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Abstract
We propose an automated multi-atlas and multi-ROI based segmentation method for both skull-
stripping of mouse brain and the ROI-labeling of mouse brain structures from the three
dimensional (3D) magnetic resonance images (MRI). Three main steps are involved in our
method. First, a region of interest (ROI) guided warping algorithm is designed to register multi-
atlas images to the subject space, by considering more on the matching of image contents around
the ROI boundaries which are more important for ROI labeling. Then, a multi-atlas and multi-ROI
based deformable segmentation method is adopted to refine the ROI labeling result by deforming
each ROI surface via boundary recognizers (i.e., SVM classifiers) trained on local surface patches.
Finally, a local-mutual-information (MI) based multi-label fusion technique is proposed for
allowing the atlases with better local image similarity with the subject to have more contributions
in label fusion. The experimental results show that our method works better than the conventional
methods on both in vitro and in vivo mouse brain datasets.
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Introduction
Mouse models have been widely used for understanding human diseases, testing drugs, and
evaluating therapies. Several researchers have adopted high-resolution 3D MRI to measure
the morphometry of mouse brain models (McDaniel et al. 2001; Redwine et al. 2003; Spring
et al. 2007; Nieman et al. 2007; Lau et al. 2008; Lerch et al. 2008; Zhang et al. 2010).
Specifically, by morphological analyses of mouse brain MRI, the longitudinal development
of brain atrophy in Huntington’s disease mouse models (Lerch et al. 2008; Zhang et al.
2010) and Alzheimer’s disease mouse models (Lau et al. 2008) can be quantified. Also, the
volumetric changes of mouse brain can be tracked (McDaniel et al. 2001; Redwine et al.
2003).

Although the automated methods for human brain MRI segmentation have been studied for
decades, the automated segmentation of mouse brain images has not received too much
attention (Ali et al. 2005; Badea et al. 2007; Zhang et al. 2010). However, manual or semi-
automatic labeling of mouse brain structures is both time-consuming and error prone,
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although this type of methods were well adopted in the previous morphometric studies of
mouse brains (Badea et al. 2007; McDaniel et al. 2001; Redwine et al. 2003; Zhang et al.
2010). On the other hand, several automated segmentation methods for mouse brain images
(Ali et al. 2005; Wu et al. 2006; Lau et al. 2008; Lerch et al. 2008; Sharief et al. 2008; Bae
et al. 2009; Lee et al. 2009) have been proposed recently. In these methods, an atlas or a
manually-labeled image is first nonlinearly registered onto the subject according to the
matching of image intensities. Then, the subject image is segmented based on the warped
label (or ROI) information. In these methods, typically the image registration is performed
by considering all voxels in the whole images equally, and only one atlas (i.e., a labeled
subject or the statistical classifiers built from multiple atlases) is typically used during
registration. Recently, multi-atlas fusion methods have been studied extensively in the
medical image analysis field, to avoid both bias and potential inaccurate registration from
the single atlas (Sabuncu et al. 2010; Chakravarty et al. 2012). For effective mouse brain
segmentation, multi-atlas fusion technique has also been investigated and better result was
achieved compared to the single atlas based techniques (Chakravarty et al. 2012).

Meanwhile, deformable models are widely adopted for biomedical image segmentation
(Chakraborty et al. 1996; Liu et al. 2008; McInerney and Terzopoulos 1996; Shen et al.
1999; Zhan and Shen 2006). In (Chakraborty et al. 1996; Liu et al. 2008), local intensity
information and structured surface shape are combined to identify the object boundaries. In
(Zhan and Shen 2006), a deformable segmentation method is proposed to segment 3D
ultrasound prostate images using statistical classifiers to learn boundary information locally.
However, deformable model usually requires a good initialization close to the expected
boundary (Chakraborty et al. 1996; Liu et al. 2008; McInerney and Terzopoulos 1996; Zhan
and Shen 2006), in order to achieve the robust segmentation results.

To solve these problems, we propose a deformable label fusion method that combines multi-
atlas multi-ROIs information. Specifically, a ROI-guided warping algorithm is first
proposed to register each atlas to the subject by considering more on the matching of image
contents around the ROI boundaries, which are more important for ROI labeling. Then, a
multi-atlas and multi-ROI based deformable segmentation method is adopted to refine the
ROI labeling result by deforming ROI surface via the boundary recognizers (i.e., SVM
classifiers) trained on local surface patches. In this step, the surface is reconstructed for each
ROI in each atlas, and then is parcellated into small patches by local appearance similarity
using normalized cut method (Shi and Malik 2000). After that, a SVM model is further
trained on each patch to learn local ROI appearance information that contains the local
image information from multiple atlases. Finally, the ROI surface is deformed in the subject
space to locate the ROI boundaries guided by the respectively trained SVMs that can
classify local regions as ROI or non-ROI labels. To obtain better segmentation results,
multiple atlases are used to avoid the bias from the use of a single atlas, and also a local
mutual information (MI) based multi-label fusion technique is developed for allowing the
atlases with better local image similarity with the subject to have more contributions in label
fusion. We have successfully applied this method to the structure-labeling of both in vitro
and in vivo mouse brain images.

Method
Overview

An overview of our automated mouse brain segmentation pipeline is shown in Fig. 1. This
automated atlas-based segmentation method can be applied to both skull-stripping of mouse
brain and the ROI-labeling of mouse brain structures. Before using this pipeline for mouse
brain skull-stripping and ROI-labeling, intensity inhomogeneity of each new subject image
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is first corrected (Sled et al. 1998) and then the global intensity distribution is matched with
those of atlas images.

For skull-stripping of a new subject image, each atlas image is first affine registered to the
subject image. By defining the whole brain in each atlas as a big ROI, each atlas image can
be warped to the subject using a ROI-guided registration approach as detailed below. Then,
the surface is reconstructed for each ROI in each atlas, and further parcellated into a set of
small patches according to local appearance similarity by using normalized cut method (Shi
and Malik 2000). After that, a SVM model is trained on each patch to learn local ROI
appearance information that contains the local image information from multiple atlases.
Thus, the ROI surface can be deformed in the subject space to locate the ROI boundaries,
guided by the respectively trained SVMs that can classify local regions as ROI or non-ROI
labels. Finally, we can use our local-MI-based multi-label fusion technique to segment the
subject image into brain and non-brain regions.

The same method described above can also be used for ROI labeling of brain structures as
illustrated in Fig. 1b. By focusing on the ROI boundaries of each atlas, the ROI-guided
registration method is performed to register each skull-stripped atlas image with the skull-
stripped subject image by emphasizing the matching of ROI boundaries during the
registration, which is the most important for ROI labeling. Then, after registration, a multi-
atlas and multi-ROI based deformable segmentation method is adopted to refine the ROI
labeling result by deforming each ROI surface via its respective boundary recognizers (i.e.,
SVM classifiers) trained on local surface patches. Finally, the local-MI-based multi-label
fusion technique is applied to the multiple warped atlases for obtaining the final
segmentation result.

ROI-guided Registration
For ROI-based segmentation methods, accurate registration between atlas and subject
images is critical for achieving good segmentation results. Although accurate registration
would be preferred for all image voxels, good registration of images around the ROI
boundaries is more important and directly related to the segmentation results. Although it is
good to have the images within the ROIs also being registered, their registration does not
directly contribute to the segmentation results. In contrast, putting more effort on the
registration of images within ROIs may affect the registration of images around ROI
boundaries, thus eventually affecting the segmentation results. To this end, a ROI-guided
warping algorithm is proposed in this paper for registering each atlas to the subject by
considering more on the matching of images around the ROI boundaries, which are more
important for ROI labeling.

Specifically, diffeomorphic Demons framework (Vercauteren et al. 2009), which has been
proved to be an efficient registration method for mouse brain (Lee et al. 2009), is adopted in
this paper. Given an atlas image IA and a subject image IS, their registration can be
formulated as finding a deformation field f to minimize an energy function as defined
below:

(1)

where Diff(·) measures the difference between two images and Reg(·) is the regularization
term on the estimated deformation field f(x). These two terms are defined in Demons as

 and Reg , where σi
accounts for the noise in the image intensities, and σT controls the amount of regularization
on deformation field f(x).
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The solution to this energy minimization problem can be obtained by iteratively updating
deformation field f(x) (Vercauteren et al. 2009). For example, given a current deformation
field f(x), the corresponding compositive update u on each voxel x can be defined as below:

(2)

where κ(f(x)) is a weight function measuring the importance of the voxel x in the atlas
image IA during the registration. When κ (f(x))=1, u in Eq. (2) becomes a regular update
vector in the Demons registration method (Vercauteren et al. 2009). J(x) is the gradient of
image IS or IA(f), or even the average of both gradients at voxel x.

Assume that RA is the corresponding ROI (or label) map of the atlas image IA. Thus, we can
define its weight function κ (f(x)) in the entire image space as:

(3)

Where ||∇RA(f(x))|| is the magnitude of gradient of ROI map RA at voxel f(x); κ1 and κ2 are
the two different weighting values used to control the amount of deformation in the
boundary regions and other non-boundary regions, respectively. By setting κ1≥κ2, the ROI
boundary regions will deform and arrive at their correspondences in the subject space faster
than these non-boundary regions.

Multi-atlas and Multi-ROI Based Deformable Segmentation
Since non-linear registration in the previous step provides a good estimation of ROI labels
especially for the ROIs with strong boundaries, deformable models can use these labels as
good initializations to further refine the ROI labeling results. As for the ROIs with weak
boundaries, their registration and labeling can be guided by the nearby ROIs with strong
boundaries. Meanwhile, multiple atlases could provide complementary shape and
appearance information for each ROI. Thus, a deformable model guided by information
learned from multiple atlases using statistical method (Zhan and Shen 2006) can be defined
for each ROI of each atlas, and could further improve the ROI labeling results.

Specifically, a triangulated surface Si,j is firstly reconstructed for each ROI (j) in each atlas
(i) to model the shape of the respective ROI. Then, the appearance model is reconstructed
for each surface Si,j using local intensity information collected from multi-atlas images in
the corresponding positions. After warping all surfaces to the subject space using the
deformation field estimated from the ROI-guided registration method as proposed in the
previous section, each surface Si,j can be deformed to the respective location by fitting the
appearance model to the subject image under constraint of surface smoothness. Finally, all
the deformed ROI surfaces from the same atlas can be combined together as the final
segmentation result. All results by different atlases will be further fused together as
described below, to produce the final segmentation result for the subject.

Surface Model Reconstruction—For each ROI (j) in each atlas (i), a triangulated
surface Si,j is reconstructed using Marching Cubes method (Lorensen and Cline 1987), and
then it is parcellated into a set of small patches, along with the support vector machine
(SVM) trained on each patch to obtain local appearance information in the image.
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Surface Parcellation: In mouse brain image, most ROIs are connected to multiple other
ROIs in the neighborhood. Thus, local image intensity information along each ROI
boundary could be different, depending on which other ROIs it is connected with. In this
way, each ROI surface Si,j should also be characterized locally. On the other hand, although
we can define a SVM model for each vertex of ROI surface Si,j, it is time-consuming to train
a large number of SVMs (due to the large number of vertices in each surface Si,j) and also it
could be very sensitive to noise in the local region around each vertex. Thus, a
compromising method is to partition each surface into a set of small patches, with each
patch having the similar appearance on the respective vertices. In our implementation, the
normalized cut method (Shi and Malik 2000) is adopted to partition a surface into several
partitions of vertex set with high appearance similarity within same partition, while low
appearance similarity between different partitions.

Specifically, the normalized cut method will firstly partition an undirected graph into two
sub-graphs and then further partition each sub-graph iteratively into small patches. Given a
weighted graph G=(V, E), let V1 and V2 are the two complementary partitions of vertex set
V, and the partition problem could be defined as minimizing the similarity between different
partitions and maximizing the similarity within the same partition. Here, the similarity
between two partitions nc(V1, V2) and the similarity within two partitions na(V1, V2) can be
defined as below, respectively:

(4)

(5)

The similarity between two partitions Vi and Vj, S(Vi, Vj), is defined as:

(6)

where svk, vl is the appearance similarity between vertices vk and vl. Since nc(V1, V2) =
2−na(V1, V2), the minimization of nc(V1, V2) is also equal to the maximization of na(V1,
V2). Since the problem is a NP-hard problem, the spectral method is adopted here to find a
solution (Shi and Malik 2000).

In our implementation, the similarity between different vertices is defined as a combination
of similarity of local normal direction and also the similarity of intensity information.
Specifically, the local intensity feature vector of each vertex vk at position x vk is first
defined as the intensity values sampled along the normal direction of this vertex:

(7)

where nvk is the normal direction of the vertex vk, and 2λ+1 is the length of feature vector.
An example of this sampling along normal direction is shown in Fig. 2(a), e.g., sampling for
a vertex (green) of ROI surface (white) along the normal direction (red line). Then, the
similarity between the two neighboring vertices vk and vl could be defined as:

(8)
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where nvk and nvl are the normal directions of two vertices vk and vl, respectively. The two
weighting parameters w1 and w2 control the contributions of the intensity and geometric
similarities, respectively. If the vertices vk and vl are not directly connected, their similarity
is set to 0.

We expect each patch to have similar surface area. In our implementation, the average
surface area for each patch is around 3 mm2. One example of surface partition result is
shown in Fig. 2(b), where different colors represent different surface patches.

Support Vector Machine Trained on Each Surface Patch: The ROI image appearance
(Zhan and Shen 2003; Shi et al. 2008; Wang et al. 2001) could be characterized by
comparing the local image features between ROI and non-ROI regions, as shown in Fig. 3,
where the ROI region is marked by “+” and non-ROI region is marked by “−”. SVM can
estimate a decision plane to separate positive samples from negative samples based on the
statistical learning theory. Compared to other classification methods, SVM can obtain the
maximum generalization ability (Burges 1998) by maximizing the margin distance, instead
of classification errors between classes. Thus, in our method, SVM model is trained to
separate local ROI and non-ROI voxels for each surface patch Pi,j,k.

As shown in Fig. 3, each patch Pi,j,k in the atlas i is first deformed to the other atlas images
using the deformation field generated by registration of other atlases’ label images to the
selected atlas’ label image. Then image features are extracted for each vertex in the surface
patch (and also its neighboring voxels) from all atlas images, which include the image
intensity information along normal direction as described in Eq. (7) and also the local
intensity gradient vector. An example is shown in Fig. 3, where the local image features and
the corresponding labels for the vertices in the light-blue surface patch are extracted from all
atlas images and used as the sample dataset to train the SVM model.

For the simplicity, the linear SVM model is adopted in our method, instead of non-linear
SVM model. 90% of data is randomly selected from the sample dataset to train the SVM
model, and the rest dataset is used as the testing samples to measure the classification
accuracy of each SVM model as shown in Fig. 3. Since the features extracted from image
might be not good enough to separate ROI and non-ROI regions, such as ROI and non-ROI
regions with similar image intensity, the SVM model might not be able to distinguish
between them, such as the blue surface patch shown in Fig. 3, which has similar image
intensity inside and outside the patch boundaries. To reduce the possibility of misguidance
by the low-accuracy classifiers, only the SVM models with the accuracy higher than 75%
are used in the later stage to refine the labeling boundaries.

SVM-guided Surface Deformation—After construction of SVM model on each surface
patch, the whole surface can be deformed in the subject space to locate the respective ROI
boundaries, guided by the trained SVM that can classify the local regions as ROI and non-
ROI labels, respectively.

The deformable model introduced in (Kass et al. 1988; McInerney and Terzopoulos 1996;
Shen and Ip 1997) is adopted in this paper. It deforms a parameterized surface in the spatial
domain by following the internal Fint and external Fext forces as described:

(9)

where the surface vertex v is treated as a function of time t. Usually the internal force is used
to smooth the deformed surface and/or restore it to the original configuration; thus, in our
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implementation, the internal force is simply defined to smooth the locations of vertices
around each vertex in the surface patch. Specifically, the internal force deforms the vertex to
the center of its neighboring vertices.

The external force is used to deform the surface to the expected ROI boundary. Since the
SVM model in our method can classify the local region and identify the rough boundary
locally, the external force can be calculated by the local SVM classification results.
Specifically, for each vertex v in the surface patch, the local classification results in its
spherical neighborhood can be obtained by applying SVM model on the respective feature
vectors, and the external force can thus be defined as:

(10)

where L(v,xi) is the classification result of voxel xi in the spherical neighborhood N(v) of
the surface vertex v, and nv is the normal direction of vertex v. When L(v, xi) =1, it indicates
that the voxel xi could be in the ROI region, and L(v, i)=−1 indicates that the voxel xi could
be in the non-ROI region. Thus, if vertex v is inside the ROI region, more voxels are
classified as ROI region, and the direction of Fext will be the same as the normal direction of
the surface patch as shown in Fig. 4.

After deforming each vertex to its final position as described in the Section “SVM-guided
Surface Deformation”, ROIs from the same atlas could be combined as a whole
segmentation result. However, since each ROI is deformed independently, there might exist
certain overlap or gap between the two deformed ROIs with surface-based deformation. To
deal with this issue, the ROI labels at the overlapping or gap regions are estimated by the
minimal distance criterion. As shown in Fig. 5, the red voxel in the overlapping region can
be labeled as ROI 2, since its distance (d2) to ROI 2 is smaller than its distance (d1) to ROI
1.

MI-based Multi-atlas Label Fusion
Further fusion of multiple deformed atlases could reduce the bias of segmentation caused by
the single atlas-based segmentation (Sabuncu et al. 2010), and might also overcome the
possible failure during the single atlas-based segmentation.

Given a subject image IS, all N atlas images {Ii(x), i=1, 2, …, N} can be warped to the
subject space {Ii(fi(x)), i=1, 2, …, N}, respectively. The warped ROI labels of these atlases

can be obtained as { , i − 1, 2 …, N} by using the methods described in the previous
sections. Now, the problem becomes how to fuse the multi-labels from multiple atlases to
achieve a good segmentation R̂S for the subject IS.

It is expected that the atlases with better local alignment with the subject should have more
contributions for the label fusion of each voxel x in the subject. The local alignment degree
between the atlas image Ii and the subject IS at voxel x can be defined by their mutual
information (MI) as:

(11)

where  is the neighborhood of voxel x in the subject image IS, and MI(·, ·) is the MI
between the two image regions.
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Thus, the local-MI-based segmentation for each voxel x in the subject can be described to
find a label R̂S(x) which maximizes the similarity between the label R̂S(x) and the labels R
′i(x) from all atlases:

(12)

where δ(·) is the Dirac delta function, and mi denotes the weight for atlas i. When mi is set
as constant for all atlases, the segmentation will be the simple majority voting.

Image Datasets and Atlases
The Brookhaven’s C57BL/6J mouse database (Ma et al. 2005), which includes both in vitro
and in vivo atlases, is adopted in our experiments. For in vitro data, T2-weighted MRIs were
acquired from 10 C57BL/6J mouse with size of 256×256×512 voxels and isotropic 0.047
mm spacing. For in vivo data, T2-weighted MRI images were acquired from 12 C57BL/6J
mouse with size of 192×96×256 voxels and isotropic 0.10 mm spacing.

To create individual atlases, one of the images was firstly manually segmented into 20 ROIs.
Then, this image was registered to other images for guiding the respective segmentations.
Finally, all these segmentation results were manually refined to build the final atlases.

Results
In the experiments, we use the leave-one-out cross-validation to evaluate the performance of
skull-stripping and ROI labeling. Also, parameters are set as κ1=1.5, κ2=0.5, λ=10, w1=0.5,
w2=0.5, σi=1, σT =1 and α=0.5 in all experiments that are reported below. The experiments
were performed in a PC with Intel core i5 2.67 GHz CPU. The average labeling time with 9
atlases is about 30 min for in-vivo image, and 2 h for in-vitro image.

Skull Stripping
We used Dice ratio to measure the overlay of our skull-stripping result and manual skull-
stripping result on all in vivo images. As reported in Table 1, compared with the original
Demons registration method, our ROI-guided registration method improves the average
Dice ratio from 0.909 to 0.928 when using single-atlas-based segmentation. After using
SVM-based deformable segmentation, the average Dice ratio increases from 0.928 to 0.975.
Finally, after fusing all segmentation results by the local-MI-based multi-label fusion
technique, the average Dice ratio increases from 0.975 to 0.980, which could be considered
as a good result even compared to the skull-stripping result of human brain images (Lee et
al. 2003; Park and Lee 2009; Smith 2002).

ROI Labeling
An example of ROI labeling result is shown in Fig. 6. After ROI-guided image registration,
ROI labels are roughly matched with the ground-truth labels, but the boundary of one small
ROI is not well matched, as indicated by the red arrow in Fig. 6. After using multi-atlas and
multi-ROI based deformable segmentation, the labeling result is refined especially on the
white ROI indicated by the red arrow in Fig. 6. By fusing label information from multiple
atlases, the labeling result is further improved as shown in Fig. 6.

To quantitatively measure the accuracy of labeling, the Dice ratio is first used to compare
our ROI-labeling results with manual ROI-labeling results on all in vitro and in vivo mouse
images. The average Dice ratios of 20 ROIs for in vitro and in vivo mouse images are shown
in Tables 2 and 3, respectively.
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For in vitro dataset, our ROI-labeling method produces quite good results, with average Dice
ratio of 0.904. The significant improvement by our multi-label fusion technique appears in
the small ROIs such as anterior commissure (about 1.1 mm3) which increases from 0.572 to
0.709, and ventricles (about 1.6 mm3) which increase from 0.682 to 0.795, as shown in
Table 2. But when Dice ratio arrives at a relatively high value (such as for neocortex and
cerebellum), the improvement is limited.

For in vivo dataset, the ROI-labeling results are similar to those for in vitro dataset, but with
an overall lower Dice ratio (0.859 compared to 0.904) due to the lower image quality. The
Dice ratios for the small ROIs are improved by both ROI-guided registration method and
multi-label fusion technique. For example, the Dice ratio of anterior commissure is
improved from 0.413 to 0.443 by the ROI-guided registration method and further to 0.494
by using the SVM-based deformable segmentation, and finally reaches 0.609 by the multi-
label fusion method.

To further quantitatively measure the accuracy of labeling, we also used the average surface
distance to compare our ROI-labeling results with manual ROI-labeling results on all in
vitro and in vivo mouse images. The average distance of 20 ROIs for in vitro and in vivo
mouse images are shown in Tables 4 and 5, respectively.

For in vitro dataset, our ROI-labeling method produces quite good results, with average
distance of 0.019 mm. The significant improvement by our multi-label fusion technique
appears in the small ROIs such as anterior commissure (about 1.1 mm3) which decrease
surface error from 0.086 to 0.041 mm, and ventricles (about 1.6 mm3) which decrease
surface distance from 0.048 to 0.021 mm, as shown in Table 4.

For in vivo dataset, the ROI-labeling results are similar to those for in vitro dataset, but with
an overall higher average surface distance (0.028 mm compared to 0.019 mm) due to the
lower image quality and resolution. The average surface distance for the small ROIs are
improved by both the ROI-guided registration method and the multi-label fusion technique.
For example, the average surface distance for the ventricle is improved from 0.103 mm to
0.098 mm by the ROI-guided registration method, further to 0.088 mm by using the SVM-
based deformable segmentation, and finally reaches 0.044 mm by the multi-label fusion
method.

Conclusion
An automated multi-atlas multi-ROI based segmentation method has been proposed in this
paper for both skull-stripping of mouse brain and the ROI-labeling of mouse brain
structures. The method has been applied to both in vitro and in vivo datasets and shows good
performance. We will make a dedicated software package for this developed method, and
will further make it freely available to the researchers and users through our website (http://
bric.unc.edu/ideagroup/) as we have done for our other developed methods.

Information Sharing Statement
We will make a dedicated software package for this developed method freely available to
the researchers and users through our website (http://bric.unc.edu/ideagroup/).
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Fig. 1.
Mouse brain segmentation pipeline. a Skull stripping, and b ROI labeling
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Fig. 2.
Example of surface parcellation. a A sample ROI surface with illustration on how to sample
the intensity feature vector for each surface vertex. b The parcellation result for two ROI
surfaces, where each color represents one surface patch
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Fig. 3.
Flowchart of constructing support vector machine for each surface patch (i.e., light-blue).
Each patch is first registered with the rest atlas images. Then the image features are
extracted for each vertex in the surface patch from all atlas images. The sample dataset can
thus be constructed. By dividing the sample dataset into the training and testing sets, we can
train the SVM model and further test its performance
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Fig. 4.
External force on vertex v, guided by the local classification results
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Fig. 5.
Illustration of re-labeling voxels in the overlapping region of ROIs
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Fig. 6.
Illustration of mouse brain labeling results, compared to the ground truth
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Table 1

Average Dice ratio (with standard deviation (STD)) for the skull-stripping results

Dice ratio (STD) Diffeomorphic demons registration ROI-guided registration Deformable segmentation Multi-atlas label fusion

Skull-stripping 0.909 (0.02) 0.928 (0.02) 0.975 (0.01) 0.980 (0.01)
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Table 2

Average Dice ratio (with standard deviation (STD)) for the ROI-labeling results on in vitro dataset

Dice ratio (STD) Diffeomorphic Demons registration ROI-guided registration Deformable segmentation Multi-atlas label fusion

Hippocampus 0.927 (0.03) 0.922 (0.03) 0.936 (0.02) 0.943 (0.01)

External capsule 0.724 (0.05) 0.770 (0.05) 0.811 (0.05) 0.823 (0.05)

Caudate putamen 0.923 (0.01) 0.925 (0.01) 0.940 (0.01) 0.947 (0.01)

Anterior commisure 0.572 (0.06) 0.561 (0.07) 0.651(0.05) 0.709 (0.05)

Globus pallidus 0.845 (0.04) 0.852 (0.03) 0.878 (0.02) 0.901 (0.02)

Internal capsule 0.802 (0.05) 0.767 (0.05) 0.793 (0.04) 0.827 (0.03)

Thalamus 0.940 (0.02) 0.950 (0.01) 0.959 (0.01) 0.962 (0.01)

Cerebellum 0.930 (0.02) 0.928 (0.02) 0.941 (0.01) 0.966 (0.01)

Superior colliculi 0.906 (0.03) 0.915 (0.03) 0.932 (0.02) 0.936 (0.02)

Ventricles 0.682 (0.08) 0.709 (0.07) 0.765(0.04) 0.795(0.04)

Hypothalamus 0.903 (0.01) 0.931 (0.01) 0.954 (0.01) 0.943 (0.01)

Inferior colliculi 0.871 (0.08) 0.871 (0.08) 0.902 (0.03) 0.913 (0.02)

Central gray 0.883 (0.08) 0.896 (0.08) 0.914 (0.02) 0.918 (0.02)

Neocortex 0.933 (0.01) 0.940 (0.01) 0.951 (0.01) 0.965 (0.01)

Amygdala 0.884 (0.02) 0.889 (0.02) 0.926 (0.01) 0.931 (0.01)

Olfactory bulb 0.916 (0.02) 0.903 (0.02) 0.915 (0.02) 0.957 (0.01)

Brain stem 0.903 (0.02) 0.905 (0.02) 0.911 (0.02) 0.934 (0.01)

Rest of midbrain 0.873 (0.05) 0.897 (0.05) 0.927 (0.02) 0.933 (0.02)

Basal forebrain and
septum

0.888 (0.03) 0.885 (0.03) 0.918 (0.02) 0.917 (0.02)

Fimbria 0.780 (0.05) 0.788 (0.05) 0.820 (0.03) 0.860 (0.03)

Overall average 0.854 (0.04) 0.860 (0.04) 0.887 (0.02) 0.904 (0.02)
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Table 3

Average Dice ratio (with standard deviation (STD)) for the ROI-labeling results on in vivo dataset

Dice ratio (STD) Diffeomorphic demons registration ROI-guided registration Deformable segmentation Multi-atlas label fusion

Hippocampus 0.858 (0.03) 0.862 (0.03) 0.883 (0.02) 0.912 (0.02)

External capsule 0.628 (0.10) 0.636 (0.10) 0.645 (0.09) 0.717 (0.10)

Caudate putamen 0.871 (0.02) 0.871 (0.02) 0.900 (0.01) 0.920 (0.02)

Anterior commisure 0.413 (0.06) 0.443(0.06) 0.494 (0.06) 0.609 (0.06)

Globus pallidus 0.670 (0.04) 0.670 (0.04) 0.745 (0.02) 0.802 (0.02)

Internal capsule 0.579 (0.06) 0.582 (0.06) 0.630 (0.03) 0.715 (0.04)

Thalamus 0.889 (0.03) 0.892 (0.03) 0.910 (0.02) 0.929 (0.02)

Cerebellum 0.957 (0.01) 0.957 (0.01) 0.920 (0.01) 0.968 (0.01)

Superior colliculi 0.821 (0.06) 0.822 (0.06) 0.848 (0.04) 0.885 (0.05)

Ventricles 0.631 (0.05) 0.644(0.06) 0.666 (0.05) 0.753(0.04)

Hypothalamus 0.892 (0.03) 0.894 (0.03) 0.872 (0.03) 0.933 (0.02)

Inferior colliculi 0.809 (0.06) 0.808 (0.06) 0.838 (0.04) 0.885 (0.03)

Central gray 0.746 (0.08) 0.748 (0.08) 0.758 (0.09) 0.811(0.11)

Neocortex 0.945 (0.01) 0.945 (0.01) 0.903 (0.01) 0.965 (0.01)

Amygdala 0.860 (0.03) 0.861 (0.03) 0.832 (0.01) 0.911(0.01)

Olfactory bulb 0.965 (0.02) 0.964 (0.02) 0.897 (0.02) 0.980 (0.01)

Brain Stem 0.965 (0.02) 0.965 (0.02) 0.853 (0.02) 0.967 (0.02)

Rest of midbrain 0.785 (0.10) 0.789 (0.10) 0.817 (0.06) 0.863 (0.08)

Basal forebrain and
septum

0.884 (0.02) 0.887 (0.02) 0.890 (0.01) 0.935 (0.01)

Fimbria 0.600 (0.11) 0.617 (0.11) 0.643 (0.04) 0.725 (0.04)

Overall average 0.788 (0.05) 0.793 (0.05) 0.797 (0.04) 0.859 (0.04)
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Table 4

Average surface distance (mm), with standard deviation (STD) for the ROI-labeling results on in vitro dataset

Average distance (STD) Diffeomorphic demons registration ROI-guided registration Deformable segmentation Multi-atlas label fusion

Hippocampus 0.019 (0.004) 0.019 (0.004) 0.017 (0.003) 0.015 (0.003)

External capsule 0.025 (0.005) 0.024 (0.005) 0.017 (0.003) 0.015 (0.003)

Caudate putamen 0.020 (0.003) 0.019 (0.003) 0.015 (0.003) 0.013 (0.003)

Anterior commisure 0.086 (0.020) 0.078 (0.019) 0.060 (0.016) 0.041 (0.010)

Globus pallidus 0.023 (0.004) 0.024 (0.004) 0.018 (0.003) 0.014 (0.003)

Internal capsule 0.022 (0.004) 0.023 (0.004) 0.024 (0.004) 0.019 (0.003)

Thalamus 0.021 (0.004) 0.021 (0.004) 0.015 (0.003) 0.014 (0.003)

Cerebellum 0.038 (0.004) 0.037 (0.004) 0.031 (0.004) 0.015 (0.003)

Superior colliculi 0.023 (0.004) 0.023 (0.004) 0.018 (0.003) 0.017 (0.003)

Ventricles 0.048 (0.012) 0.047 (0.012) 0.037 (0.007) 0.021 (0.005)

Hypothalamus 0.026 (0.005) 0.025 (0.005) 0.013 (0.003) 0.016 (0.004)

Inferior colliculi 0.025 (0.004) 0.025 (0.004) 0.020 (0.003) 0.017 (0.003)

Central gray 0.026 (0.005) 0.025 (0.004) 0.019 (0.003) 0.018 (0.003)

Neocortex 0.021 (0.003) 0.021 (0.003) 0.016 (0.003) 0.010 (0.002)

Amygdala 0.026 (0.004) 0.026 (0.004) 0.017 (0.003) 0.015 (0.003)

Olfactory bulb 0.036 (0.005) 0.034 (0.005) 0.038 (0.006) 0.017 (0.003)

Brain stem 0.094 (0.020) 0.087 (0.018) 0.095 (0.020) 0.052 (0.013)

Rest of midbrain 0.029 (0.008) 0.028 (0.008) 0.017 (0.003) 0.015 (0.003)

Basal forebrain and
septum

0.024 (0.004) 0.023 (0.004) 0.018 (0.004) 0.017 (0.003)

Fimbria 0.024 (0.004) 0.025 (0.004) 0.021 (0.004) 0.015 (0.003)

Overall average 0.033 (0.007) 0.032 (0.006) 0.026 (0.005) 0.019 (0.004)
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Table 5

Average surface distance (mm), with standard deviation (STD) for the ROI-labeling results on in vivo dataset

Average distance (STD) Diffeomorphic demons registration ROI-guided registration Deformable segmentation Multi-atlas label fusion

Hippocampus 0.039 (0.008) 0.039 (0.008) 0.032 (0.007) 0.023 (0.006)

External capsule 0.046 (0.012) 0.047 (0.012) 0.048 (0.013) 0.036 (0.010)

Caudate putamen 0.030 (0.005) 0.031 (0.005) 0.027 (0.005) 0.021 (0.004)

Anterior commisure 0.082 (0.019) 0.080 (0.019) 0.085 (0.020) 0.068 (0.017)

Globus pallidus 0.054 (0.006) 0.057 (0.007) 0.047 (0.006) 0.033 (0.004)

Internal capsule 0.065 (0.008) 0.066 (0.008) 0.060 (0.008) 0.040 (0.005)

Thalamus 0.035 (0.006) 0.036 (0.006) 0.033 (0.004) 0.025 (0.004)

Cerebellum 0.039 (0.004) 0.031 (0.003) 0.034 (0.004) 0.013 (0.002)

Superior colliculi 0.050 (0.009) 0.050 (0.009) 0.042 (0.007) 0.031 (0.006)

Ventricles 0.103 (0.018) 0.098 (0.017) 0.088 (0.015) 0.044 (0.011)

Hypothalamus 0.033 (0.006) 0.030 (0.006) 0.032 (0.006) 0.016 (0.003)

Inferior colliculi 0.049 (0.008) 0.047 (0.008) 0.035 (0.005) 0.024 (0.004)

Central gray 0.057 (0.017) 0.058 (0.017) 0.055 (0.017) 0.039 (0.012)

Neocortex 0.030 (0.004) 0.025 (0.003) 0.030 (0.004) 0.010 (0.002)

Amygdala 0.040 (0.005) 0.038 (0.005) 0.040 (0.005) 0.020 (0.003)

Olfactory bulb 0.042 (0.009) 0.029 (0.007) 0.040 (0.009) 0.008 (0.001)

Brain stem 0.088 (0.019) 0.075 (0.018) 0.099 (0.020) 0.016 (0.004)

Rest of midbrain 0.054 (0.015) 0.054 (0.015) 0.049 (0.014) 0.034 (0.010)

Basal forebrain and
septum

0.029 (0.005) 0.028 (0.005) 0.026 (0.005) 0.015 (0.003)

Fimbria 0.085 (0.016) 0.078 (0.013) 0.072 (0.013) 0.043 (0.010)

Overall average 0.052 (0.010) 0.050 (0.010) 0.049 (0.010) 0.028 (0.006)
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