Skip to main content
Log in

A PC-Based Motor Control Task for Evaluation and Serial Monitoring of Upper Extremity Motor Function

  • News Item
  • Published:
Neuroinformatics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. Mumford, N., & Wilson, P. H. (2009). Virtual reality in acquired brain injury upper limb rehabilitation: evidence-based evaluation of clinical research. Brain Inj, 23(3), 179–191.

  2. Saposnik, G., & Levin, M. (2011). Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke, 42(5), 1380–1386.

  3. Laver, E. S., George, S., Thomas, S., Deutsch, J. E., Crotty, M. Virtual reality for stroke rehabilitation. (2011). Cochrane Database of Systemic Reviews, 9.

  4. Henderson, A., Korner-Bitensky, N., Levin, M. (2007). Virtual reality in stroke rehabilitation: a systemic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil, 14(2):52–61.

  5. Lucca, L. F. (2009). Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J Rehabil Med, 41(12), 1003–1100.

  6. Saposnik, G., Teasell, R., Mamdani, M., Hall. J., Mcllroy, W., Cheung, D., Thorpe, K, E., Cohen, L, G., Bayley, M. (2010). Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke.41(7):1477–84.

  7. Yong Joo, L., Soon Yin, T., Xu, D., Thia, E., Pei Fen, C., Kuah, C. W., et al. (2010). A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med, 42(5), 437–441.

  8. Leder R. S, M. N., Ibarra C. P, Gushiken H. C, Anaya G. M, Escalona C. O, Nuzen I. S, Alvarez A. G, Tyler M. E and Rita P. B. (2001). Computer game motivating rehabilitation with objective measures of improvement in motor function. Engineering in Medicine and Biology Society., 2, 1388–1390.

  9. Patil, P. G., Carmena, J. M., Nicolelis, M. A., & Turner, D. A. (2004). Ensemble recordings of human subcortical neurons as a source of motor control signals for a brain-machine interface. Neurosurgery, 55(1), 27–35; discussion 35–28.

  10. Schabowsky, C. N., Godfrey, S. B., Holley, R. J., & Lum, P. S. (2010). Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. J Neuroeng Rehabil, 7, 36.

  11. Sugar, T. G., He, J., Koeneman, E. J., Koeneman, J. B., Herman, R., Huang, H., et al. (2007). Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng, 15(3), 336–346.

  12. Kisacanin, B., Agarwal, G. C., Taber, J., & Hier, D. (2000). Computerised evaluation of cognitive and motor function. Med Biol Eng Comput, 38(1), 68–73.

  13. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

  14. Fitts, P. M. The information capacity of the human motor system in controlling the amplitude of movement. (1954). J Ep Psychol, 47(6):381–91.

  15. Pergami. P., Seemaladinne. N., & Martone. P. Validation of a Computer Application as a Test of Motor Function. American Journal of Occupational Therapy. Submitted.

  16. Scott, S. H., & Kalaska, J. F. (1997). Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophysiol, 77(2), 826–852.

  17. Camarata, P. J., Parker, R. G., Park, S. K., Haines, S. J., Turner, D. A., Chae, H., et al. (1992). Effects of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced hemiparkinsonism on the kinematics of a two-dimensional,multijoint arm movement in the rhesus monkey. Neuroscience, 48(3), 607–619.

  18. Waldau, B., Clayton, D. A., Gasperson, L. B., & Turner, D. A. (2011). Analysis of the time course of the effect of subthalamic nucleus stimulation upon hand function in Parkinson’s patients. Stereotact Funct Neurosurg, 89(1), 48–55.

  19. Butefisch, C., Hummelsheim, H., Denzler, P., & Mauritz, K. H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci, 130(1), 59–68.

  20. Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair, 22(2), 111–121.

  21. Luft, A. R., McCombe-Waller, S., Whitall, J., Forrester, L. W., Macko, R., Sorkin, J. D., et al. (2004). Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA, 292(15), 1853–1861.

  22. Dipietro, L., Sabatini, A, M., Dario, P. (2003). Evaluation of an instrumented glove for hand-movement acquisition. J Rehabil Res Dev, 40(2):179–89.

Acknowledgments

This study was supported by the West Virginia University Senate Grant for Research and Scholarship, internal WVU funding mechanism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pergami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pergami, P., Seemaladinne, N. & Martone, P. A PC-Based Motor Control Task for Evaluation and Serial Monitoring of Upper Extremity Motor Function. Neuroinform 10, 323–328 (2012). https://doi.org/10.1007/s12021-011-9139-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-011-9139-5

Keywords

Navigation