Skip to main content

Advertisement

Log in

Morphological Homogeneity of Neurons: Searching for Outlier Neuronal Cells

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We report a morphology-based approach for the automatic identification of outlier neurons, as well as its application to the NeuroMorpho.org database, with more than 5,000 neurons. Each neuron in a given analysis is represented by a feature vector composed of 20 measurements, which are then projected into a two-dimensional space by applying principal component analysis. Bivariate kernel density estimation is then used to obtain the probability distribution for the group of cells, so that the cells with highest probabilities are understood as archetypes while those with the smallest probabilities are classified as outliers. The potential of the methodology is illustrated in several cases involving uniform cell types as well as cell types for specific animal species. The results provide insights regarding the distribution of cells, yielding single and multi-variate clusters, and they suggest that outlier cells tend to be more planar and tortuous. The proposed methodology can be used in several situations involving one or more categories of cells, as well as for detection of new categories and possible artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The software DONE (Detection of Outlier NEurons) is an implementation for MATLAB that is available on our web-site (http://www.biological-networks.org/p/outliers/).

References

  • Ascoli, G. A. (Ed.) (2002). Computational neuroanatomy: Principles and methods. Totawa, NJ: Humana Press.

    Google Scholar 

  • Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). Neuromorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247.

    Article  PubMed  CAS  Google Scholar 

  • Binzegger, T., Douglas, R. J., & Martin, K. A. (2005). Axons in cat visual cortex are topologically self-similar. Cereb Cortex, 15(2), 152–165.

    Article  Google Scholar 

  • Botev, Z. I., Grotowski, J. F., & Krose, D. P. (2010). Kernel density estimation via diffusion. The Annals of Statistics, 38(5), 2916.

    Article  Google Scholar 

  • Cajal, S. R. (1989). Recollections of my life. Massachussetts: MIT Press.

    Google Scholar 

  • Cook, J. E. (1998). Getting to grips with neuronal diversity: What is a neuronal type? In L. Chalupa & B. Finlay (Eds.), Development and organization of the retina (pp. 91). New York: Plenum.

    Chapter  Google Scholar 

  • Costa, L. da F., Manoel, E. T. M., Faucereau, F., Chelly, J., van Pelt, J., & Ramakers, G. (2002). A shape analysis framework for neuromorphometry. Network: Computation in Neural Systems, 13(3), 283.

    Article  Google Scholar 

  • Costa, L. da F., Rodrigues, F. A., Hilgetag, C. C., & Kaiser, M. (2009). Beyond the average: Detecting global singular nodes from local features in complex networks. Europhysics Letters, 87, 18008.

    Article  Google Scholar 

  • Costa, L. da F. & Velte, T. J. (1999). Automatic characterization and classification of ganglion cells from salamander retina. Journal of Comparative Neurology, 404, 33.

    Article  Google Scholar 

  • Costa, L. da F., Zawadzki, K., Miazaki, M., Viana, M. P., & Taraskin, S. N. (2010). Unveiling the neuromorphological space. Frontiers in Neuroscience, 4, 1.

    Google Scholar 

  • Donohue, D. E., & Ascoli, G. A. (2010). Automated reconstruction of neuronal morphology: An overview. Brain Research Review, 67,(1–2), 165.

    Google Scholar 

  • Eadie, W. T., Drijard, D., James, F. E., Roos, M., & Sadoulet, B. (1971). Statistical methods in experimental physics. North-Holland, Amsterdam.

    Google Scholar 

  • Echtermeyer, C., Costa, L. da F., Rodrigues, F. A., & Kaiser, M. (2011). Automatic network fingerprinting through single-node motifs. PLoS ONE, 6(1), 9.

    Article  Google Scholar 

  • Echtermeyer, C., Han, C. E., Rotarska-Jagiela, A., Mohr, H., Uhlhass, P., & Kaiser, M. (2011). Integrating temporal and spatial scales: Human structural network motifs across age and region of interest size. Frontiers in Neuroinformatics, 5, 14.

    Article  Google Scholar 

  • Gleeson, P., Steuber, V., & Silver, R. A. (2007). Neuroconstruct: A tool for modeling networks of neurons in 3D space. Neuron, 54(2), 219.

    Article  PubMed  CAS  Google Scholar 

  • Halavi, M., Polavaram, S., Donohue, D. E., Hamilton, G., Hoyt, J., Smith, K. P., et al. (2008). Neuromorpho.org implementation of digital neuroscience: Dense coverage and integration with the NIF. Journal of Neuroinformatics, 6(3), 241–252.

    Article  Google Scholar 

  • Härdle, W. K., & Simar, L. (2007). Applied multivariate statistical analysis (2nd ed.). Springer.

  • Kaiser, M., & Hilgetag, C. C. (2006). Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Computational Biology, 7(95), 806.

    Google Scholar 

  • Kaiser, M., Hilgetag, C. C., & van Ooyen, A. (2009). A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions. Cerebral Cortex, 19(12), 3001.

    Article  PubMed  Google Scholar 

  • Loewi, O. (1921). Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Archiv, 189, 239.

    Article  Google Scholar 

  • Loewi, O. (1955). Salute to Henry Hallet Dale. The British Medical Journal, 1(4926), 1356.

    Article  CAS  Google Scholar 

  • Lu, J., Fiala, F. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS ONE, 4(5), e5655.

    Article  Google Scholar 

  • McGhee, G. R. (2006). The geometry of evolution: Adaptive landscapes and theoretical morphospaces. Cambridge University Press.

  • Montague, P. R., & Friedlander, M. J. (1991). Morphogenesis and territorial coverage by isolated mammalian retinal ganglion cells. Journal of Neuroscience, 11, 1440.

    PubMed  CAS  Google Scholar 

  • Poznanski, R. R. (1992). Modelling the electronic structure of starburst amacrine cells in the rabbit retina: Functional interpretation of dendritic morphology. Bulletin of Mathematical Biology, 54, 905.

    PubMed  CAS  Google Scholar 

  • Schierwagen, A. (2008). Neuronal morphology: Shape characteristics and model. Neurophysiology, 40(4), 310.

    Article  Google Scholar 

  • Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-measure: A web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3, 866.

    Article  PubMed  CAS  Google Scholar 

  • Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87, 387.

    PubMed  CAS  Google Scholar 

  • Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418.

    Article  PubMed  Google Scholar 

  • Srinivasan, R., Zhou, X., Miller, E., Lu, J., Litchman, J., & Wong, S. T. C. (2007). Automated axon tracking of 3D confocal laser scanning microscopy images using guided probabilistic region merging. Neuroinformatics, 5(3), 189.

    Article  PubMed  Google Scholar 

  • Stepanyants, A., & Chklovskii, D. B. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neuroscience, 28(7), 387.

    Article  CAS  Google Scholar 

  • Stepanyants, A., Hof, P. R., & Chklovskii, D. B. (2002). Geometry and structural plasticity of synaptic connectivity. Neuron, 34(2), 275.

    Article  PubMed  CAS  Google Scholar 

  • Toris, C. B., Eiesland, J. L., & Miller, R. F. (1995). Morphology of ganglion cells in the neotenous tiger salamander retina. Journal of Comparative Neurology, 352(4), 535.

    Article  PubMed  CAS  Google Scholar 

  • Wen, Q., & Chklovskii, D. B. (2008). A cost-benefit analysis of neuronal morphology. Journal of Neurophysiology, 99, 497.

    Article  Google Scholar 

Download references

Acknowledgements

Luciano da F. Costa is grateful to FAPESP (05/00587-5) and CNPq (301303/06-1 and 573583/2008-0) for sponsorship. Krissia Zawadzki is grateful to FAPESP sponsorship (2010/01994-1). Matheus P. Viana is grateful to FAPESP sponsorship (2010/16310-0). Marcus Kaiser and Christoph Feenders acknowledge support by EPSRC (EP/G03950X/1) and the CARMEN e-science Neuroinformatics project ( http://www.carmen.org.uk ) funded by EPSRC (EP/E002331/1). Marcus Kaiser is also funded through the WCU program of the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-10142).

Conflict of interests

The authors declare that the research was conducted commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus Kaiser or Luciano da F. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zawadzki, K., Feenders, C., Viana, M.P. et al. Morphological Homogeneity of Neurons: Searching for Outlier Neuronal Cells. Neuroinform 10, 379–389 (2012). https://doi.org/10.1007/s12021-012-9150-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-012-9150-5

Keywords

Navigation