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Abstract
DICCCOL (Dense Individualized and Common Connectivity-based Cortical Landmarks) is a
recently published system composed of 358 cortical landmarks that possess consistent
correspondences across individuals and populations. Meanwhile, each DICCCOL landmark is
localized in an individual brain’s unique morphological profile, and therefore the DICCCOL
system offers a universal and individualized brain reference and localization framework. However,
in current 358 diffusion tensor imaging (DTI)-derived DICCCOLs, only 95 of them have been
functionally annotated via task-based or resting-state fMRI datasets and the functional roles of
other DICCCOLs are unknown yet. This work aims to take the advantage of existing literature
fMRI studies (1110 publications) reported and aggregated in the BrainMap database to examine
the possible functional roles of 358 DICCCOLs via meta-analysis. Our experimental results
demonstrate that a majority of 358 DICCCOLs can be functionally annotated by the BrainMap
database, and many DICCCOLs have rich and diverse functional roles in multiple behavior
domains. This study provides novel insights into the functional regularity and diversity of 358
DICCCOLs, and offers a starting point for future elucidation of fine-grained functional roles of
cortical landmarks.
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1. INTRODUCTION
For decades, the human brain mapping community has been interested in defining an
anatomically and/or functionally annotated brain atlas and then warping it into individual
brains via image registration methods (e.g., Collins et al., 1994; Thompson and Toga, 1996;
Davatzikos, 1997; Fischl et al., 2002; Shen and Davatzikos, 2002; Liu et al., 2004; Van
Essen and Dierker, 2007; Zilles and Amunts, 2009; Wu et al., 2011). This atlas warping
methodology has dramatically advanced our understanding of the structure and function of
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the human brain at both individual level (e.g., Lao et al., 2004; Fan et al., 2008) and group
level (e.g., Ashburner et al., 2003; Davatzikos, 2004). In the fMRI field, the common
practice is to report a stereotaxic coordinate for brain activation, usually in relation to the
Talairach or the Montreal Neurological Institute (MNI) coordinate system (e.g., 74% of over
9,400 fMRI studies (Derrfuss and Mar, 2009)). As a result, the development and application
of a universal coordinate database for the purpose of aggregating and integrating fMRI
results reported in the standardized Talairach or MNI coordinate systems have received
increasingly strong interests (e.g., Laird et al., 2005; Laird et al. 2009; Hamilton, 2009;
Costafreda, 2009). In particular, meta-analysis (the pooled analysis of published fMRI
activations) of many published results (e.g., Laird et al., 2005; Laird et al. 2009) is deemed
to significantly enhance the statistical power and reliability of individual fMRI studies, and
thus is widely adopted and applied in the neuroimaging field.

As an alternative approach to the popular stereotaxic coordinate based representation of
brain function (Derrfuss and Mar, 2009), our recent studies in Zhu et al., 2012 developed
and validated a landmark based brain reference and localization system, named Dense
Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL). As
shown in Fig. 1, the DICCCOL system at the current stage is composed of 358 cortical
landmarks, each of which was optimized to possess consistent group-wise DTI-derived fiber
connection patterns across populations (Zhu et al., 2011; Zhu et al., 2012). The neuroscience
basis is that each cortical region’s cyto-architectonic area has a unique set of extrinsic
inputs/outputs (named the “connectional fingerprint” (Passingham et al., 2002)), which
generally predicts the functions that each cortical area could possibly possess. This close
relationship between structural connectivity pattern and brain function has been reported and
replicated in a series of our recent works (Li et al., 2010; Zhu et al., 2011; Zhu et al., 2012;
Zhang et al., 2011; Li et al., 2012; Li et al., 2012b; Li et al., 2012c). Therefore, we employed
this principle and a data-driven approach (Zhu et al., 2012) to discover a dense map of 358
cortical landmarks via the maximization of group-wise consistency of trace-map description
(Zhu et al., 2011; Zhu et al., 2012) of each landmark’s structural connection pattern. The set
of 358 optimized DICCCOL landmarks has been replicated and reproduced in over 240
healthy brains and its predictions in four different multimodal fMRI/DTI datasets have been
released publicly online at http://dicccol.cs.uga.edu.

To examine the potential functional roles of those 358 DICCCOLs, we have used six
different datasets of multimodal task-based fMRI/DTI and resting state fMRI/DTI images to
functionally annotate a portion of those DICCCOLs (Zhu et al., 2012), and 95 of them have
been labeled into nine functional networks including working memory, visual, auditory,
semantics, attention, emotion, fear, empathy, and default mode networks (Zhu et al., 2012).
The multimodal fMRI/DTI studies have demonstrated that these 95 DICCCOLs not only
possess consistent structural connection patterns, but also exhibit common functional
activations (Zhu et al., 2012), as determined by either task-based fMRI or resting state fMRI
data. However, due to the cost and time constraints, it is impractical to acquire as many task-
based fMRI datasets as needed, e.g., all of the 55 functional domains used in the BrainMap
system (Laird et al., 2009), to functionally label all of these 358 DICCCOLs in the same
group of human subjects participated in our study (Zhu et al., 2012). Consequently, the
current functional annotation of 358 DICCCOLs is far from being comprehensive and
complete yet. Thus, we are strongly motivated to leverage the many existing literature fMRI
studies and their results already aggregated and reported in the BrainMap database (Laird et
al., 2005; Laird et al., 2009), and perform meta-analysis of the potential functional roles of
the 358 DICCCOLs in this work.

In this meta-analysis study, we have used 1110 fMRI publications and their analysis results
reported in the BrainMap database (Laird et al., 2005; Laird et al., 2009) to examine the
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potential functional roles of those 358 DICCCOLs. Briefly, the DICCCOLs in our template
space (Zhu et al., 2012) were linearly warped (via FLS FNIRT) into the MNI template space
used in the BrainMap database based on structural T1-weighted MRI images. Then, within
each DICCCOL’s neighborhood of 3 mm radius in the MNI atlas space, all of the related
fMRI publications and their reported activation foci in the BrainMap database were searched
and examined. Thus, we obtained a large-scale 1110 (publications) × 358 (DICCCOL IDs)
matrix (Supplemental Table 1) that reports a complete mapping of DTI-derived DICCCOL
landmarks and their potential functional roles reported by literature fMRI studies. Detailed
analyses of this map provide a variety of interesting results that motivated us to share them
with the neuroimaging and neuroinformatics communities in this article. The rest of the
paper is organized as follows. In Section 2, we detail the development of DICCCOL, its
transform into the BrainMap database, and the meta-analysis procedure. Section 3 presents
the details and interpretations of the meta-analysis results. Discussions and conclusions are
provided in Section 4.

2. MATERIALS AND METHODS
2.1. DICCCOL

The 358 DICCCOLs, as shown in Fig. 1, were discovered and defined in a group of ten
healthy adult brains, and were reproduced and replicated in over 240 healthy brains
including three age groups of adolescent, adults and elders (Zhu et al., 2012). One of the
prominent attribute of the DICCCOL system is that these 358 landmarks can be fairly
accurately predicted in a single brain with DTI data (Zhang et al., 2011; Zhu et al., 2012; Li
et al., 2012b), and our extensive evaluation results based on fMRI-derived benchmarks have
shown that the average prediction error is around 6.25 mm (Zhu et al., 2012). In particular,
quantitative comparisons of the DICCCOL localization accuracy with other linear and
nonlinear brain image registration algorithms including FSL FLIRT (Jenkinson and Smith,
2001), FSL FNIRT (Andersson et al., 2008), ANTS (Avants et al., 2008), and HAMMER
(Shen and Davatzikos, 2002) have shown that the DICCCOL system is substantially better
(Zhu et al., 2012). Therefore, once the functional roles of certain DICCCOLs are determined
in a certain multimodal fMRI/DTI dataset, this information could possibly be readily
transferred to other brains. That is, the DICCCOL system offers a general platform to
aggregate and integrate the brain’s functional information from different multimodal fMRI/
DTI datasets into the universal DICCCOL map (Zhu et al., 2012), the sum of which can then
be transferred to a new, separate individual brain via DTI data.

A complete list of those 358 DICCCOLs and their coordinates in the Talairach/MNI atlas
spaces were provided in Zhu et al., 2012. It is apparent that although the Brodmann labels of
these DICCCOLs provide the basic anatomic location and rough functional localization, the
fine-grained functional roles of these DICCCOLs need to be determined by task-based fMRI
data, which is widely considered and used as a benchmark approach to performing
functional localizations. Our prior studies have used six task-based fMRI datasets and four
resting state fMRI datasets to examine the functional roles of those 358 DICCCOLs (Zhu et
al., 2012), and identified 95 DICCCOLs that are co-localized with the consistent activation/
activity peaks in the fMRI datasets. A reproducibility study in Zhu et al., 2012 demonstrated
that the functionally-annotated default mode network (DMN) nodes are remarkably
reproducible in four independent groups of subjects, and the average Euclidean distance
from DICCCOLs to the group-ICA (independent component analysis) derived benchmark
peaks is around 5.43 mm (Zhu et al., 2012).

Though our prior studies already provided nine functional networks and their labels in the
DICCCOL system, it is still far from being comprehensive and systematic to provide a
complete functional brain reference and localization system. As shown in Fig. 1, despite the
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95 colored DICCCOLs, there are still other 263 DICCCOLs in green that have not been
functionally annotated yet. Considering that there are already thousands of published fMRI
studies and their detected activation foci aggregated into the BrainMap database (http://
brainmap.org, Laird et al. 2005; Laird et al., 2009), we hypothesize that this rich information
source derived from the whole fMRI community could provide informative functional
annotations to the 358 DTI-derived DICCCOLs.

2.2. Meta-analysis of functional roles of 358 DICCCOLs
The flowchart of the meta-analysis of functional roles of 358 DICCCOLs is summarized in
Fig. 2. In general, there are three steps in the computational pipeline. In step 1, four brain
image registration algorithms were used to warp the 358 DICCCOLs in the MRI images of
ten template brains into the MNI atlas space. Then, a meta-analysis of the warped
DICCCOLs’ coordinates in the MNI atlas was performed to find the centers of their
distributions within the atlas image. In step 2, the Sleuth tool (Laird et al., 2009) provided by
the BrainMap database and toolkit was used to search the relevant fMRI publications and
experiments. As a result, a large-scale matrix that maps the association between the fMRI
experiments in BrainMap and the 358 DICCCOLs was obtained (Supplemental Table 1). In
the step 3, both landmark-based and network-based meta-analyses were performed on the
above matrix to infer potential functional roles of DICCCOLs. The following two sections
will provide details for these steps, respectively.

2.2.1. Coordinates of 358 DICCCOLs in the MNI atlas space—In the DICCCOL
system, all cortical landmarks were defined and predicted based on DTI images (Zhu et al.,
2012). However, the two atlases (either MNI or Talairach) used in the BrainMap database
are based on T1-weighted MRI images and have no DTI images available. Therefore, the
transform of DTI-derived DICCCOLs into the MNI/Talairach atlas image has to rely on the
registration of MRI images. Given the 358 DICCCOLs in ten template brains with structural
MRI images (Zhu et al., 2012), we registered all these DICCCOLs in each template brain’s
DTI images into the their corresponding MRI images by FSL FLIRT, and then warped them
to the MNI template via four different MRI image registration methods including FSL
FLIRT (Jenkinson and Smith, 2001), FSL FNIRT (Andersson et al., 2008), ANTS (Avants
et al., 2008), and HAMMER (Shen and Davatzikos, 2002). Since there is no ground-truth for
the correspondences of DICCCOLs in the MNI atlas image, we assessed the performances
of these four image registration algorithms in terms of consistency by measuring the
distances between the individually warped 358 landmarks to the averaged centers of the
warped DICCCOLs from multiple templates. The comparison results of these four image
registration methods are provided in Supplemental Fig. 1. On average, the FSL FNIRT
algorithm has slightly better accuracy (6.29 mm) than others three image registration
algorithms (6.69 mm for FSL FLIRT, 6.31 mm for ANTS, and 6.43 mm for HAMMER,
respectively). Therefore, we used the warped DICCCOLs by FSL FNIRT to calculate the
coordinates of the 358 DICCCOL landmarks in the MNI atlas space.

To further justify using FSL FNIRT in this meta-analysis study, we used a working memory
task-based fMRI dataset (Faraco et al., 2011) that provides consistent functional regions to
evaluate the registration accuracies of four image registration methods. Totally, 15
consistently activated brain regions were recognized and identified from the working
memory task (Zhu et al., 2011), and one subject was randomly selected as the template. The
activated regions in other subjects were warped to the template subject. The performances of
four image registration algorithms (FSL FLIRT, FSL FNIRT, ANTS, and HAMMER) were
assessed by measuring the distances between the individually warped ROIs to the
corresponding ROIs in the template subject. The results are summarized in Supplemental
Table 2. It can be clearly seen that the FSL FNIRT has the best performance, which justifies
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using FNIRT to warp 358 DICCCOLs in the MRI images of ten template brains into the
MNI space.

After all of these 358 DICCCOLs in the ten template brains were warped into the MNI
template space using FSL FNIRT, each DICCCOL landmark has ten candidate localizations
in the MNI template space. Given that there is no benchmark in the MNI atlas space, the
warped ten landmarks for the same DICCCOL could be widely spread due to the inaccuracy
of image registration and the intrinsic variation of cortical anatomies in different brains (as
shown by the cyan spheres in Fig. 3), we used a meta-analysis to determine the DICCCOL
locations in the template space. Specifically, the center of each group of ten warped
landmarks was used as the location of a DICCCOL, as illustrated by the red spheres in Fig.
3.

2.2.2. Mapping fMRI experiments, activation foci and DICCCOLs—With the
localized coordinate of each DICCCOL landmark, we then used the Sleuth toolkit provided
by the BrainMap system to search fMRI experiments in the BrainMap database (Laird, et al.,
2009) that cover our DICCCOLs. To illustrate the procedure, we use the first DICCCOL
landmark as an example to search the corresponding fMRI experiments, as shown in
Supplemental Fig. 2. We selected the location as the search request, inputted the coordinates
of the first DICCCOL (-19, -90, 10), and used the neighborhood size of 3 mm (purple
ellipse) as the search setting. Notably, since the DICCCOL system has higher spatial
resolution than the traditionally used Brodmann atlas and it is expected that the DICCCOLs
with distance larger than 6 mm can be treated as separate entities (Zhu et al., 2012), we
searched the radius of 3 mm around each DICCCOL ROI. Essential information of the
activations falling into the 3 mm neighborhood of the coordinate of the first DICCCOL was
obtained, including the paper ID in the BrainMap database, coordinates in Talairach/MNI
atlas, Brodmann area, task design, and behavioral domains, as shown in Supplemental Fig.
3. Notably, only fMRI studies with healthy subjects in the BrainMap database were included
in this work, since the DICCCOL system was primarily developed for healthy brains.

In order to represent the activation foci of fMRI experiments using DICCCOLs, we
measured the Euclidean distance between the reported fMRI activation foci with our
DICCCOLs’ coordinates. If the distance between an fMRI activation and one DICCCOL is
below 8 mm, the corresponding DICCCOL is associated with the reported fMRI activation.
Otherwise, the fMRI activation is considered outside of our study scope. If the activation
can be associated with more than one DICCCOL given the 8 mm distance, we represent the
activation by the DICCCOL that has the minimum distance between them. Our rationale is
that our prior studies in Zhu et al., 2011 demonstrated that approximately 90% of fMRI-
derived activation peaks could be optimized to be consistent with DTI-derived landmarks
within 8 mm distance. Therefore, in this work, we enforce that structural and functional
correspondences should be within the distance of 8 mm. In an example (functional network
#6) shown in Supplemental Fig. 4, the fMRI experiment had 28 activation foci, but only 15
(red spheres) of them can be associated with DICCCOLs (yellow spheres). Supplemental
Table 3 shows an example of the representation procedure of associating fMRI activation
foci to DICCCOLs.

2.3. Landmark-based and network-based meta-analysis
After we represented the fMRI experiments and their activation foci in the BrainMap
database using DICCCOLs, we obtained a comprehensive map of 1110 fMRI experiments
and 358 DICCCOLs (Supplemental Table 1). In this subsection, we will conduct both
landmark-based and network-based analyses, respectively. The purpose of landmark-based
analysis is to assess the possible varieties of functional roles (e.g., Bisley and Pasternak,
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2000; Fogassi et al., 2005) that one cortical region (e.g., DICCCOL) could possibly perform.
For the landmark-based analysis, we calculated the number of fMRI experiments and the
derived functional networks that are associated with each DICCCOL, as shown in Fig. 4.
For instance, the DICCCOL #45 (shown in red color in Fig. 4a) is associated with the
activation foci of 8 fMRI experiments and functional networks, and each different color
represents a separate network in Figs. 4a, 4c, 4d. Similarly, Figs.4e–4h show the functional
networks that are associated with DICCCOL #322. The visualization of DICCCOLs
locations on the cortical surface is provided in Fig. 5 and their fiber connection patterns are
available at: http://dicccol.cs.uga.edu. In addition, the anatomical coordinates of each
DICCCOL in the Talairach/MNI atlas spaces and the associated paper IDs in the BrainMap
database are provided in Supplemental Table 7.

In total, there are 1110 fMRI experiments and the corresponding activated functional
networks (each fMRI activation pattern is considered as a functional network) that have
been associated with 358 DICCCOLs. In the network-based analysis, we measured the
frequencies of co-activation (Toro et al., 2008) between any pair of DICCCOLs based on the
1110 functional networks and their activation foci, and obtained a 358*358 matrix of co-
activation or functional connectivity map. That is, if any pair of DICCCOLs was reported to
be within the same fMRI-derived functional networks in the BrainMap database, their
functional co-activation strength is incremented by one and the total co-activation map is
accumulated over all of these 1110 fMRI studies. Intuitively, this co-activation map of
DICCCOLs reflects the probability of how likely the DICCCOLs are co-active under the
same task performance (Toro et al., 2008; Lair et al., 2011), which is a statistical
measurement of functional connectivity among DICCCOL landmarks. Then, this 358*358
co-activation map was clustered into 10 sub-networks via a multimodal multi-view spectral
clustering algorithm (Kumar and Daume, 2011; Chen et al., 2012). The basic idea is that
both structural connectivity and resting state functional connectivity matrices between
DICCCOLs that were derived from DTI and R-fMRI datasets (Zhu et al., 2012) are
simultaneously considered together with the task-based fMRI-derived co-activation map, all
of which are then clustered into a homogenous, multi-view, and multi-model sub-networks.
The major advantage of the multi-view spectral clustering methodology (Kumar and Daume,
2011; Chen et al., 2012) is that it can effectively deal with heterogeneous features, e.g., three
types of connectivity matrices in this paper, by the maximization of the mutual agreement
across multimodal clusters in different views. In this paper, we considered each type of
connectivity (structural connectivity, resting state functional connectivity, and task-based
functional connectivity) in a group of subjects as a separate view of the studied large-scale
network, and model the clustering of group-wise consistent multimodal brain sub-networks
in a unified multi-view clustering framework. In this way, the substantial variabilities of
large-scale brain networks across modalities (DTI, resting state fMRI, and task-based fMRI)
and different populations (the subjects in our studies (Zhu et al., 2012) and the subjects in
the BrainMap database (Laird et al., 2009)) are modeled and handled effectively by the
powerful multi-view spectral clustering method (Kumar and Daume, 2011; Chen et al.,
2012). Therefore, consistent and functionally meaningful sub-networks can be identified
across modalities and populations, which is one of the major methodology contributions of
this paper. Finally, each of the 1110 fMRI-derived functional networks obtained from the
BrainMap database will be assigned to one of the sub-networks, if more than half of its
activation foci are associated with the corresponding DICCCOLs within the sub-network.

3. RESULTS
3.1 Landmark-based analysis

3.1.1 The DICCCOLs associated with functional networks—We performed
statistical analyses of the DICCCOLs associated with each functional network. It turns out
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that 73.5% of the functional networks include more than or equal to 4 DICCCOL landmarks.
On average, each functional network is associated with 5.89 DICCCOLs, and the detailed
distribution is provided in Fig. 6. This result suggests that the 358 DICCCOLs can
reasonably cover the major functional areas of the cerebral cortex, as conjectured in Zhu et
al., 2012. We also found that the largest functional network includes 23 DICCCOLs and the
top 20 functional networks with the largest numbers of DICCCOLs are shown in Table 1. It
is evident that most of the top networks are related to higher functions such as attention,
emotion, memory, language, semantics, and speech. This result suggests that the DICCCOL
system can be used to represent large-scale functional networks across the whole brain,
which is one of the original design objectives of the DICCCOL system (Zhu et al., 2012). As
examples, the top 3 functional networks in Table 1 with the largest numbers of DICCCOLs
are visualized on the cortical surface in Figs. 7a–7c. It is interesting that although both of the
first and second networks (Figs. 7a–7b) are functionally annotated as “Cognition. Attention”
from two different publications (BrainMap paper IDs 5080210 and 30360, respectively),
they have 4 DICCCOLs in common (highlighted by arrows) and have other 18 DICCCOLs
located in different regions. From a neuroscience perspective, this result demonstrates the
co-existence of common and variable functional regions activated/involved in different
types of attention tasks. From a methodology perspective, this result indicates that the
DICCCOL system can be very useful to visualize and quantitatively represent the functional
brain regions activated in different tasks. The DICCCOLs distributions for “Action. Motor
Learning” in Figs. 7c are also quite reasonable, given current neuroscience knowledge about
motor learning (Diedrichsen et al., 2005).

3.1.2. The functional networks associated with each DICCCOL—In this
subsection, we analyzed the number of functional networks associated with each DICCCOL.
On average, each DICCCOL is associated with 18.26 functional networks and Supplemental
Fig. 5 shows the histogram. Fig. 8 shows the color-coded distributions of the number of
functional networks associated with 358 DICCCOLs on the cortical surface. It is interesting
that the distribution patterns exhibit certain level of symmetry between two hemispheres, as
highlighted by the arrows in Fig. 8a. Also, certain DICCCOLs, e.g., those in the Broca’s
areas and Heschl’s gyrus pointed by the arrows in Figs. 8b–8c, have substantially more
numbers of associated functional networks than others. The results in Fig. 8 clearly
demonstrates that one cortical region represented by DICCCOL could participate in multiple
functional roles, as widely reported in the literature (e.g., Bisley and Pasternak, 2000;
Lalonde et al., 2002; Fogassi et al., 2005; Zaksas et al., 2006; Fischera et al., 2008). In
particular, we found the following DICCCOL IDs: #48, #113, #228, #242, #128, #180,
#300, #244, #213, and #187 (as showed in Fig. 8(d)) are associated with the largest numbers
of functional networks (e.g., over 57 networks), meaning that they potentially have many
functional roles. These results offer novel insights into the diversity of functional roles of
DICCCOLs.

As one example, we visualized the functional networks associated with DICCCOL #48 in
Fig. 9 and randomly selected 20 functional networks associated with DICCCOL #48 as
listed in Supplemental Table 4. It is apparent that DICCCOL #48 is extensively involved in
many functional networks across the whole brain, suggesting that it might be a functional
hub of the brain. To independently examine this conjecture, we visualized the DTI-derived
fiber tracts emanating from the DICCCOL #48 in ten brains in Fig. 10. It can be clearly seen
that this DICCCOL #48 landmark has quite dense and complex DTI-derived fiber
connections to other cortical lobes such as the frontal, parietal, temporal and occipital lobes,
which partly explain the large number of different functional roles shown in Fig. 9.
Additional visualizations of the fiber tracts emanating DICCCOLs #113, #228, #242, #128,
#180, #300, #244, #213, and #187 can be seen at: http://dicccol.cs.uga.edu. Supplemental
Table 5 lists the details of the top 20 DICCCOLs with the highest numbers of functional
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networks. Altogether, these results suggest the close relationship between the structural
connection patterns and functional roles of cortical regions, which further supports the
biological principle underling the DICCCOL system.

Notably, we also found that the number of functional networks associated with DICCCOLs
#65, #206, #342, #348, #349, #350, #352, and #357 are zero, as shown by the red color
spheres in Fig. 11. That is, these DICCCOLs are not involved in any of the 1110 functional
networks reported in the BrainMap database. In addition, these DICCCOLs were not
activated in any of our nine task-based fMRI datasets (Zhu et al., 2012). This result suggests
that more studies should be performed or additional literature studies should be examined in
the future to investigate the possible functional roles of these DICCCOLs with no functional
roles reported so far in this work. For instance, it would be interesting to examine the
functional connectivities of these DICCCOLs during resting state or under task
performances in fMRI studies such that their functional roles might be inferred.
Furthermore, the bottom 30 DICCCOLs associated with the least numbers of functional
networks are listed in Supplemental Table 6, which merits further extensive fMRI and
connectivity studies in the future.

3.1.3. The duplicated functional roles of DICCCOLs—For one task-based fMRI
experiment, we can represent each activation peak by one DICCCOL landmark based on the
criterion that the distance between the actual activation and a DICCCOL is below 8 mm.
However, we found an interesting result that for one fMRI experiment, there could be more
than one activation focus (e.g., 2) that are represented by the same DICCCOL, indicating
that these DICCCOLs might not be spatially dense enough to represent functional brain
networks. The distribution of duplicated times for each DICCCOL is shown in the Fig. 12.
For example, the top ten DICCCOLs with duplicated roles are: #300, #113, #32, #48, #192,
#242, #293, #1, #52, and #280. As an example, in the functional network #72 (Supplemental
Table 1), it has 14 activation foci as shown in Supplemental Fig. 6. However, there are two
activation foci located in the same neighborhood of DICCCOL #9. This result means that
some DICCCOLs are not dense enough to represent the fine-grained functional brain
network nodes. This result will give us important clues about where and how to improve the
spatial resolution of DICCCOLs in the future.

3.2. Network-based analysis
In this subsection, we examined the network-scale distributions of the 1110 fMRI studies in
the BrainMap database within the context of the DTI-derived DICCCOL system (details of
each DICCCOL are provided in Supplemental Table 7). Based on the multi-view network
clustering methods described in Section 2.3, we grouped the functional co-activation
networks that were reported in the BrainMap database and represented by the DICCCOLs
into 10 clusters, as shown in Table 2. That is, for each of the 1110 fMRI-derived functional
networks, if more than half of its reported activation foci are associated with the
corresponding DICCCOLs within a cluster, the functional network is annotated with the
same cluster. Notably, the cluster number of 10 was determined experimentally. Specifically,
we conducted a variety of experiments by varying the clustering number from 5 to 20, in
order to obtain the best consistency among the resting-state functional networks, DTI-
derived structural networks, and BrainMap-derived co-activation networks. Given the lack
of benchmark, we visually examined all of these clustering results and found 10 to be more
suitable. The visualizations of these 10 clustered functional networks are shown in Fig. 13a.
It is evident that the clustering result is quite reasonable given current brain networks
knowledge (Bullmore and Sporns, 2009), e.g., those clusters concentrated on functionally
meaningful areas, such as the cluster #9 in the occipital lobes and cluster #5 in the motor and
sensory areas. In particular, the clustered task-based fMRI derived networks (Fig. 13d) are
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reasonably consistent with those connectivity patterns derived from resting state fMRI (Fig.
13b) and DTI (Fig. 13c) data, as shown by the colored boxes for different clusters
respectively. Notably, the results in Fig. 13 are consistent with a recent study in Lair et al.,
2011 which demonstrated that intrinsic connectivity networks derived from resting state
fMRI data are well correlated with co-activation networks mapped from the BrainMap
database. Importantly, the results in this paper further suggest the close relationships among
structural, resting-state functional and task-based functional networks, and demonstrate the
possibility of deriving consistent sub-networks across multiple modalities and populations.
Also, these analyses demonstrate the advantage of analyzing the fMRI studies and results
reported in the BrainMap within the context of the DICCCOL system, which serves as the
bridge that links fMRI-derived activation patterns to DTI-derived structural networks and R-
fMRI-derived resting state networks simultaneously. This result offers novel insights into
the regularity of brain networks.

Furthermore, we examined the details of functional networks in each cluster shown in Fig.
13 and Table 2. For example, the cluster #1 contains 87 fMRI-derived functional networks
(shown in Supplemental Fig. 7 and listed in Table 3). For each functional network, we
searched its original fMRI experiment and the corresponding behavioral domain (listed in
Table 3) and found that most of them are located in the regions of action execution and
perception. This result is quite reasonable based on the locations of the DICCCOLs on the
cortical surface shown in Supplemental Fig. 7. Also, this result is in agreement with other
literature reports about the functional localizations of motion execution and social
perception, e.g., in the premotor areas (Gazzola and Keysers, 2009; Keysers et al., 2010),
where some of the red DICCCOLs in Supplemental Fig. 7a concentrate on. Moreover, the
resting-state functional connectivity patterns, DTI-derived structural connectivity patterns,
and task-based fMRI derived co-activation patterns within this cluster (35 DICCCOLs) are
shown the in red rectangles in the Supplemental Figs. 7b–7d, respectively. It is evident that
the connectivity patterns are reasonably consistent across modalities, which cross-validate
the soundness of connectivity in each individual modality.

The second cluster contains 111 fMRI-derived functional networks (shown in Supplemental
Fig. 8). Similarly, for each network, we searched its original fMRI experiment and the
corresponding behavioral domains (listed in Table 4), and found that most of the landmarks
are located in the regions of emotion and perception. Given that most of the landmarks are
located in the cingulate gyri, superior frontal gyri, medial prefrontal cortex, and motor and
sensory areas, the listed behavior domains (or functional networks) are quite reasonable
given current literature reports. For instance, it was reported in Etkin et al., 2011 that the
anterior cingulate and medial prefrontal cortex play important roles in emotion process. It
was also reported in Keysers et al., 2010 that the premotor areas are important for
perception, e.g., social perception, and it was reported in Pavuluri et al., 2009 that the
prefrontal cortices (including the superior, middle, and inferior frontal gyri) are activated in
emotion processing. Furthermore, the resting-state functional connectivity pattern, DTI-
derived structural connectivity pattern, and task-based fMRI derived co-activation patterns
within this cluster (47 DICCCOLs) are reasonably consistent, as shown in the yellow
rectangles in the Supplemental Figs. 8b–8d. These results further demonstrated that the
reported functional roles in literature fMRI studies in the BrainMap database have their
anatomic, connectional and functional supports. In particular, the association of functional
networks to the DICCCOLs provides the opportunity to examine brain networks from
multiple perspectives, which is one of the major contributions of this paper.

The cluster #3 contains 28 functional networks (shown in Supplemental Fig. 9). Similarly,
we searched its original fMRI experiments and examined the corresponding behavioral
domains for each network (listed in Table 5), and found that a majority of them are located
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in the region of memory, language and action. These results are consistent with current
neuroscience knowledge and literature reports, e.g., quite a few DICCCOLs in cluster #3
(Supplemental Fig. 9) are located in the Wernicke’s area, which is a brain region involved in
language understanding (Saur et al., 2008). For another example, the DICCCOL ID#256
labeled in Supplemental Fig. 9 was reported to be involved in the working memory network
(Zhu et al., 2012; Faraco et al., 2011). Again, the resting state connectivity, DTI-derived
structural connectivity, and task-based fMRI derived co-activation patterns within this
cluster (25 DICCCOLs) are reasonably consistent, as shown in purplish red rectangles in
Supplemental Figs. 9b–9d.

Moreover, we plotted the cluster #5 that contains 111 functional networks Supplemental Fig.
10. For this cluster, a majority of functional networks are located in the region of action, as
listed in Table 6. This result is reasonable, given the visualizations of the locations of the
DICCCOLs in Supplemental Fig. 10 and a variety of literature papers (e.g., Meier et al.,
2008; Brunner et al., 2009) reporting the functional roles of motor areas. Also, the functional
networks in cluster #5 are involved in perception, which is consistent with literature papers
(Keysers et al., 2010). Again, the resting state functional connectivity, DTI-derived
structural connectivity, and task-based fMRI derived co-activation patterns within this
cluster (51 DICCCOLs) are reasonably consistent, as shown in the purple rectangles in
Supplemental Figs. 10b–10d.

Finally, we examined the cluster #8 that contains 127 functional networks (shown in
Supplemental Fig. 11). The list of fMRI experiments and the corresponding behavioral
domains are provided in Table 7. We found that most of them are located in the region of
language, memory and perception, which is partly verified by the visualization in
Supplemental Fig. 11. The result is in agreement with literature reports (Ferstl et al., 2008;
Tesink et al., 2009) on the languages areas including the middle frontal gyrus, inferior
frontal sulcus, precentral gyrus, and literature reports on visual perception (Ganis et al.,
2004). Moreover, the resting state connectivity, DTI-derived structural connectivity, and
fMRI-derived co-activation patterns within this cluster (53 DICCCOLs) are reasonably
consistent, as shown in the pink rectangles in the Supplemental Figs. 11b–11d.

4. DISCUSSION AND CONCLUSION
This paper focused on the examination of the potential functional roles of 358 DICCCOL
landmarks by taking the advantage of existing extensive literature fMRI studies (1110
publications) reported and aggregated in the BrainMap database. Through landmark-based
analysis, our results demonstrated that a majority of 358 DICCCOLs can be functionally
annotated by the BrainMap database, and many DICCCOLs exhibited very rich and diverse
functional roles in multiple behavioral domains. The major findings of this meta-analysis of
functional roles of DICCCOLs are summarized in Fig. 14. Furthermore, based on the
network-based analysis, we represented the co-activation patterns of the 1110 fMRI
experiments within the DICCCOLs system, and then performed multi-view clustering of
them together with DTI-derived structural and R-fMRI-derived resting state networks. The
major result of this paper demonstrated the close relationships among landmark anatomy,
connection and function and suggested the possibility of deriving consistent sub-networks
across multiple modalities and populations.

Representation and characterization of brain function is challenging. This work explored the
possibility of using structural connectivity landmarks to encode and represent functional
activations reported in the BrainMap database, which is considered as an alternative
approach to the traditional stereotaxic coordinate based representation of brain functions.
From the conceptual level, group-wise structural connectivity patterns derived from DTI
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data are predictive of brain functions (Li et al., 2010; Zhu et al., 2011; Zhu et al., 2012;
Zhang et al., 2011; Li et al., 2012; Li et al., 2012b), and in particular, the DICCCOLs based
on consistent structural connectivity patterns are reproducible and predictive in each
individual’s brain (Zhu et al., 2012, Li et al., 2012). Therefore, consistent and common
DICCCOLs that are localized directly in each subject’s image space and thus avoid the
possible image registration errors (Fig. 3) possess both theoretical and practical superiorities
to encode and represent brain functions, in comparison with the traditional stereotaxic
coordinate based approaches that heavily rely on image registration approaches.

However, the current study has been limited by several factors. First, the spatial coverage of
the current DICCCOL system is still limited. That is, it is hard to use 358 DICCCOLs to
cover the whole cerebral cortex, e.g., some reported fMRI activation foci in the BrainMap
database cannot find corresponding DICCCOLs as shown by the blue spheres in
Supplemental Fig. 4. In the future, we could possible substantially increase the density and
coverage of the current DICCCOL system by integrating better landmark initialization and
optimization approaches. As a result, the spatial resolution and coverage of the meta-
analysis in this paper can be further improved. Second, the meta-analysis in this work has
been dependent on the registration of structural MRI images and the MNI atlas. Though we
tried and used state-of-the-art image registration algorithms such as the FNIRT, ANTS and
HAMMER, the spatial warping accuracy is still limited. In the future, we plan to collaborate
with other functional neuroimaging labs to employ large-scale multimodal DTI and fMRI
datasets to expand our current meta-analysis. That is, DICCCOLs will be predicted in the
different DTI datasets and coincident fMRI-derived activation foci will be employed to
independently annotate and validate the functional roles of DICCCOLs (Zhu et al., 2012). It
is expected that the usage of multimodal DTI/fMRI data will substantially increase the
capacity of meta-analysis of functional roles of DICCCOLs, and can cross-validate the
obtained results reported in this paper.

Finally, we believe that the public releases of the DICCCOL system (Zhu et al., 2012) and
the meta-analysis results of possible functional roles of DICCCOLs achieved in this paper
will facilitate neuroimaging researchers to further investigate the structures and functions of
the cerebral cortex, as well as their relationships. For instance, our meta-analysis results of
DICCCOLs can be evaluated and cross-validated by separate research groups via different
fMRI datasets (e.g., Nielsen, 2003) and various analysis methodologies (e.g., Costafreda,
2009; Poldrack et al., 2011). We believe that the availability of such a common and robust
platform that enables neuroimaging researchers to integrate, exchange, cross-validate and
interpret various neuroimaging datasets and analysis methods is essential for studying the
functions of the brain in the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Overview of the DICCCOL brain reference and localization system (Zhu et al., 2012).
Spheres in orange (total 6), red (total 8), brown (total 9), pink (total 8), blue (total 27),
yellow (total 14), cyan (total 14), purple (total 16), and black-red (total 19) colors represent
DICCCOLs in empathy, default mode, visual, auditory, attention, working memory, fear,
emotion, and semantic decision making networks that are identified from fMRI datasets
(Zhu et al., 2012). The green spheres (totally 263) are landmarks that have not been
functionally-labeled yet. The DICCCOLs can be used as the structural substrates to
represent the common structural brain architecture. For instance, nine functionally-
specialized networks ((b)–(j)) identified from different fMRI datasets (Zhu et al., 2012) can
be integrated into the same universal brain reference system (a) via DICCCOL. Also, the
functionally-annotated DICCCOLs can be predicted in an individual brain with DTI data
such that the DICCCOLs and their functional roles can be readily transferred to a separate
brain image (k).
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Fig. 2.
The flowchart of the computational pipeline for meta-analysis of functional roles of 358
DICCCOLs. Three major steps are involved in this meta-analysis study.
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Fig. 3.
Distributions of 11 randomly selected DICCCOL landmarks warped from ten template
subjects into the MNI space, as represented by the cyan spheres. The red ones represent the
centers of corresponding warped landmarks. It is obvious that the warped landmarks are
distributed widespread around their centers.
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Fig. 4.
The DICCCOL #45 is involved in 8 functional networks shown in (a)–(d). The DICCCOL #
322 is involved in 23 functional networks as shown in (e)–(h). The figures of (b) and (e) are
the zoomed views of the red spheres in (a) and (f), respectively.
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Fig. 5.
The distribution of 358 DICCCOLs on the cortical surface.
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Fig. 6.
The histogram of the number of DICCCOLs in functional networks. The horizontal axis
represents the numbers of DICCCOLs associated with functional networks, while the
vertical axis is the number of networks. The index of DICCCOLs in the cortical surface are
shown in Fig. 5. We fitted a Gaussian distribution model to the histogram. For those
networks with more than 16 counts, we have over 95% confidence level.
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Fig. 7.
The top 3 functional networks ((a)–(c)) associated with the largest numbers of DICCCOLs.
The arrows in (a) and (b) highlighted the common DICCCOLs in two networks. The details
of these three networks including names and network IDs are listed in the top three rows of
Table 1, and additional details are provided in Supplemental Table 1.
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Fig. 8.
The color-coded distributions of the numbers of functional networks associated with
DICCCOLs. (a), (b), (c) represent the superior, right and left lateral views. The numbers of
functional networks were truncated to 25 for visualization purpose. The arrows in (a)
highlighted areas with certain degree of inter-hemispheric symmetry. The arrows in (b) and
(c) point to DICCCOLs with substantially more numbers of functional networks. (d) shows
the distributions of top 20 DICCCOLs with the largest numbers of associated functional
networks.
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Fig. 9.
The distribution of the functional networks associated with the DICCCOL #48. (a)–(c): the
functional networks are divided into three groups in three figures for visualization purpose,
respectively. (d) The index of the functional networks in (a)–(c) associated with DICCCOL
#48, which can be found in the Supplemental Table 1.
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Fig. 10.
The DTI-derived fiber tracts connected to the DICCCOL #48 in 10 template subjects.

Yuan et al. Page 24

Neuroinformatics. Author manuscript; available in PMC 2014 March 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
The 30 ROIs with the lowest numbers of associated functional networks. The red color
represents the DICCCOL with no associated networks.
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Fig. 12.
The distribution of duplicated times for each DICCCOL.
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Fig. 13.
(a) Visualizations of the 10 clustered brain networks on the cortical surface. The color bars
are shown on the right. (b) The resting state connectivity matrix. (c) The DTI-derived
structural connectivity matrix. (d) Functional connectivity matrix derived from the co-
activations reported in the BrainMap database. The colors in the cluster boxes in (b)–(d)
correspond to those in the color bars in (a). For visualization purpose, we normalized the
original matrix by each row and then added the normalized matrix with its transpose.
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Fig. 14.
The summary of the meta-analysis of functional roles of DICCCOLs in the BrainMap
database. Each column represents BrainMap-reported fMRI activations and associated
behavioral domains for each DICCCOL landmark, and each row stands for DICCCOL
landmarks that are involved in the same behavioral domain. The 55 BrainMap behavioral
domains are represented by nine different colors as shown in the bottom panel. The same
DICCCOL landmark might be involved in the same functional network reported by multiple
literature papers, represented by red (1), green (2), blue (3), orange (4), Cyan (5) and yellow
(6) colors in the grid, respectively. The anatomical locations of the 358 DICCCOLs are
referred to Fig. 5 and Supplemental Table 7.
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Table 1

The details of top 20 functional networks with the largest numbers of DICCCOLs. The network IDs are
referred to Supplemental Table 1.

Network ID Behavioral domain Number of DICCCOLs BrainMap paper ID

105 Cognition. Attention 23 5080210

153 Cognition. Attention 22 30360

39 Action. Motor Learning 21 7030086

951 Emotion 21 8110289

2 Action. Execution. Speech, Cognition. Language. Speech 20 30081

43 Cognition. Attention, Perception. Vision. Motion 20 30175

356 Cognition. Language. Speech, Perception. Audition 19 8110296

433 Action. Inhibition, Cognition. Attention 19 10080149

179 Cognition, Emotion 18 11010021

436 Action. Inhibition, Cognition. Attention 18 10080149

735 Cognition. Attention 18 30126

183 Cognition. Language, Cognition. Memory. Explicit 17 5070082

199 Cognition. Memory. Working 17 6080141

286 Cognition. Language. Semantics, Cognition. Memory. Explicit 17 6060077

30 Cognition 16 7070192

46 Cognition. Memory. Working 16 7120368

126 Cognition. Attention 16 5080210

222 Cognition. Language. Speech, Perception. Audition 16 9090113

293 Cognition. Attention 16 10030017

673 Emotion, Cognition. Social Cognition 16 9090156
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Table 3

The rank of functional domain description of networks in cluster #1.

Behavioral domain Number of networks Behavioral domain Number of networks

Action.execution 40 language 10

perception 18 memory 6

emotion 11 attention 2
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Table 4

The rank of functional domain description of the functional networks in cluster #2.

Behavioral domain Number of networks Behavioral domain Number of networks

Emotion 43 action 10

perception 20 attention 4

Memory 18 Cognition. Social 2

Language 14
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Table 5

The rank of brain domain description of networks in cluster #3.

Behavioral domain Number of networks Behavioral domain Number of networks

memory 10 emotion 4

language 5 perception 2

action 5 attention 2
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Table 6

The rank of functional domain description of networks in cluster #5.

Behavioral domain Number of networks Behavioral domain Number of networks

action 48 memory 10

perception 18 attention 7

emotion 12 Cognition 4

language 12
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Table 7

The rank of functional domain description of networks in cluster #8.

Behavioral domain Number of networks Behavioral domain Number of networks

language 34 action 10

memory 26 attention 13

perception 22 cognition 8

emotion 14
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