETA was unable to find DLPFC activity at
either cutoff in the Neuromag data. It is also possible to extract time-course activation from
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the SWARM analysis. Although Curry software provides time-course extraction via “CDR
dipoles” it also contains the functionality to save the SWARM results into a mat file, which
may then be read into Matlab for further investigation. We utilized the latter method. As a
first step to show how time-courses can be extracted from the SWARM data we chose to
identify areas of activation as simply as possible. To this end we had Matlab identify the
areas of highest activation from the SWARM data that Curry created and plot the time-
courses at those locations (right portion of Figure 7), the only constraint was that the
independent sources be greater than 2.0 cm apart. Note that the added oscillations can be
easily identified. We have less experience with the two L2 minimum norm-based analyses,
therefore they should be considered preliminary at best; consequently, no tables of error
values are offered. We present a preliminary report here hoping to stimulate others to
investigate these areas further using these data. It is clear that these simulated data sets are
already providing a reasonable challenge for a variety of analysis methods, which is our
goal.

Somatosensory and Auditory Data Sets
Simulating median nerve stimulation (Figure 8) provides one of the simplest cases. This
activity consists of contralateral primary somatosensory (SIcontra), contralateral secondary
somatosensory (SIIcontra), and ipsilateral secondary somatosensory cortex activity (SIIipsi).
And finally, an auditory data set (Figure 9) provides a simple example of initial
synchronous, bilateral activity in auditory cortex. This set also includes asynchronous
activation of the temporo-parietal junction and cingulate cortex (4 cortical sources).

Empirical Data
As mentioned previously, visual, somatosensory and auditory data have already been
acquired from 5 participants. Details regarding these data are described below.

Visual Study
Small visual patterns of two sizes (1.0° and 5.0° of visual angle) were presented at 3.8°
eccentricity in the left and right visual fields. The small stimulus was designed to activate ~4
mm2 of tissue in primary visual cortex (at 3.8° eccentricity) according to the cortical
magnification factors presented in Rovamo and Virsu (1979) while the large stimulus was
designed to activate ~20 mm2 of cortex (focal vs. extended sources). The background
matched the mean luminance of the bullseye patterns. Participants passively viewed a small
fixation point at the center of the screen while the stimuli were randomly presented to the
left and right visual fields for a duration of 500 ms and at a rate of 800–1300 ms (slightly
randomized to avoid expectation). Two hundred individual responses for each of two
stimulus conditions were averaged together. Visual stimuli were projected onto a
backprojection screen using a DLP projector (Projection Design FX1+) outside the
magnetically shielded room. The same projector and notebook computer were flown to each
site. Stimulus sequences were generated using Presentation software (Neurobehavioral
Systems, http://www.neurobs.com/). Eccentricities and visual angle subtended by the stimuli
were kept constant across sites by adjusting the stimulus size based on the path lengths
measured at each site.

Somatosensory Study—An S88 dual channel stimulator with PSISU7 optical stimulus
isolation units (Grass Instruments, West Warwick, RI, USA) was used for the
somatosensory study. Electrical stimuli were delivered to the median nerve and to the index
finger of the right and left hands with an ISI varying between 1.5 and 2 s. The intensity of
median nerve stimulation was adjusted to produce a mild thumb twitch and the intensity was
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kept the same for index fingers and median nerves. Initial analyses of these data were
presented by Weisend et al. (2007).

Auditory Study—In this empirical study, three pure tones of different frequencies (500
Hz, 2000 Hz, and 4000 Hz) were presented to obtain a tonotopic map. In addition white
noise was also presented intermixed with the tones (focal vs. extended source conditions).
White noise contains spectral energy over a wide frequency range in contrast to pure tones,
and thus increases the size of the activated cortical patch (Pickles 1988). The cochlea is
organized tonotopically and this organization is propagated to primary auditory cortex,
where low frequencies are represented rostrally and high frequencies caudally (Schwartz
1986). White noise should stimulate extended tissue covering a range of frequencies. The
tones and white noise (200 trials for each stimulus) were randomly presented at an average
inter-stimulus interval of 1000 ms. Auditory stimuli were generated using Presentation
software and were presented via a Creative Labs Soundblaster audio card. The sound was
delivered to the subject's ear canal using sound transducers connected with plastic tubing to
ergonomically designed earplugs. A dB attenuator was used to adjust the intensity of the
tones.

Discussion
One goal of this effort is to offer developers of MEG methods, and hopefully EEG methods
in the future, an opportunity to directly compare results from their analysis routines with
others by using this extensive realistic simulated and empirical testbed of data established
for the purpose of quantifying strengths and limitations of each method (standardization).
This will aid in the refinement and further development of algorithms. Second, we are all
aware that some analysis procedures are better-suited for certain types of studies while other
analysis procedures are better-suited for other studies. The extensive testbed of realistic
simulated data provided at the web portal (http:/cobre.mrn.org/megsim/) includes sample
datasets emulating sensory through working memory-related processes across visual,
auditory, and somatosensory modalities. Users of MEG analysis procedures should be able
to make informed decisions as to which analysis tools are best-suited for their data by
working with these datasets. The direct comparison of different analysis techniques is
necessary for moving the MEG (and EEG) field forward in the neuroimaging arena.

The creation of single-trial simulated data sets permit a wider variety of MEG analysis tools
to be compared. Construction of single trials that mimic the differences between epochs of
real data allow the use of analysis techniques such as ICA to be used in conjunction with
various source modeling techniques to identify functional networks. These results can then
be compared with traditional source analysis conducted on averaged data. With the addition
of oscillations to the simulated data sets, analyses of the accuracy of functional connectivity
measures between various brain areas can also be investigated. This is important since it is
incomplete to know, for example, that certain brain locations are active without information
about which areas onset first, their durations, and whether cross-frequency oscillatory
activity is evident across multiple disparate brain regions or not. Furthermore, the simulated
data sets described here are available in a variety of file formats, including netCDF,
Neuromag .fif, CTF .ds, and Curry (Compumedics, Neuroscan). Hopefully, the creation of
these new data sets and formats, including novel single trial simulations, will foster
algorithm performance comparisons and facilitate cross-site collaborations. All data sets and
single trials discussed herein are currently available at the web portal (http://cobre.mrn.org/
megsim/).
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Information Sharing Statement
All data necessary to reproduce our analyses are located on the web portal available to all
interested parties (http://cobre.mrn.org/megsim/). MRI (MPRAGE), segmented MRI,
cortical surfaces, BEM surfaces and ground truth source distributions are available. Where
appropriate, IDL utilities will be supplied to write data to text formats. A free MATLAB
utility exists that permits reading netCDF format into MATLAB. The web portal has links to
download MRIVIEW and MEGAN as well as functions that import data from netMEG files
into C or IDL so that additional simulations can be constructed by others.
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Fig 1.
A Freesurfer-segmented gray matter/white matter boundary for the simulations (shown in
red) was imported into MRIVIEW from which patches (A) of simulated activity (B) were
generated. 100 passes of spontaneous activity or noise (C) were identified using CTF
software (Data Editor) and averaged together using MEGAN. The simulated activity was
embedded within the averaged noise file (D) and saved in netCDF format (i.e., a netMEG
file in MEGAN).
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Fig. 2.
MEGAN is used for preprocessing the MEG data. These data are saved in netCDF format
and used as input for the CSST algorithm. (A): averaged simulated visual responses (Sim
1.B) - whole head array; (B): averaged simulated visual responses for each sensor are
overlaid (200-600 ms interval was analyzed). MRIVIEW was used for: 1) segmenting the
cortical volume (C); 2) conducting a least squares fit between the points digitized on the
head surface and the reconstructed MR surface (D); 3) determining the starting locations
(red dots) and best-fitting sphere head model (E); and 4) setting-up the CSST fits and
displaying the CSST source localization results (F). Multistart algorithms analyze thousands
of fits to the data, as opposed to a single fit, enhancing the probability of reaching the global
minimum and obtaining statistically adequate and accurate solutions (e.g., 15,000 fits to the
data were conducted for this 4-dipole model). Portions of this figure (examples shown in C-
D) were taken from Aine et al., Neuroimage, 49(4): 3319-3330, 2010, with Permission from
Elsevier.
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Fig. 3.
A. Single unit activity from monkey area V1 evoked by a Walsh function visual stimulus. B.
MSST human time-course from area V1 evoked by a Walsh function stimulus.
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Fig. 4.
Sample source locations and time-courses for 3 of the simulated cases. Note the subtle
differences in temporal dynamics between these test cases.
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Fig. 5.
Simulation results for a 4-source model where all sources became synchronous during the
later interval (see upper left panels for source locations (cross-hairs) and time-courses of the
sources). Amplitudes and peak latencies were jittered across each of 128 single trials. The
averaged waveforms seen at the sensor level for the CTF system are shown beneath the
input time-courses. Upper right table shows CSST actual locations and error associated with
modeled source locations. The middle panel shows location and time-course plots of the
CSST solutions. Bottom row shows cross-correlations between source time-courses for an
early interval (left) when there was some asynchrony across sources and a later interval
(right) when all sources became synchronous.
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Fig. 6.
Simulated visual working memory study with long-range beta band and short-range gamma
band oscillatory activity (see A schematic). DLPFC and IPS oscillated at 15-20 Hz while
IPS, I. LOG, and V1 oscillated at 30-80 Hz. IPS generated both beta and gamma band
oscillations. B. The averaged input signal without noise is shown followed by sample single-
trials and the averaged data as seen at the sensors of the CTF system. C. CSST location
estimates and their associated time-courses (D) are shown. E. Time-frequency
representations using Morlet wavelets for the CSST solutions shown above. Frequency was
normalized to the Nyquist frequency = ½* sampling frequency (600 Hz). Oscillatory activity
was given 10 nAm on average across trials, which is fairly weak activity.
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Fig. 7.
A. sLORETA results using Curry at two different cutoff values (30% and 50%) for the same
active cortical areas mixed with spontaneous noise files from the CTF and Neuromag
systems. B. SWARM results using Curry at two cutoff values for the same active cortical
areas and noise files used in A. C. Time-course reconstructions from SWARM using
simulated data sets in B (both CTF and Neuromag).
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Fig. 8.
Primary somatosensory (SIc), contra- and ipsi-lateral secondary somatosensory cortices
(SIIc and SIIi) were activated in this example.
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Fig. 9.
Simulated auditory data based on 4 regions of activation (Left and right Heschl's gyrus or
LHG and RHG; temporo-parietal junction or TPJ; and anterior cingulate or AC).
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Table 3

CSST results for 4 visual sources without oscillatory activity (top section) and with oscillatory activity
(bottom section) for subject #1 (M545).

CTF Subj. M545

Source Loc. Error (mm) Lat. Error (ms) Amp. Error (nAm)

Single Trials (Set 7):

V1 1.5 6 2.5

I.LOG 9.4 4 3.2

IPS 3.7 3 7.9

DLPF 8.9 13 6.8

Single Trials with Oscillations (Set 8):

V1 4.7 6 9.8

I.LOG 9.7 1 4.8

IPS 7.0 1 11.2

DLPF 4.9 16 2.4
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Table 4

CSST results for subject #2 (M072) for both CTF and Neuromag systems. Location was considered “not
found” if it was ≥ 50.0 mm from the true source.

Source CTF Subj. M072 Neuromag Subj. M072

Single Trials & Oscillations: Loc. Error (mm) Loc. Error (mm)

V1 not found 9.9

I.LOG 7.5 3.7

IPS 4.2 2.8

DLPF 2.1 4.7
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