
A Graphics Processing Unit Accelerated Motion Correction
Algorithm and Modular System for Real-time fMRI

Dustin Scheinosta, Michelle Hampsonb, Maolin Qiub, Jitendra Bhawnanib, R. Todd
Constablea,b,c, and Xenophon Papademetrisa,b

aDepartment of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
bDepartment of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
cDepartment of Neurosurgery, Yale University, New Haven, CT 06510, USA

Abstract
Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a
possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by
processing speed and available software, and continued development is needed for rt-fMRI to
progress further and become feasible for clinical use. In this work, we present an open-source rt-
fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated
motion correction strategy as part of the BioImage Suite project (www.bioimagesuite.org). Our
system contributes to the development of rt-fMRI by presenting a motion correction algorithm that
provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI
system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion
correction in this new system. The present algorithm performed comparably to standard (non real-
time) offline methods and outperformed other real-time methods based on zero order interpolation
of motion parameters. The modular approach to the rt-fMRI system allows the system to be
flexible to the experiment and feedback design, a valuable feature for many applications. We
illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is
that continuing development of open-source rt-fMRI algorithms and software will make this new
technology more accessible and adaptable, and will thereby accelerate its application in the
clinical and cognitive neurosciences.

Keywords
real-time fMRI; motion correction; graphics processing unit; open-source software

1) INTRODUCTION
Real-time functional magnetic resonance imaging (rt-fMRI) is an emerging technology that
gives individual subjects moment-to-moment visual feedback of regional brain activity or
patterns (Christopher deCharms, 2008; deCharms, 2007; Weiskopf et al., 2004; Weiskopf et

Corresponding author: Dustin Scheinost Magnetic Resonance Research Center 300 Cedar St PO Box 208043 New Haven, CT
06520-8043 Tel: (203) 785-6148 Fax: (203) 785-6534 dustin.scheinost@yale.edu.

Information Sharing Statement
The software described in this paper can be freely downloaded at http://www.bioimagesuite.org. The relevant source code for the
motion correction algorithm can be found in Registration/rtmotioncorrection.cu, Registration/vtkbisRTMotionCorrection.cpp, and
bioimagesuite/main/bis_realtimefmri.tcl. The minimum CUDA version need to compile that motion correction algorithm is CUDA 2
and the minimum GPU is a GTX 8800 or new card with at least 256mb of ram. We would greatly appreciate any suggestions,
comments or feedback to improve the present rt-fMRI system.

NIH Public Access
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

Published in final edited form as:
Neuroinformatics. 2013 July ; 11(3): 291–300. doi:10.1007/s12021-013-9176-3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bioimagesuite.org
http://www.bioimagesuite.org


al., 2007). As first demonstrated by Yoo et al. (Yoo and Jolesz, 2002), this approach allows
individuals to develop an enhanced ability to exert control over activity in specific regions
of the brain that have previously been implicated in neural processes or disorders. Learning
to control the response of the brain may go a long way toward learning to effectively
mediate behavior. Rt-fMRI has been shown to be successful in providing non-invasive real-
time biofeedback for a wide range of brain processes, including motor processing
(deCharms et al., 2004; Posse et al., 2001), auditory perception (Yoo et al., 2006), pain
control (deCharms et al., 2005), emotion modulation (Phan et al., 2004), and linguistic
processing (Rota et al., 2009). Additionally, changes in functional and effective connectivity
have been demonstrated in subjects during rt-fMRI training sessions (Lee et al., 2011; Rota
et al., 2011), and changes in resting-state functional connectivity have been demonstrated
after subjects received rt-fMRI biofeedback training (Hampson et al., 2011a).

Recently, rt-fMRI has received increased interest with several published studies in the past
two years (Caria et al., 2011; Caria et al., 2010; Cusack et al., 2011; Goebel et al., 2011;
Hamilton et al., 2011; Hampson et al., 2011a; Hampson et al., 2011b; Hinds et al., 2011;
LaConte, 2011; Lee et al., 2011; McCaig et al., 2011; Rota et al., 2011; Sander and Kandrot,
2010; Shibata et al., 2011; Sitaram et al., 2010; Zotev et al., 2011). However, compared to
standard fMRI experiments, rt-fMRI is still limited by processing speed and available
software. Continued software and algorithmic development is needed to allow further
progress in rt-fMRI and to broaden its use. In this work, we present an open-source rt-fMRI
system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated
motion correction strategy as part of the BioImage Suite project (www.bioimagesuite.org).

In rt-fMRI experiments, tradeoffs exist between less robust results associated with simpler
methods and processing delays associated with standard offline methods. Rt-fMRI data must
be processed as the images are acquired which is generally at a rate of a volume every 1 or 2
seconds. In standard fMRI experiments, data is processed offline allowing sophisticated
processing techniques that, for large datasets, may take hours to days. Thus, some
processing tradeoffs must be made, which leads to a divergence between online and offline
methods. Due to high computational cost, motion correction tends to be the first area where
rt-fMRI methods deviate from standard offline methods. For example, rt-fMRI studies have
forgone motion correction (Eklund et al., 2009; Yoo et al., 2004; Yoo and Jolesz, 2002; Yoo
et al., 2006), used vendor-specific algorithms (Siemens MoCo) (Hinds et al., 2011), or used
different algorithms for online and offline processing (Caria et al., 2010; Hinds et al., 2011;
McCaig et al., 2011). Alternatively, methods comparable to standard offline methods can
have a processing delay on the order of an image acquisition (Cox and Jesmanowicz, 1999;
Mathiak and Posse, 2001).

Freely available and open-source software designed for rt-fMRI is limited. Turbo BRAIN
Voyager (www.brainvoyager.com) is widely used but is commercial software. Turbofire
(Gembris et al., 2000; Posse et al., 2001) is non-commercial but is not open source. AFNI
(Cox et al., 1995) provides rt-fMRI functionality but through building blocks that must be
programmed together rather than an all-in-one package. Offline packages like FSL and SPM
can be modified for rt-fMRI (Cusack et al., 2011; McCaig et al., 2011), but these methods
are not optimized for the computational speed and incremental data challenges of rt-fMRI.
Many have instead used custom in-house software, which may not be publicly available or
readily tested (Hamilton et al., 2011; McCaig et al., 2011; Yoo et al., 2004). Furthermore,
software may be designed specifically for the experiment at hand and couple the image
processing with the feedback display. This integrated design can make it difficult to change
the feedback for different experiments and may require large amounts of software to be
rewritten for each new experiment.

Scheinost et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bioimagesuite.org
http://www.brainvoyager.com


This work contributes to the development of rt-fMRI in two ways: first, by introducing a
motion correction approach that provides an estimate of motion with essentially no
processing delay and, second, by introducing a modular rt-fMRI system design, inspired
from our previous work with image-guided surgery systems (Papademetris et al., 2006;
Tokuda et al., 2009). While these two contributions are presented in unison, they are
independent from each other. The modular system can be used without the presented motion
correction and the motion correction can be used to analyze offline data. For motion
correction, the goal was to create a real-time motion correction implementation that, within
the time and incremental-data constraints inherent to rt-fMRI, achieves similar performance
to standard offline motion correction algorithms. By taking advantage of the interleaved
acquisition of fMRI data and GPU acceleration, the algorithm outperforms other methods
with little or no processing delay such as zero-order interpolation of motion parameters
estimated from the previous frame. Our modular system consists of: (1) a back-end
processing component that interfaces with the acquisition/reconstruction setup, and performs
motion correction and ROI analysis, and (2) a front-end feedback component that displays
feedback to the subject. The division into back-end and front-end components allows the
creation of a stable (back-end) system that performs the core processing while remaining
unchanged between experiments and a more flexible (front-end) system that simply handles
stimulus generation/feedback. Our rt-fMRI system has been shown to be successful in
several published and ongoing studies. In this paper, however, we present for the first time:
1) our motion correction algorithm and GPU implementation, 2) a detailed overview of our
modular rt-fMRI and implementation, and 3) an evaluation of the motion correction
strategy.

2) Overall Approach
2.1) Motion Correction Algorithm

Our strategy takes direct advantage of the interleaved acquisition of fMRI (where the odd-
numbered slices are acquired first followed by the even-numbered slices). Our system first
waits until all odd slices of frame n are acquired. It then properly orders these odd slices
with the even slices of frame n-1 creating frame n-½. Frame n-½ is then rigidly registered to
a reference frame supplied at the start of the experiment. The registration is then run
concurrently with the acquisition of the even numbered slices of frame n allowing for little
or no processing delay (a short amount of time is needed to apply the resulting
transformation once all the data is collected). Once all the even slices are acquired, frame n
is assembled and the output of the motion correction is applied.

Similar to most fMRI motion correction algorithms, the motion correction algorithm

minimizes a sum of square differences (SSD) objective function, , where
x is the voxel index, R[x] is the intensity of reference frame R at x, I[x] is the intensity of
frame n-½ at x, and T{} is a six parameter rigid body transformation matrix. To avoid the
influence of background and non-brain voxels on the optimization, only voxel pairs with
intensity greater than 5% of the mean intensity of the brain in the reference frame are
included in the optimization. A hill climb optimization is used to minimize the SSD
objective function (Studholme et al., 1996). To help reduce the effects of local minima, a
three stage multi-resolution technique is used. Both images are initially resampled to have
isotropic voxel dimensions equal to the minimum voxel dimension. For the first two multi-
resolution stages, the isotropic images are smoothed with a Gaussian kernel with a FWHM
of 4mm (1st stage) or 2mm (2nd stage) and downsampled by a rate of 4 (1st stage) or 2 (2nd
stage). For the 3rd stage, the images are left at the original isotropic dimension and are not
smoothed. For each stage, the hill climb algorithm uses 64 steps with a step size of 0.1 of the
current voxel dimension. Each stage is initialized with the results of the previous stage.

Scheinost et al. Page 3

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Trilinear interpolation is used when applying the transformation. The motion correction
algorithm is implemented on the GPU with NVIDIA`s CUDA programming language
(www.nvidia.com/cuda).

2.2 GPU Implementation
Since the most time consuming steps in motion correction are applying the transformation
and evaluating the objective function, our GPU implementation primarily focuses on
parallelizing these two steps with two kernel functions (GPU functions that are called in
parallel). The first kernel function treats each corresponding pair of reference and frame
voxels independently and processes the pair by applying the transformation matrix,
subtracting the transformed frame n – 1 from the reference image, and squaring the
difference. Linear interpolation is performed by fetches to texture memory. The final result
of the first kernel function is a squared difference image between the reference image and
the transformed frame n-½. The second kernel function is designed to sum the squared
difference image using a parallel reduction algorithm presented. The output from these
kernels functions is the evaluation of SSD metric.

The dimensions (approximately 64×64×32) of fMRI data provide a convenient memory
arrangement for the GPU. Once copied to the GPU, frame n-½ is arranged in texture
memory as a 3D texture with the width, height, and depth of the texture set to the x, y, and z
dimensions of the image, respectively. However, since the reference image does not need to
be interpolated, it is left simply as an array in global memory. The first kernel function is
called using a grid with dimensions equal to the x and y dimensions of the image and blocks
with size equal to the z dimension of the image. This memory arrangement was chosen for
convenient access to the x, y, z coordinates of a voxel, which are needed for the built-in
linear interpolation.

The hill climb optimization is implemented in CUDA on the CPU. As hill climb
optimization is generally a serial operation, this design was chosen due to a low expected
reduction in processing time for a GPU implementation. As parameters are changed during
each step of the optimization, the corresponding transformation matrix is updated and copied
from the host memory to the device memory. The two kernel functions described above are
called, the SSD metric is copied back to host memory, and the new parameters are kept if
the SSD metric is lower. Each step in the optimization involves 12 float copies to the device
memory for the transformation matrix (the last row of the matrix is exclude as it remains
constant for a 3D transformation matrix) and 1 float copy from device memory (the SSD
metric). The CPU optimization is simpler than a corresponding GPU implementation and the
added memory transfers between host and device do not significantly decrease performance
of our algorithm.

Currently, both the smoothing and resampling operations associated with the multi-
resolution optimization are performed on the CPU. The resulting images are then transferred
to the GPU to facilitate estimating the motion parameters. Once the optimization is finished
for the current stage, the images are smoothed and resampled for the next stage on the CPU
and the resulting images are again transferred to the GPU. In total, for each frame-to-frame
motion correction, the transform image is transferred to the device three times (one for each
resolution level). The smoothed and resampled reference images can be transferred to the
device before the rt-fMRI experiment. While both smoothing and resampling can be
implemented on the GPU, this CPU implementation accounts for less than 1% of the total
computation cost for motion correction of a single frame.

Scheinost et al. Page 4

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nvidia.com/cuda


2.3) Modular rt-fMRI System
Our rt-fMRI system consists of two computers, MRI scanner, and reconstruction system as
shown in Figure 1. As the scanner acquires a frame of the fMRI time series, each slice in the
frame is reconstructed on the fly by the reconstruction system and saved as a file to a
directory accessible by the image processing computer. The back-end component, running
on the image processing computer, then scans the mounted network directory for each slice
(volume) file and analyzes the current frame. The front-end component, running on the
feedback computer, receives the results from the back-end component and displays them
back to the subject.

The back-end and front-end components were chosen to run on different computers to
achieve system stability and flexibility. Typically, the MRI scanner and reconstruction
system sit behind a firewall on their own local area network (LAN). With a two-component
system, the back-end component can sit behind the firewall, taking advantage of the speed
of the LAN, and remain untouched from experiment to experiment. The front-end, which
may change between experiments, sits outside the firewall making it flexible to the needs of
the experiment. Results are transferred between the two components using a RS-232 serial
port.

2.4) Back-end Processing Component
The back-end component is the crux of our system, providing a generic interface between
the MRI scanner/reconstruction system and the display component. This component
performs four major tasks: scan for new slices and construct a 3D image, perform motion
correction using the proposed algorithm, analyze the data, and send the results to the front-
end component.

Slice/Volume Retrieval—The back-end component repeatedly scans the remote directory
for new data as the data is being reconstructed. If each slice of a volume can be saved in
real-time, the Back-End will proceed as outlined in Figure 2. Depending on available data,
the back-end component will look for the next slice/volume, perform motion correction, or
perform ROI analysis and send the results to the front-end component.

Motion Correction—Motion correction is performed with the algorithm described in
Section 2.1. If the scanner is not able to save each slice of an image in real-time, the end-
users can specify one of the alternative implementations described in Section 3.1. We have
included these alternative implementations to increase the flexibility of the system.

ROI Analysis—The motion corrected frame n is analyzed for feedback by calculating the
mean activity in predefined ROIs. The system accepts multiple ROIs for experiments that
may involve activation in multiple brain regions or require control regions. To correct for
small motion artifacts near brain edges and partial volume effects, any voxels with intensity
less than 50% of the average intensity of all the ROIs in the previous frame (frame n-1) are
not included in the analysis of frame n and are removed from any future calculations.

Serial Connection—The final step in the workflow for the back-end component is to send
the results to the front-end component. Here, the number of ROIs and each ROI mean is sent
as a string over serial communication to the front-end. A start and stop code is added to the
front and end of each string. The final string sent has the form: R_T_F #_of_ROIs
ROI_Means R_T_F.

Scheinost et al. Page 5

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.5) Front-end Component
While the back-end component is kept constant for all experiments, the front-end component
could vary dramatically from application to application. The front-end component is
responsible for generating stimuli that drive an fMRI experiment and it also incorporates the
results from the back-end component to provide feedback to the subject. Often this feedback
is provided by plotting the mean signal intensity of a specific ROI. Scanner drift can be
controlled at this stage by displaying the mean signal in an ROI relative to the activity in a
control region in a similar manner to that described by de Charms et al (deCharms et al.,
2005). In addition, temporal smoothing of the feedback signal and outlier detection can be
performed at this stage to increase the robustness of the feedback signal. The front-end
component implementation is left up to the end user and allows the use of any computer/
programming language capable of serial port communications. This provides proper
interfacing of the feedback with typical systems used to generate fMRI stimuli.

2.6) System Implementation
The back-end component is implemented as part of the BioImage Suite project, a
comprehensive, multi-platform, open-source image analysis suite. End-users interface with
the back-end component via a custom TCL command line script. The inputs to the back-end
component include the subject's fMRI volume used as the reference image during motion
correction with the same dimension as the images acquired in real time, an image in the
same space as the reference volume defining the ROIs to be analyzed, the number of frames
in the fMRI experiment, and the path to the directory where the reconstructed slices will be
saved by the scanner. This script implements the scanning of the remote directory and the
assembly of the fMRI volumes. It also interfaces with the C++ code, which implements the
motion correction and ROI analysis via custom C++/TCL wrapper functions. ROI analysis
is performed using a standard algorithm within BioImage Suite. The presented motion
correction algorithm is accessible to the main script by CUDA/C++ wrapper functions. By
wrapping the hardware acceleration in this manner, the algorithm gains access to all of
BioImage Suite's processing pipelines and testing framework. Joshi et al (Joshi et al., 2011)
provides more details on BioImage Suite's integration of CUDA, C++, and TCL and testing
framework.

Since the front-end component can be designed by the end user, we show two examples of
front ends used with our system to highlight the advantages of separating the display
component from the image processing component. Additionally an example front-end witten
in Matlab is provided with BioImage Suite. The two front-end components differ in
programming language, ROI signal processing, and stimuli shown to the subject. A front-
end component written in E-Prime and that performs additional computations to increase
robustness of the feedback is shown in Figure 3a. This biofeedback display was designed for
a study in which subjects were trained to control self-referential thinking associated with
activation of the posterior cingulate cortex (PCC). Here, ROI means with greater than a 10%
change from the previous volume were treated as outliers and replaced by the previous
measurement. Additionally, the ROI means were temporally smoothed based on the last 5
values with a zero mean unit variance Gaussian kernel. The signal is shown to the subject as
a histogram of percent signal change in the PCC relative to a baseline task and is updated
every 2 seconds. A second example of different front-end components is written in Matlab
and the feedback provided to the subject includes multiple stimuli shown simultaneously
(Figure 3b). This biofeedback display was designed for a study in which subjects were
trained to control a region of the orbitofrontal cortex involved in contamination anxiety
while viewing anxiety-provoking stimuli (Hampson et al., 2011b). At the top of the display,
a large image presents scenes that are either neutral or designed to provoke contamination
anxiety. On the left of the display, a color-coded arrow indicates whether the subject should

Scheinost et al. Page 6

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



rest, attempt to increase activity, or decrease activity. At the bottom of the display, a color-
coded line graph provides real-time feedback. The images and arrows change every 26
seconds, and the feedback is updated for each volume acquired.

Our current implementation uses a Siemens 1.5T Sonata human MRI system. In interleaved
mode, this scanner acquires first the odd-numbered slices, then the even-numbered slices.
Other MRI systems can be used in place of the Siemens system. Essentially, the only
requirement is that the reconstruction software reconstructs and stores the volumes in real-
time in a directory accessible by our software. If only whole volumes can be saved in real-
time , then the proposed motion correction would not work. To use the proposed motion
correction, the scanner also needs to acquire and save the slices in real-time and in an
interleaved fashion. If the proposed algorithm cannot be used, then either prospective
motion correction such as PACE or the frame n approach described below (Section 3.1) can
be used with the software. We are currently testing our software on a Siemens Tim Trio 3T,
a Verio 3T, and a Magnetom 7T at two research centers.

3) RESULTS
3.1) Evaluation of Motion Correction

Competing Algorithms—The lack of ground truth data complicates the evaluation of the
accuracy of motion correction algorithms on empirical data. Thus, we evaluated our
algorithm by demonstrating that it provides results that are as consistent with the results of
offline methods as these results are comparable with each other. Our goal is to approach
online performance in a real-time specific system as opposed to improve on online methods.
We test three different implementations:

1. The frame n-½ approach where we use our prediction of the motion from the frame
n.

2. The frame n scenario approach where we use all the data from frame n. This
approach represents the theoretical upper bound in terms of motion estimation
quality but it creates a delay in feedback caused by motion correction. Most rt-
fMRI systems currently use this type of approach.

3. The frame n-1 approach where we use the frame n-1 data to estimate motion for
frame n. This approach uses no data from frame n, but can also achieve no delays
associated with motion correction (similar to our presented approach).

Data and “Gold Standard” Generation—The presented motion correction algorithm
was compared to FSL MCFLIRT (http://www.fmrib.ox.ac.uk/fsl) and SPM Realign
(www.fil.ion.ucl.ac.uk/spm) using rt-fMRI data consisting of 8 subjects attempting to
increase activity in the Supplemental Motor Area (SMA) while receiving feedback of SMA
activity over four neurofeedback session. Complete details about this sample can be found
elsewhere (Hampson et al., 2011a). SPM and FSL were used with their default parameters
for rt-fMRI data with the exceptions that tri-linear interpolation for SPM instead of the
default spline-based interpolation. For each subject and each session, each run was motion
corrected to a short functional series acquired immediately before neurofeedback instead of
the default volume for each program.

Each motion correction was performed and statistical maps comparing the increased task
activation relative to baseline were created for each session and motion correction. These
maps were thresholded at p<0.05, creating binary images showing significant clusters.
Overlap (the union of the two images divided by the intersection of the two images; also
known as the Jaccard index) of the significant clusters was used to evaluate the consistency

Scheinost et al. Page 7

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fmrib.ox.ac.uk/fsl
http://www.fil.ion.ucl.ac.uk/spm


of the algorithms. A higher overlap of significant clusters indicates that the two motion
correction algorithms produced similar results and were more consistent with each other.

As we aim to show that the presented algorithm is as consistent with the results of offline
methods as the two offline methods are with each other, we compared the overlap of the
presented algorithm and the offline methods with the overlap between the two offline
methods. For each pair of motion correction algorithms, overlap of significant clusters was
computed for each session of feedback resulting in four measures of overlap for each pair of
motion correction algorithms. Two-sample t-tests were used to compare the overlap of each
implementation of the presented algorithm (see above). Significance was assessed at p<0.05.
Our gold standard, the average overlap of significant clusters between SPM and FSL, was
80.2%.

Results—Our optimal GPU-accelerated real-time, no delay, frame n-½ approach was
shown to be effective as it produced similar results to the gold standard (offline) algorithms
and best-case baseline (using frame n which adds delay to the feedback system) and
exhibited statistically significant improvement over the approach using frame n-1. The mean
overlap over all subjects and sessions are summarized in Table 1. We note that the average
overlap between SPM and FSL was 80.2%. The overlap for frame n with FSL and SPM was
80.35% and 81.64%. The approach using our frame n-½ approach performed similarly with
average overlaps of 78.76% when compared to FSL and 78.95% when compared to SPM.
The approach using frame n-1 performed significantly worse (p<0.05) with average overlaps
of 68.69% when compared to FSL and 69.07% when compared to SPM. Several
representative slices containing activation in the SMA are shown in Figure 3. In this figure,
all five motion correction algorithms are shown to reduce edge artifacts, and increase
activation in the target region when compared to no motion correction. However, the frame
n-1 approach produces less significant results in the SMA compared to the other four
algorithms.

On a Linux workstation with a 3.16 GHz Intel Xeon CPU and a GTX 260 Nvidia GPU, the
average time for frame-to-frame motion correction using the proposed method was 559
msec where each frame was a 64×64×23 image. As this processing time is well within our
goal of being less than the time needed to collect the even slices at a TR of 1.5 seconds or
greater, we did not optimize the parameters used during the hill climb optimization. Instead,
we used relatively conservative numbers (in terms of speed) to ensure proper accuracy of the
motion correction. We note that the optimization started to converge after a few steps. A
faster implementation with only a slight reduction in accuracy is possible by reducing the
number of step in the optimization if a further reduction in time is needed for the experiment
at hand. However, this was not needed to achieve our time goals.

3.2) Rt-fMRI Studies
Our rt-fMRI system has been shown to be successful in several published and ongoing
studies. Hampson et al (Hampson et al., 2011a) used the software described here in a study
in which subjects underwent four rt-fMRI sessions in order to learn to control activation in
the (SMA). It was shown that, after some biofeedback, subjects displayed significant control
of the SMA and that resting state functional connectivity between the SMA and subcortical
regions decreased after rt-fMRI training. Furthermore, two ongoing studies are currently
using the presented system. The first is a study to evaluate rt-fMRI as a training tool for
meditation using the front end shown in Figure 3a. The second study uses the front end in
Figure 3b to train subjects to control regions within the orbitalfrontal cortex involved in
contamination-related anxiety, with potential long-term applications for obsessive-
compulsive disorder (OCD) (Hampson et al., 2011b).

Scheinost et al. Page 8

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4) DISCUSSION
We have developed a novel motion correction strategy and an open-source implementation
of a real-time fMRI system that is freely available in the BioImage Suite project. The motion
correction strategy takes advantage of the interleaved acquisition of fMRI data and GPU
acceleration to achieve minimum processing time. Using only the odd slices of the current
frame, the frame-to-frame registration time (~0.5s) is less than that needed to collect the
even slices (½ TR; 1s for our data). As a result, an estimate of the motion parameters is
available at the end of an image acquisition with no time delay. Our real-time motion
correction approach is shown to be comparable to standard offline motion correction
algorithms. Furthermore, this strategy is more effective than using the previous frame to
estimate motion for the current frame (which also has essentially zero processing delay).

In general, motion correction algorithms can be classified as either prospective or
retrospective. Retrospective algorithms are the most common and, in the simplest case,
involve correcting for motion of a given frame of an fMRI time-series by using that frame
for motion correction. Examples of retrospective algorithms include SPM and FSL motion
correction as well as the frame n implementation of our algorithm. Prospective algorithms
involve correcting motion of a given frame based on previous estimates of motion. These
algorithms such as 3D PACE are most useful when the motion estimates are then used to
update the scanning parameters to account for the change in head position. Without this
update of parameters, estimating motion for the current frame based on the motion of the
previous frames is generally not practical as retrospective algorithm will perform at least as
well due to the added information about the actual motion in the current frame. Rt-fMRI is
one application where using prospective algorithms without updating scan parameters is
practical as any reduction in processing time will allow more timely feedback. The proposed
algorithm for the frame n-1 implementation is a prospective algorithm and is similar to 3D
PACE (Thesen et al., 2000) with the exception of not updating scanning parameters.

If slices of a volume are available in real-time, the proposed algorithm blurs the line
between prospective and retrospective algorithms as it both estimates motion before all the
data is collected and uses information from the current volume in the estimate of motion. A
key insight of the frame n-½ implementation is that the information in the odd slices can be
used to increase the accuracy of the motion correction. While the fame n-1 implementation
is helpful in reducing motion artifacts, this approach is limited because prediction of the
future can never be completely accurate as the subject may move in completely different
direction between temporally adjacent frames. The additional information contained in the
odd slices of the current frame allows the frame n-½ implementation to be much closer to
the frame n implementation and significantly better than the frame n-1 implementation.

Our system is modular, consisting of 1) a back-end processing component responsible for
motion correction and ROI analysis and 2) a front-end feedback component responsible for
interpreting the results and displaying feedback to the subject. The benefit of a two-
component system is that it allows: 1) the back-end component to become a permanent
fixture within the MRI scanner and the reconstruction system firewall and 2) the front-end
component to be flexible to the end-user choice of computer and feedback design. This
approach has been successful for image-guided neurosurgery where one component (the
stereotactic navigation system) must remain stable from procedure to procedure and the
other must be flexible as new imaging algorithms are developed and integrated into the
surgery (Papademetris et al., 2006; Tokuda et al., 2009). We are currently adapting the
modular framework to real-time neurofeedback systems based on Near Infrared
Spectroscopy (NIRS) and Dense Electroencephalography (EEG). The modular framework
will allow the use of the same front-ends to be used for any feedback device while only

Scheinost et al. Page 9

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



modifying the back-end to integrate with NIRS or EEG speaking to the flexibility of this
approach.

The modularity of the proposed system is in contrast to highly integrated systems such as the
one present in (LaConte, 2011). More integrated systems can provide faster processing and
quicker feedback which are both important features of a rt-fMRI system. Nevertheless, these
systems can be hard to implement at other research centers. While the presented motion
correction algorithm requires an increased level of integration by having each slice
reconstructed in real time, the presented frame work is flexible to presentation of stimuli
both in terms of presentation software and type and to choices of motion correction. If speed
and simple integration is critical, the frame n-1 approach can be used. If accuracy and simple
integration is critical, the frame n approach can be used. If speed and accuracy is critical but
more complex integration is possible, the frame n-½ approach can be used.

Rt-fMRI is a promising field of study limited by several technical challenges. The first rt-
fMRI studies typically used computer clusters and high-end workstations to meet the high
computational and minimum processing-time demands of a rt-fMRI experiment (Bagarinao
et al., 2003; James T, 1999). However, GPUs now provide an ideal, inexpensive solution to
meet the computational demands for rt-fMRI experiments as most processing algorithms,
including motion correction and sliding-scale correlation, can be easily parallelized. Our
hope is that continuing development of open-source rt-fMRI algorithms and software (such
as those presented here) will improve accessibility to rt-fMRI, and eventually, lead to
standard software packages similar to those used in non-real-time fMRI research (such as
SPM, AFNI, or FSL). Future work will include the development of additional algorithms
that allow for more complex analyses. Additions of recursive General Linear Models (Hinds
et al., 2011; Nakai et al., 2006) to model drift and additional regressors, linear prediction to
offset delays in the hemodynamics of fMRI, independent component analysis (ICA) based
functional connectivity (Esposito et al., 2003), and whole-brain classification techniques
(LaConte, 2011; LaConte et al., 2007; Sitaram et al., 2010) could enable new study designs
and continued development of this exciting technology.

Acknowledgments
We thank J. Brewer and P. Worhnsky for the development of the front-end used for the current meditation study
and for the example feedback shown in Figure 3a. We also thank E. Finn for her helpful comments on the
manuscript. This study was funded by the Dana foundation (M. Hampson) and NIH (R01 EB006494, R03
EB012969, RO1 EB009666, R01 NS051622, R21 MH090384).

References
Bagarinao E, Matsuo K, Nakai T. Real-time functional MRI using a PC cluster. Concepts in Magnetic

Resonance Part B: Magnetic Resonance Engineering. 2003; 19B:14–25.

Caria A, Sitaram R, Birbaumer N. Real-Time fMRI: A Tool for Local Brain Regulation. The
Neuroscientist. 2011

Caria A, Sitaram R, Veit R, Begliomini C, Birbaumer N. Volitional Control of Anterior Insula Activity
Modulates the Response to Aversive Stimuli. A Real-Time Functional Magnetic Resonance
Imaging Study. Biological Psychiatry. 2010; 68:425–432. [PubMed: 20570245]

Christopher deCharms R. Applications of real-time fMRI. Nat Rev Neurosci. 2008; 9:720–729.
[PubMed: 18714327]

Cox RW, Jesmanowicz A. Real-time 3D image registration for functional MRI. Magnetic Resonance
in Medicine. 1999; 42:1014–1018. [PubMed: 10571921]

Cox RW, Jesmanowicz A, Hyde JS. Real-Time Functional Magnetic Resonance Imaging. Magnetic
Resonance in Medicine. 1995; 33:230–236. [PubMed: 7707914]

Scheinost et al. Page 10

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cusack R, Veldsman M, Naci L, Mitchell DJ, Linke AC. Seeing different objects in different ways:
Measuring ventral visual tuning to sensory and semantic features with dynamically adaptive
imaging. Human Brain Mapping. 2011 n/a-n/a.

deCharms RC. Reading and controlling human brain activation using real-time functional magnetic
resonance imaging. Trends in Cognitive Sciences. 2007; 11:473–481. [PubMed: 17988931]

deCharms RC, Christoff K, Glover GH, Pauly JM, Whitfield S, Gabrieli JDE. Learned regulation of
spatially localized brain activation using real-time fMRI. NeuroImage. 2004; 21:436–443.
[PubMed: 14741680]

deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JDE, Mackey SC.
Control over brain activation and pain learned by using real-time functional MRI. Proceedings of
the National Academy of Sciences of the United States of America. 2005; 102:18626–18631.
[PubMed: 16352728]

Eklund A, Ohlsson H, Andersson M, Rydell J, Ynnerman A, Knutsson H. Using Real-Time fMRI to
Control a Dynamical System by Brain Activity Classification. Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2009. 2009; 5761:1000–1008.

Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, Tedeschi G, Cirillo S, Goebel R, Di
Salle F. Real-time independent component analysis of fMRI time-series. NeuroImage. 2003;
20:2209–2224. [PubMed: 14683723]

Gembris D, Taylor JG, Schor S, Frings W, Suter D, Posse S. Functional magnetic resonance imaging
in real time (FIRE): Sliding-window correlation analysis and reference-vector optimization.
Magnetic Resonance in Medicine. 2000; 43:259–268. [PubMed: 10680690]

Goebel R, Zilverstand A, Sorger B. Real-time fMRI-based brain computer interfacing for
neurofeedback therapy and compensation of lost motor functions. Imaging in Medicine. 2011;
2:407–415.

Hamilton JP, Glover GH, Hsu J-J, Johnson RF, Gotlib IH. Modulation of subgenual anterior cingulate
cortex activity with real-time neurofeedback. Human Brain Mapping. 2011; 32:22–31. [PubMed:
21157877]

Hampson M, Scheinost D, Qiu M, Bhawnani J, Lacadie CM, Leckman JF, Constable RT,
Papademetris X. Biofeedback of Real-Time Functional Magnetic Resonance Imaging Data from
the Supplementary Motor Area Reduces Functional Connectivity to Subcortical Regions. Brain
Connectivity. 2011a; 1:91–98. [PubMed: 22432958]

Hampson M, Stoica T, Saksa J, Scheinost D, Qiu M, Bhawnani J, Pittenger C, Papademetris X,
Constable RT. Real-time fMRI biofeedback targeting the orbitofrontal cortex for contamination
anxiety. Journal of Visual Experiments Accepted. 2011b

Hinds O, Ghosh S, Thompson TW, Yoo JJ, Whitfield-Gabrieli S, Triantafyllou C, Gabrieli JDE.
Computing moment-to-moment BOLD activation for real-time neurofeedback. NeuroImage. 2011;
54:361–368. [PubMed: 20682350]

James T,V. Real-Time fMRI Paradigm Control, Physiology, and Behavior Combined with Near Real-
Time Statistical Analysis. NeuroImage. 1999; 10:91–106. [PubMed: 10417244]

Joshi A, Scheinost D, Okuda H, Belhachemi D, Murphy I, Staib L, Papademetris X. Unified
Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms.
Neuroinformatics. 2011; 9:69–84. [PubMed: 21249532]

LaConte SM. Decoding fMRI brain states in real-time. NeuroImage. 2011; 56:440–454. [PubMed:
20600972]

LaConte SM, Peltier SJ, Hu XP. Real-time fMRI using brain-state classification. Human Brain
Mapping. 2007; 28:1033–1044. [PubMed: 17133383]

Lee S, Ruiz S, Caria A, Veit R, Birbaumer N, Sitaram R. Detection of Cerebral Reorganization
Induced by Real-Time fMRI Feedback Training of Insula Activation. Neurorehabilitation and
Neural Repair. 2011; 25:259–267. [PubMed: 21357528]

Mathiak K, Posse S. Evaluation of motion and realignment for functional magnetic resonance imaging
in real time. Magnetic Resonance in Medicine. 2001; 45:167–171. [PubMed: 11146500]

McCaig RG, Dixon M, Keramatian K, Liu I, Christoff K. Improved modulation of rostrolateral
prefrontal cortex using real-time fMRI training and meta-cognitive awareness. NeuroImage. 2011;
55:1298–1305. [PubMed: 21147230]

Scheinost et al. Page 11

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Nakai T, Bagarinao E, Matsuo K, Ohgami Y, Kato C. Dynamic monitoring of brain activation under
visual stimulation using fMRI--The advantage of real-time fMRI with sliding window GLM
analysis. Journal of Neuroscience Methods. 2006; 157:158–167. [PubMed: 16765449]

Papademetris X, Vives KP, DiStasio M, Staib LH, Neff M, Flossman S, Frielinghaus N, Zaveri H,
Novotny EJ, Blumenfeld H, Constable RT, Hetherington HP, Duckrow RB, Spencer SS, Spencer
DD, Duncan JS. Development of a research interface for image guided intervention: initial
application to epilepsy neurosurgery. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE
International Symposium on. 2006:490–493.

Phan KL, Fitzgerald DA, Gao K, Moore GJ, Tancer ME, Posse S. Real-time fMRI of cortico-limbic
brain activity during emotional processing. NeuroReport. 2004; 15

Posse S, Binkofski F, Schneider F, Gembris D, Frings W, Habel U, Salloum JB, Mathiak K, Wiese S,
Kiselev V, Graf T, Elghahwagi B, Grosse-Ruyken M-L, Eickermann T. A new approach to
measure single-event related brain activity using real-time fMRI: Feasibility of sensory, motor,
and higher cognitive tasks. Human Brain Mapping. 2001; 12:25–41. [PubMed: 11198103]

Rota G, Handjaras G, Sitaram R, Birbaumer N, Dogil G. Reorganization of functional and effective
connectivity during real-time fMRI-BCI modulation of prosody processing. Brain and Language.
2011; 117:123–132. [PubMed: 20888628]

Rota G, Sitaram R, Veit R, Erb M, Weiskopf N, Dogil G, Birbaumer N. Self-regulation of regional
cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing.
Human Brain Mapping. 2009; 30:1605–1614. [PubMed: 18661503]

Sander, J.; Kandrot, E. CUDA by Example: An Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional; 2010.

Shibata K, Watanabe T, Sasaki Y, Kawato M. Perceptual Learning Incepted by Decoded fMRI
Neurofeedback Without Stimulus Presentation. Science. 2011; 334:1413–1415. [PubMed:
22158821]

Sitaram R, Lee S, Ruiz S, Rana M, Veit R, Birbaumer N. Real-time support vector classification and
feedback of multiple emotional brain states. NeuroImage. 2010; 56:753–765. [PubMed:
20692351]

Studholme C, Hill DL, Hawkes DJ. Automated 3-D registration of MR and CT images of the head.
Med Image Anal. 1996; 1:163–175. [PubMed: 9873927]

Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with
image-based tracking for real-time fMRI. Magn Reson Med. 2000; 44:457–465. [PubMed:
10975899]

Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby
AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N. OpenIGTLink: an open
network protocol for image-guided therapy environment. The International Journal of Medical
Robotics and Computer Assisted Surgery. 2009; 5:423–434.

Weiskopf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W, Goebel R, Birbaumer N.
Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance
imaging (fMRI). Biomedical Engineering, IEEE Transactions on. 2004; 51:966–970.

Weiskopf N, Sitaram R, Josephs O, Veit R, Scharnowski F, Goebel R, Birbaumer N, Deichmann R,
Mathiak K. Real-time functional magnetic resonance imaging: methods and applications.
Magnetic Resonance Imaging. 2007; 25:989–1003. [PubMed: 17451904]

Yoo S-S, Fairneny T, Chen N-K, Choo S-E, Panych LP, Park H, Lee S-Y, Jolesz FA. Brain-computer
interface using fMRI: spatial navigation by thoughts. NeuroReport. 2004; 15

Yoo S-S, Jolesz FA. Functional MRI for neurofeedback: feasibility studyon a hand motor task.
NeuroReport. 2002; 13

Yoo S-S, O'Leary HM, Fairneny T, Chen N-K, Panych LP, Park H, Jolesz FA. Increasing cortical
activity in auditory areas through neurofeedback functional magnetic resonance imaging.
NeuroReport. 2006; 17

Zotev V, Krueger F, Phillips R, Alvarez RP, Simmons WK, Bellgowan P, Drevets WC, Bodurka J.
Self-Regulation of Amygdala Activation Using Real-Time fMRI Neurofeedback. PLoS ONE.
2011; 6:e24522. [PubMed: 21931738]

Scheinost et al. Page 12

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Schematic of the Rt-fMRI Setup
Our setup consists of the MRI scanner, image reconstruction system, image processing
computer, and the feedback/display computer. The MR data are processed by the
reconstruction system creating an image of each slice/volumes that is written to a file. The
slices/volumes are retrieved by the image processing computer via LAN and processed in
real time using BioImage Suite. The results are sent to the feedback computer via serial port
and shown to the subject.

Scheinost et al. Page 13

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Flow Chart of the Back-End Processing Component
The rt-fMRI Back-End sits in between the MRI scanner and Front-End display. If eacsh
slice of a volume can be saved in real-time, the Back-End will proceed as outline above.
First, if all odd slices are acquired, frame n-½ is created and motion correction is performed.
Second, if all slices are acquired and the motion correction is finished, the motion correction
is applied, ROI analysis is performed, and the results are sent the Front-End. Finally, if
neither set of slices are acquired, the Back-End continues to poll for new slices. If each slice
of a volume cannot be saved in real-time, the Back-end will proceed in a similar manner
with the exception of using frame n for motion correction.

Scheinost et al. Page 14

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Example Front-End components
A) This Front-End is written in E-Prime and shows feedback from the PCC after addition
signal processing. The BOLD time-course from the PCC is shown as a bar graph with red
bars representing an increase over baseline and blue bars representing a decrease under
baseline. B) This Front-End is written is Matlab and shows both activation of the OFC
cortex and images designed to provoke or subdue contamination related anxiety (the wheat
in this example). These Front-Ends used in ongoing rt-fMRI experiments show the
flexibility of our system to feedback design.

Scheinost et al. Page 15

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Comparison 5 Different Motion Correction Algorithms on Empirical Rt-fMRI Data
A) SPM Realign and B) FSL MCFLIRT are two standard motion correction algorithms used
for comparison. The proposed algorithm using C) Frame n, D) Frame n-½, and E) Frame n-1
to estimate motion for Frame n. F) Results from data without motion correction. The five
motion correction algorithms look similar to each other. All show a reduction in motion
artifacts near the edges and deactivation in Frontal Lobe not seen in the uncorrected data.

Scheinost et al. Page 16

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Scheinost et al. Page 17

Table 1
Overlap of Significant Cluster Produce by Different Motion Corrections

SPM and FSL columns represent each software packages standard motion correction algorithm with default
parameters. The n, n-½ and n-1 columns represent the presented motion correction algorithm using frame n, n-
½, and n-1 to correct for the motion in frame n. Please note the dramatic (and statistically significant
deterioration) between the two approach that do not add delay to the system, our proposed n-½ approach and
the commonly used n-1 approach.

FSL N N-½ N-1

SPM 80.20 81.68 78.95 69.07

FSL 80.35 78.76 68.69

N 87.96 75.29

N-½ 76.05

Neuroinformatics. Author manuscript; available in PMC 2014 July 01.


