
UC Irvine
UC Irvine Previously Published Works

Title
Efficient spiking neural network model of pattern motion selectivity in visual cortex

Permalink
https://escholarship.org/uc/item/5kg2s3wz

Journal
Neuroinformatics, 12(3)

ISSN
1539-2791

Authors
Beyeler, M
Richert, M
Dutt, ND
et al.

Publication Date
2014

DOI
10.1007/s12021-014-9220-y

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5kg2s3wz
https://escholarship.org/uc/item/5kg2s3wz#author
https://escholarship.org
http://www.cdlib.org/

Efficient spiking neural network model of pattern

motion selectivity in visual cortex

*Michael Beyeler1, Micah Richert2,3, Nikil D. Dutt1, and Jeffrey L. Krichmar1,2

1Department of Computer Science, University of California Irvine, Irvine, CA,
USA
2Department of Cognitive Sciences, University of California Irvine, Irvine, CA,
USA
3Brain Corporation, San Diego, CA, USA

Keywords:
pattern motion selectivity, spiking neural network, MT, GPU, real-time,
CARLsim

Correspondence:
Michael Beyeler
University of California, Irvine
Department of Computer Science
Irvine, CA 92697
mbeyeler@uci.edu
Office of Jeff Krichmar: (949) 824-5888

1

1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Abstract

Simulating large-scale models of biological motion perception is challenging,

due to the required memory to store the network structure and the

computational power needed to quickly solve the neuronal dynamics. A low-

cost yet high-performance approach to simulating large-scale neural network

models in real-time is to leverage the parallel processing capability of

graphics processing units (GPUs). Based on this approach, we present a two-

stage model of visual area MT that we believe to be the first large-scale

spiking network to demonstrate pattern direction selectivity. In this model,

component-direction-selective (CDS) cells in MT linearly combine inputs from

V1 cells that have spatiotemporal receptive fields according to the motion

energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS)

cells in MT are constructed by pooling over MT CDS cells with a wide range of

preferred directions. Responses of our model neurons are comparable to

electrophysiological results for grating and plaid stimuli as well as speed

tuning. The behavioral response of the network in a motion discrimination

task is in agreement with psychophysical data. Moreover, our

implementation outperforms a previous implementation of the motion

energy model by orders of magnitude in terms of computational speed and

memory usage. The full network, which comprises 153,216 neurons and

approximately 40 million synapses, processes 20 frames per second of a

40×40 input video in real-time using a single off-the-shelf GPU. To promote

the use of this algorithm among neuroscientists and computer vision

researchers, the source code for the simulator, the network, and analysis

scripts are publicly available.

2

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1. Introduction

Visual motion perception is a challenging problem that is critical for

navigating through the environment and tracking objects. Several software

packages are available to the public that deal with the neurobiologically

plausible modeling of motion perception in the mammalian brain, such as

spatiotemporal-energy models like the motion energy model of Simoncelli

and Heeger (1998), or gradient-based models like ViSTARS (Browning et al.

2009a, 2009b). However, in order for these frameworks to become practical

in, for example, neuromorphic or robotics applications, they must be capable

of running large-scale networks in real-time. Moreover, to take advantage of

state-of-the-art neuromorphic hardware, the elements of the algorithms need

to be spiking neurons (Indiveri et al. 2006; Merolla et al. 2007; Vogelstein et

al. 2007; Khan et al. 2008; Srinivasa and Cruz-Albrecht 2012). Developing

such a simulation environment is challenging, due to the required memory to

store the network structure and the computational power needed to quickly

solve the equations describing the neuronal dynamics. A low-cost yet high-

performance approach to simulating large-scale spiking neural networks

(SNNs) in real-time is to leverage the parallel processing capability of

graphics processing units (GPUs) (Nageswaran et al. 2009; Fidjeland and

Shanahan 2010; Yudanov et al. 2010; Richert et al. 2011).

Based on this approach, we present a two-stage model of visual area

MT that we believe to be the first large-scale spiking network to demonstrate

pattern direction selectivity. The model combines and extends two previous

incarnations of the motion energy model (Simoncelli and Heeger 1998; Rust

et al. 2006). Broadly speaking, our model integrates the V1 stage of

Simoncelli and Heeger (1998) with the MT stage of Rust et al. (2006) in the

spiking domain. More precisely, our model uses a bank of spatiotemporal

filters (Adelson and Bergen 1985; Simoncelli and Heeger 1998) to model the

receptive fields of directionally selective neurons in V1, which then project to

component-direction-selective (CDS) cells in area MT. However, the local
3

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

motion estimates coded by the spike patterns of these neurons often vary

drastically from the global pattern motion of a visual stimulus, because the

local motion of a contour is intrinsically ambiguous (“aperture problem”).

Therefore, in order to construct pattern-direction-selective (PDS) cells in MT

that signal the global pattern motion, we implemented three design

principles introduced by Rust et al. (2006): 1) spatial pooling over V1 or MT

CDS cells with a wide range of preferred directions, 2) strong motion

opponent suppression, and 3) a tuned normalization that may reflect center-

surround interactions in MT. Whereas the implementation by Rust et

al. (2006) was restricted to inputs that are mixtures of sinusoidal gratings of

a fixed spatial and temporal frequency, our model can operate on any

spatiotemporal image intensity.

The motion energy model of Simoncelli and Heeger (1998), henceforth

referred to as the S&H model, is conceptually equivalent to an elaborated

Reichardt detector at the end of the V1 stage (van Santen and Sperling

1985), and is a specific implementation of the intersection-of-constraints

(IOC) principle at the end of the MT PDS stage (Bradley and Goyal 2008). The

IOC principle in turn is one possible solution to the aperture problem; that is,

a velocity-space construction that finds the global pattern motion as the

point in velocity-space where the constraint lines of all local velocity samples

intersect. Adelson and Movshon (1982) differentiated among three methods

to estimate the global pattern motion; 1) IOC principle, 2) vector average

(VA), and 3) blob or feature tracking, which may be equally valid approaches

to solving the aperture problem (for a recent review on the topic see Bradley

and Goyal (2008)). Although the S&H model is not complete, in the sense

that it does not specify the exact pattern or object velocity, the model in

particular and the IOC principle in general are consistent with various

experimental data.

In the present paper, we introduce a large-scale spiking neuron model

of cortical areas critical for motion processing, which is efficient enough to

run in real-time on available processors. We show that the responses of
4

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

neurons in the network are comparable to electrophysiological results for

grating and plaid stimuli, as well as speed tuning. The behavioral response of

the network in a two-alternative forced choice (2AFC) motion discrimination

task (that is, a random dot motion coherence task) is in agreement with

psychophysical data. Moreover, our implementation outperforms a previous

rate-based C/Matlab implementation of the S&H model by up to a factor of

12 in terms of computational speed and by orders of magnitude in terms of

memory usage. The full network, which comprises 153,216 neurons and

approximately 40 million synapses, processes 20 frames per second of a

40×40 input video in real-time using a single off-the-shelf GPU.

The network was constructed using an open-source SNN simulator

(Richert et al. 2011) that provides a PyNN-like programming interface; its

neuron model, synapse model, and address-event representation (AER) are

compatible with recent neuromorphic hardware (Srinivasa and Cruz-Albrecht

2012). To promote the use of this algorithm among the neuroscientist and

computer vision research communities, the source code for the simulator,

the network, and analysis scripts are publicly available at

http://www.socsci.uci.edu/~jkrichma/CARLsim/.

5

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

2. Methods

2.1 The simulator

The present model was developed on a simulator that was previously

published in Nageswaran et al. (2009) and Richert et al. (2011). The first

study demonstrated real-time performance for a simulation of 100,000

neurons on a single NVIDIA C1060 GPU. The latter added a wide range of

functionalities, such as equations for synaptic conductances, spike-timing-

dependent plasticity (STDP), and short-term plasticity (STP). The present

release builds on this mainly by: 1) providing the complete source code for a

detailed large-scale model of visual motion processing in V1 and MT, 2)

improving the original model to demonstrate PDS responses and speed

tuning, and 3) introducing source code-level optimizations that improve GPU

memory management and ensure code stability. Whereas the optimizations

should be applicable to a wide range of GPU architectures, they are not

directly relevant to this paper and will thus not be discussed (for more

information please refer to the release notes).

The main code to run the experiments described in this paper can be found

in the file "examples/v1MTLIP/main_v1MTLIP.cpp", which is part of the CARLsim 2.1

software package. The "examples" directory also contains a number of other

experiments that were part of a previous code release—for more information

refer to Richert et al. (2011). Matlab scripts to analyze the network output

and create the figures can be found in the directory "scripts/v1MTLIP/". Please

note that Matlab is not necessary to use the simulator, as the scripts are

provided mainly for analysis purposes.

2.1.1Setting up a simulation

Step-by-step instructions on how to set up, interact with, and run a

simulation can be found in the tutorial on our website and in our previous

code release (Richert et al. 2011). For the reader’s convenience, we include

here a representative example to illustrate the ease of setting up and
6

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

running a simulation. Listing 1 randomly connects ten Poisson spike

generators (gIn) firing at 50 Hz mean rate to a population of 100 excitatory

Izhikevich neurons (gEx), records and stores the spike times in a binary file

"spkEx.dat", and runs the network for a second of simulation time:

#include "snn.h"
CpuSNN sim("My network");

// set up network
int gIn=sim.createSpikeGeneratorGroup("input", 10, EXCITATORY_NEURON);
int gEx=sim.createGroup("excitatory", 100, EXCITATORY_NEURON);
sim.setNeuronParameters(gEx, 0.02f, 0.2f, -65.0f, 8.0f); // RS neurons sim.connect(gIn, gEx,
"random", 1.0, 1.0, 0.10f, 1, 20, SYN_FIXED);

// write spike times to file
sim.setSpikeMonitor(gEx, "spkEx.dat");

// set spike rates and run network
PoissonRate inSpikes(100);
for (int i=0; i<100; i++)
 inSpikes.rates[i] = 50.0f; // 50 Hz
sim.setSpikeRate(gIn, &inSpikes);
sim.runNetwork(1,0); // run for 1 sec and 0 msec
Listing 1

In this example, connectivity (achieved through CpuSNN:connect(…)) is random

with an initial weight of 1.0, a maximum weight of 1.0, a 10 % (0.10)

connection probability, a synaptic delay uniformly distributed between 1 ms

and 20 ms, and static synapses (SYN_FIXED). Note that any type of

connectivity profile is possible by using a callback mechanism. For a

description of the Izhikevich neuron model please refer to Section 2.1.3.

2.1.2CPU vs. GPU simulation mode

A major advantage of our simulator is the possibility to run a simulation

either on standard x86 central processing units (CPUs) or off-the-shelf NVIDIA

GPUs, simply by passing a constant with value CPU_MODE or GPU_MODE as an

additional function argument to CpuSNN::runNetwork(…). A new feature is the

option to pass a “device index” to the same method, which can be used in

multi-GPU systems to specify on which CUDA device to establish a context.

For example, Listing 2 would run a built network for one second on the

second GPU (if such a device exists):

7

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

CpuSNN sim(“My network”);
... // build network
int run_sec = 1; int run_msec = 0; // run for 1 s and 0 ms
bool onGPU = true; // run on GPU
int ithGPU = 1; // run on 2nd device (0-indexed)
sim.runNetwork(run_sec, run_msec, onGPU?GPU_MODE:CPU_MODE, ithGPU);
Listing 2

The two simulation modes allow the user to exploit the advantages of

both architectures. Whereas the CPU is more efficient for relatively small

networks, the GPU is most advantageous for network sizes of 1,000 neurons

and up (Nageswaran et al. 2009; Richert et al. 2011). It has been

demonstrated that a GPU implementation (on NVIDIA GTX-280 with 1 GB of

memory) for a simulation of 100,000 neurons and 50 million synaptic

connections can run up to 26 times faster than a CPU version (Core2 4600

@ 2.13 GHz with 4 GB of memory) of the same network (Nageswaran et al.

2009). On the other hand, the CPU mode allows for execution of extremely

large networks that would not fit within the GPU’s memory.

It is worth noting that a simulation can be run in CPU mode even if the

code is compiled in the presence of CUDA source files. An example of this

hybrid mode is the network explained in the present work, which contains a

V1 stage purely written in CUDA. In this case the network would be allocated

on the CPU’s memory, but the generation of motion energy responses would

be delegated to the GPU.

2.1.3Neuron model

The simulator currently supports four parameter Izhikevich point-neurons

(Izhikevich 2003). Other neuron models will follow in future releases. The

Izhikevich model aims to reduce Hodgkin-Huxley-type neuronal models to a

two-dimensional system of ordinary differential equations,

dv (t)

dt
=0.04v2

(t)+5v (t)+140−u(t)+i syn (t) (1)

du (t)

dt
=a (bv(t)−u(t)). (2)

Here (1) describes the membrane potential v for a given external current i syn,

whereas (2) describes a recovery variableu; the parameter a is the rate

8

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

constant of the recovery variable, and the parameter b describes the

sensitivity of the recovery variable to the subthreshold fluctuations of the

membrane potential. All parameters in (1) and (2) are dimensionless;

however, the right-hand side of (1) is in a form such that the membrane

potential v has mV scale and the time t has ms scale (Izhikevich 2003). The

Izhikevich model is well-suited for large-scale simulations, because it is

computationally inexpensive yet capable of spiking, bursting, and being

either an integrator or a resonator (Izhikevich 2004, 2007).

In contrast to other simple models such as the leaky integrate-and-fire

(LIF) neuron, the Izhikevich neuron is able to generate the upstroke of the

spike itself. Thus the voltage reset occurs not at the threshold, but at the

peak (v cutoff=+30), of the spike. The action potential downstroke is modeled

using an instantaneous reset of the membrane potential whenever v reaches

the spike cutoff, plus a stepping of the recovery variable:

v (v>30)=c and u (v>30)=u−d . (3)
The inclusion of u in the model allows for the simulation of typical spike

patterns observed in biological neurons. The four parametersa, b, c, and d

can be set to simulate different types of neurons. Unless otherwise specified,

excitatory neurons in all our simulations were modeled as regular spiking

(RS) neurons (class 1 excitable, a=0.02 ,b=0.2 ,c=−65 ,d=8), and all

inhibitory neurons were modeled as fast spiking (FS) neurons (class 2

excitable, a=0.1 ,b=0.2 ,c=−65 ,d=2) (Izhikevich 2003, 2004).

2.1.4Synapse model

A simulation can be run with either a current-based or a conductance-based

neuron model (sometimes referred to as CUBA and COBA, respectively). All

experiments in the present study were run in COBA mode.

In a conductance-based model, each ionic current that contributes to

the total current i syn (see (1)) is associated with a conductance. The simulator

supports four of the most prominent synaptic conductances found in the

cortex: AMPA (fast decay), NMDA (slow decay and voltage-dependent),

9

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

GABAa (fast decay), and GABAb (slow decay), which are modeled as dynamic

synaptic channels with zero rise time and exponential decay according to

d gr (t)
dt

=
−1
τ r

gr (t)+w∑
i

δ (t−t i) , (4)

where δ is the Dirac delta, the sum is over all presynaptic spikes arriving at

times t i, w is the weight of that synapse, τ r is its decay time constant, and

the subscript r denotes the receptor type; that is, AMPA, NMDA, GABAa, or

GABAb. Unless otherwise specified, a spike arriving at a synapse that is post-

synaptically connected to an excitatory (inhibitory) neuron increases both

g AMPA and gNMDA (gGAB Aa
 and gGAB Ab

¿ . In our simulations we set the time

constants to τAMPA=5 ms, τNMDA= 150 ms, τGAB Aa
=6 ms, and τGAB Ab

=150 ms

(Dayan and Abbott 2001; Izhikevich et al. 2004). The rise time of these

conductances was modeled as instantaneous, which is a reasonable

assumption in the case of AMPA, NMDA, and GABAa (Dayan and Abbott

2001), but a simplification in the case of GABAb, which has a rise time on the

order of 10 ms (Koch 1999).

Then the total synaptic current i syn in (1) for each neuron is given by:

i syn=−g AMPA (v−0)−gNMDA

(v+80
60)

2

¿

1+(v+80
60)

2 (v−0) ¿

−gGABAa (v +70)−gGAB Ab
(v+90) ,

(5)

where v is the membrane potential of the neuron, and the subscript

indicates the receptor type. This equation is equivalent to the one described

in Izhikevich et al. (2004).

2.2 The network

The network architecture is shown in Fig. 1. Grayscale videos are fed frame-

by-frame through a model of the primary visual cortex (V1), the middle

temporal area (MT), and the lateral intraparietal cortex (LIP). Bold black

arrows indicate synaptic projections. Note that inhibitory populations and

10

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

projections are not shown for the sake of clarity. Numbers in parentheses

next to an element are the equations that describe the corresponding

neuronal response or synaptic projections, as will be explained in the

subsections below.

The V1 model consisted of a bank of spatiotemporal filters (rate-based)

according to the S&H model (Simoncelli and Heeger 1998), which will be

described in detail in Section 2.2.1. At each point in time, a 32×32 input

video frame was processed by V1 cells at three different spatiotemporal

resolutions (labeled “3 scales” in Fig. 1). Simulated V1 simple cells computed

an inner product of the image contrast with one of 28 space-time oriented

receptive fields (third derivatives of a Gaussian), which was then half-wave

rectified, squared, and normalized within a large Gaussian envelope. V1

complex cell responses were computed as a weighted sum of simple cell

afferents that had the same space-time orientation, but were distributed

over a local spatial region. We interpreted these filter responses as mean

firing rates of Poisson spike trains (labeled “Hz” in the figure) as explained in

Section 2.2.1, which were first scaled to match the contrast sensitivity

function of V1 simple cells, and then used to drive Izhikevich spiking neurons

representing cells in area MT.

Area MT consisted of two distinct populations of spiking neurons

(explained in Section 2.2.2), the first one being selective to all local

component motions of a stimulus (CDS cells), and the other one responding

to the global pattern motion (PDS cells). MT CDS cells responded to three

different speeds (1.5 pixels/frame, 0.125 pixels/frame, and 9 pixels/frame)

illustrated as three distinct populations in the MT CDS layer of Fig. 1.

Divisive normalization between these populations enabled the generation of

speed tuning curves that are in agreement with neurophysiological

experiments (Rodman and Albright 1987). The three MT CDS populations

consisted of eight subpopulations, each of which was not only selective to a

particular speed but also to one of eight directions of motion, in 45 degree

increments. PDS cells were constructed by 1) pooling over MT CDS cells with
11

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

a wide range of preferred directions, 2) using strong motion opponent

suppression, and 3) employing a tuned normalization that may reflect

center-surround interactions in MT (Rust et al. 2006). PDS cells were

selective to the same speed as their CDS afferents. For the purpose of this

paper we only implemented PDS cells selective to a speed of 1.5

pixels/frame (see MT PDS layer in Fig. 1) to be used in a motion

discrimination task. However, it is straightforward to implement PDS cells

that are selective to another speed.

A layer of decision neurons (see Section 2.2.3) was responsible for

integrating over time the direction-specific sensory information that is

encoded by the responses of MT PDS cells. Analogous to the MT layer, the

decision layer consisted of eight subpopulations, each of which received

projections from a subpopulation of MT PDS cells selective to one of eight

directions of motion. This information was then used to make a perceptual

decision about the presented visual stimulus, such as determining the global

drift direction of a field of random moving dots in a motion discrimination

task (presented in Section 3.3). Fig. 1 exemplifies this situation by showing a

snapshot of the network’s response to a random dot kinematogram (RDK)

where dots drift to the right at a speed of 1.5 pixels/frame. The

subpopulation of decision neurons that is coding for rightward motion is

activated the strongest. The temporal integration of sensory information

might be performed in one of several parietal and frontal cortical regions in

the macaque, such as LIP, where neurons have been found whose firing rate

are predictive of the behavioral reaction time (RT) in a RDK task (Shadlen

and Newsome 2001; Roitman and Shadlen 2002).

The following subsections will explain the model in detail.

2.2.1Spatiotemporal-energy model of V1

The first (V1) stage of the S&H model was implemented and tested in a

Compute Unified Device Architecture (CUDA) environment (Richert et al.

2011). This part of the model is equivalent to Eqs. 1–4 in Simoncelli and

12

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

Heeger (1998) and their subsequently released C/Matlab code, which can be

obtained from: http://www.cns.nyu.edu/~lcv/MTmodel/. Unless otherwise

stated, we used the same scaling factors and parameter values as in the

S&H model.

A visual stimulus is represented as a light intensity distribution

I (x ,y ,t), that is, a function of two spatial dimensions (x , y) and time t. The

stimulus was processed at three different spatiotemporal resolutions (or

scales), r (labeled “3 scales” in Fig. 1). The first scale, r=0, was equivalent to

processing at the original image (and time) resolution. The other two scales

were achieved by successively blurring the image with a Gaussian kernel.

The three stimuli I r (x ,y ,t) can thus be expressed as:

I0 (x , y ,t)=I (x ,y ,t)

I1 (x , y , t)=exp (− (x2
+ y2

+t2)
2)∗I0 (x , y ,t)

I2 (x , y , t)=exp (− (x2
+y2

+t2)

2)∗I1 (x , y ,t) ,

(6)

where ¿ denotes convolution. In order to circumvent the non-causality of

these convolutions (the response depends both on past and future stimulus

intensities), a time delay of four frames was introduced (see (Simoncelli and

Heeger 1998)).

V1 simple cells. A large body of research has found that neurons located in

V1 that project to MT are directionally selective and may be regarded as

local motion energy filters (Adelson and Bergen 1985; DeAngelis et al. 1993;

Movshon and Newsome 1996). In our network, V1 simple cells are modeled

as linear space-time-oriented filters whose receptive fields are third

derivatives of a Gaussian (Simoncelli and Heeger 1998). These filters are

very similar to a Gabor filter, but more computationally convenient as they

allow for separable convolution computations.

The full set of V1 linear receptive fields consisted of 28 space-time

orientations that are evenly distributed on the surface of a sphere in the

13

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

spatiotemporal frequency domain. The kth space-time-oriented filter in the

V1 population can be described by a unit vector ûk=(ûk , x ,ûk , y ,ûk ,t) ' that is

parallel to the filter orientation, wherek=1 ,2 ,… ,28 and ' denotes vector

transposition. For more information please refer to Simoncelli and

Heeger (1998). An example of a spatiotemporal receptive field is illustrated

in Fig. 2, where the colored ovals correspond to the orientation of the

positive (green) and negative (red) lobes of the spatiotemporal filter. If a

drifting dot traces out a path (dashed line) in space (x, for now ignoring y)

and time (t) that is oriented in the same way as the lobes, then the filter

could be activated by this motion (Fig. 2a). A dot moving in the orthogonal

direction would not elicit a filter response because its path intersects both

positive and negative lobes of the filter (as depicted in Fig. 2b).

First, input images were filtered with a 3D Gaussian corresponding to

the receptive field size of a V1 simple cell:

f r (x , y ,t)=exp ⁡(
−(x2

+y2
+t2

)

2σv1 simple
2)∗Ir (x , y ,t) (7)

where ¿ is the convolution operator, r denotes the scale, and σ v1simple=1.25

pixels.

Then the underlying linear response of a simple cell at spatial location (x , y)

and scale r with space-time orientation k is equivalent to the third-order

derivative in the direction of ûk; that is,

Lkr (x , y , t)=αv1 lin∑
T=0

3

[∑Y=0

3−T

[3!
X!Y ! T ! (ûk ,x)

X
(ûk , y)

Y
(ûk ,t)

T ∂3f r (x , y ,t)

∂ xX ∂ yY ∂t T]] ,(8)

where ! denotes the factorial, X=3−Y−T, and αv 1 lin=6.6084 is a scaling

factor. Note that the two sums combined yield exactly 28 summands. This

operation is equivalent to Eq. 2 in the original paper, and can also be

expressed using vector notation:

Lr=αv1 lin M br , (9)

14

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

where Lr is the set of all V1 responses at scale r , each element of br is one of

the separable derivatives in (8) at scale r , and each element of the 28×28

matrix M is a number 3!/(X !Y !T !) (ûk , x)
X

(ûk , y)
Y

(ûk ,t)
T . Each row of M has a

different value for k , and each column of M has different values for X , Y , and

T . We will make use of this notation in Section 2.2.2, where we will explain

the construction of synaptic projections from V1 to MT.

At this stage of the model it is possible that filter responses Lkr at

positions (x , y) close to the image border have become unreasonably large.

We suppressed these edge effects by applying a scaling factor to Lkr

whenever (x , y) was near an image border.

Simple cell responses were constructed by half-squaring and

normalizing the linear responses Lkr from (8) within a large Gaussian

envelope:

Skr (x , y , t)=
αfilt →rate ,r αv1rect ⌊ Lkr (x , y , t) ⌋2

αv1normexp ⁡(
−(x2

+ y2
)

2σ v1norm
2)∗(1

28 ∑
k=1

28

⌊Lkr (x , y , t) ⌋2)+αv1 semi
2

,
(10)

where ⌊ . ⌋ denotes half-wave rectification, and ¿ is the convolution operator.

The scaling factors αv 1rect=1.9263 and αv 1semi=0.1 (the semi-saturation

constant) had the same values as in the original S&H model. Instead of

having a single global normalization, our normalization occurs within a large

spatial neighborhood (Gaussian half-width σ v 1norm=3.35 pixels), which is

thought to be more biologically realistic. Therefore the scaling factor

αv 1norm=1.0 had to be adjusted to compensate for the implementation

difference. This was done simultaneously by setting αfilt →rate ,r=15Hz , a

scaling factor to map the unit-less filter responses at each scale r onto more

meaningful mean firing rates, as will be explained below. In brief, we opted

to reproduce the contrast sensitivity function reported for V1 cells projecting

to MT (Movshon and Newsome 1996). Other than that, the computation in

(10) is conceptually equivalent to Eqs. 3–4 in Simoncelli and Heeger (1998).

15

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

V1 complex cells. V1 complex cell responses were computed as local

weighted averages of simple cell responses,

Ckr (x , y ,t)=αv1compexp ⁡(−
(x2

+ y2)

2σv 1comp
2)∗Skr(x , y ,t) , (11)

where the half-width of the Gaussian was σ v1comp=1.6, and αv 1comp=0.1 is a

scaling factor.

The responses Ckr (x , y ,t) described in (11) served as output of the

CUDA implementation. These responses were interpreted as mean firing

rates of Poisson spike generators, following the procedure described in the

next subsection. V1 complex cells then projected to MT CDS cells as

explained in Section 2.2.2.

Converting filter responses to firing rates. In order to find a meaningful

mapping from unit-less filter responses to mean firing rates, we opted to

reproduce the contrast sensitivity function reported for V1 cells projecting to

MT (Movshon and Newsome 1996), which is shown in Fig. 3. The red line is

the electrophysiological data adapted from Fig. 7 of Movshon and

Newsome (1996), whereas the blue line is our simulated data. In order to

arrive at this plot, we presented a drifting sinusoidal grating of varying

contrast to V1 simple cells coding for scale r=0, and computed their mean

response ⟨ Sk 0 ⟩ from (10) over a stimulation period of one second. The drifting

grating had a spatial frequency of ωspat=0.1205 cycles/pixel and a temporal

frequency of ωtemp=0.1808 cycles/frame, which is equivalent to the one used

in Section 3.1 for MT direction tuning. Because the grating was drifting to the

right, we only looked at the subpopulation of V1 simple cells that responded

maximally to this stimulus (which was true for k=24). The mean firing rate of

neurons in this subpopulation, ⟨ S24 ,0 ⟩, was then averaged over all cells in the

subpopulation and plotted in Fig. 3 (blue curve) for αv 1norm=1.0 and

16

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

αfilt →rate ,0=15Hz . Vertical bars are the standard deviation on the population

average. The scaling factor αv 1norm was gradually changed until the curvature

of the blue graph approximated the curvature of the electrophysiological

data. The scaling factor αfilt →rate ,0 was then adjusted such that the simulated

responses saturated at approximately 100 Hz.

In order to tune V1 simple cells at the other two scales, that is, Sk 1 and

Sk 2 from (10), we used a RDK stimulus, which is depicted as the sample input

in Fig. 1 and explained in detail in Section 3.3. We chose scaling factors that

would give equal response magnitudes at all three scales in response to the

RDK stimulus, which resulted in αfilt →rate ,1=17Hz and αfilt →rect ,2=11 Hz .

Because these filter response were transformed to mean firing rates, it

was straight-forward to assign the responses Ckr (x , y , t) described in (11) to

mean firing rates of Poisson spike generators, which served as input to the

spiking neurons in area MT. The exact mapping of V1 complex onto MT CDS

cells is given in (12) (see Section 2.2.2).

2.2.2Two-stage spiking model of MT

The two-stage model of MT is based on the idea that CDS cells represent an

earlier stage of motion processing than PDS cells (Movshon et al. 1985; M. A.

Smith et al. 2005). The present model is built on this idea, making MT CDS

cells similar in terms of direction and speed tuning to the model V1 complex

cells used by Simoncelli and Heeger (1998). In fact, it has been shown that

MT cells exhibit speed tuning characteristics similar to V1 complex cells

(Priebe et al. 2006), which has led to the suggestion that speed tuning in MT

might be inherited from V1. Livingstone and Conway (2007) have shown that

even some V1 simple cells are speed-tuned in macaque. Whereas CDS cells

give responses whose selectivity is stable and consistent from the time they

are first activated, PDS cells often respond with different and broader

selectivity when first activated, sometimes even resembling CDS cells, and

only over a time-course on the order of 100 ms do they establish pattern

17

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

selectivity (M. A. Smith et al. 2005). At least in anesthetized monkeys, MT is

believed to consist of roughly 40 % CDS cells, 25 % PDS cells, and 35 %

unclassified cells (Movshon et al. 1985). However, in awake animals the

situation might be more complicated (Pack et al. 2001).

All cells in MT were Izhikevich spiking neurons, whose membrane

potential was thus described by a pair of coupled differential equations (see

(1) and (2)).

Component-direction-selective cells. CDS cells are selective to a

particular direction and speed of motion (an orientation in space-time). The

name is an indication that these cells, when presented with a plaid stimulus

consisting of two superimposed sine gratings, preferably respond to the

motion of each grating (component) rather than the global motion pattern

produced by the combination of the two gratings (Movshon et al. 1985).

MT CDS cells in our model responded preferentially to motion in one of

eight different directions (in 45 degree increments) and three different

speeds (1.5 pixels per frame, 0.125 pixels per frame, and 9 pixels per frame)

at any pixel location. These values can be easily adjusted by running the

Matlab script "scripts/v1MTLIP/projectV1toMT.m". The response properties of MT

CDS cells were given by 1) a set of both excitatory and inhibitory

interpolated weights (as explained next) coming from V1 complex cells

(Simoncelli and Heeger 1998), and 2) projections from an inhibitory group of

MT interneurons to account for response normalization.

Because the directional derivatives of a Gaussian are steerable

(Freeman and Adelson 1991), the response of an arbitrarily oriented filter

can be synthesized from a fixed bank of basis filters (the third derivatives of

a Gaussian). Thus the projection weights from V1 complex cells to MT were

interpolated as follows. Let α̂=(α̂x , α̂y , α̂t)' be the unit vector parallel to an

arbitrary space-time orientation (direction and speed of motion), akin to the

18

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

unit vectors ûk described in Section 2.2.1. Then we can write the third

directional derivative in direction of α̂ analogously to (9) as:

∂3 f r

∂α̂3
=[v ' (α̂) M−1]br¿wα̂ br ,

(12)

where the matrix M and the vector br are the same as in (9), each element of

the vector v (α̂) is a number 6!/(X !Y !T !) α̂x
X α̂y

Y α̂t
T analogous to (8), and '

denotes vector transposition. The product [v ' (α̂) M−1] thus is a set

w α̂=(w α̂ ,1 ,…,w α̂ ,28) of interpolated weights, where the kth element of this

vector, w α̂ ,k, determined the strength of the projection from the kth V1

complex cell onto a MT CDS cell. The two cells were connected only if they

were located at the same pixel location, (x , y). Speed tuning arose from the

fact that α̂ corresponds to a specific direction and speed of motion. Thus, in

order to achieve MT CDS cells tuned to different speeds, α̂ was the only

parameter that needed to be adjusted (refer to the Matlab script mentioned

above). A MT CDS cell received projections from V1 complex cells at all three

spatiotemporal resolutions, r . Note that it is possible to construct a network

with the same functionality by using only one spatiotemporal resolution,

which has been shown in Simoncelli and Heeger’s own C/Matlab

implementation. Using multiple spatiotemporal resolutions, however, makes

the network more robust in responding to motion of different-sized objects.

Because the interpolated weights could assume both positive and

negative values, it was necessary to relay the projections with negative

weights to a population of inhibitory neurons. In this case (that is, if wα̂ ,k<0),

the weights in (12) are applied to excitatory projections from V1 complex

cells to the MT inhibitory population (where w α̂ ,k , inh=|w α̂ ,k|), and the inhibitory

population sends one-to-one connections back to the pool of MT CDS cells.

Overall the interpolated weights are equivalent to the parameters pnm in

Eq. 5 of Simoncelli and Heeger (1998).

19

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

In order to model response normalization equivalent to the one in Eq. 6

of Simoncelli and Heeger (1998), we introduced another pool of inhibitory

interneurons, which integrated the activity of all MT CDS cells within a large

Gaussian neighborhood (across direction and speed), and projected back to

all three pools of MT CDS cells with one-to-one connections. This response

normalization is important to qualitatively reproduce the speed tuning curves

(see Section 3.2).

Pattern-direction-selective cells. PDS cells differ from CDS cells in that

they, when presented with a plaid stimulus consisting of two superimposed

sine gratings, preferentially respond to the overall motion direction, not the

individual components (Movshon et al. 1985). Because visual stimuli typically

contain many oriented components, local motion measurements must be

appropriately combined in order to sense the true global motion of the

stimulus (aperture problem). Thus it has been suggested that PDS neurons

reflect a higher-order computation that acts on V1 or MT CDS afferents

(Movshon et al. 1985). MT PDS cells in our model received direct input from

CDS cells, and thus conserved their speed and direction preferences.

Pooling over MT CDS cells and opponent suppression were

implemented by pooling CDS responses across spatial position and across

direction preference, such that the strength of a projection from a CDS cell

selective to motion direction θCDS at location (xCDS , yCDS) to a PDS cell

selective to motion direction θPDS at location (xPDS ,yPDS) can be expressed as:

wCDS→PDS=αCDS→PDScos (Δθ)exp(−((Δx)
2
+(Δy)

2)

2σPDS ,pool
2), (13)

where Δθ=θPDS−θCDS, Δ x=xPDS−xCDS, Δ y=yPDS−yCDS, the half-width of the

Gaussian neighborhood σ PDS ,pool=3 pixels, and αCDS →PDS is a scaling factor. If

the resulting weight was negative, due to |Δθ|>
π
2

, the projection was relayed

to a population of inhibitory interneurons. Following the reasoning of Rust et
20

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

al. (2006), the pattern index of a MT cell can be reduced simply by

sharpening the cosine tuning component in (13) (see third column of Fig. 6 in

Rust et al. (2006)).

Tuned normalization was implemented by an inhibitory self-connection

with a narrowly tuned Gaussian across direction (see second column of Fig. 6

in Rust et al. (2006)). Analogous to previous projections, this was

implemented by relaying the inhibitory projection to a pool of inhibitory

interneurons:

wPDS→ PDS,inh=exp(−(Δθ)
2

2σPDS ,tuned ,dir
2)exp(−((Δ x)

2
+ (Δy)

2)

2σ PDS,tuned , loc
2) , (14)

where σ PDS ,tuned,dir <45 deg (such that only one of the eight subpopulations

was activated), σ PDS ,tuned,loc=2 pixels, and the inhibitory population sent one-

to-one connections back to the pool of MT PDS cells.

2.2.3Spiking layer of LIP decision neurons

A layer of decision neurons was responsible for integrating over time the

direction-specific sensory information that is encoded by the responses of MT

PDS cells. This information was then used to make a perceptual decision

about the presented visual stimulus, such as determining the global drift

direction of a field of random moving dots in a motion discrimination task

(presented in Section 3.3). A good candidate for such an integrator area in

macaques might be LIP, where neurons have been found whose firing rate

are predictive of the behavioral reaction time (RT) in a motion discrimination

task (Shadlen and Newsome 2001; Roitman and Shadlen 2002).

Spiking neurons in a simulated LIP area were grouped into eight pools

of 50 neurons, each pool receiving projections from exactly one of the eight

pools of MT PDS cells with 10 % connection probability. As a result of this

connectivity profile, each pool of decision neurons accumulated sensory

evidence for a particular direction of motion, based on the response of MT

PDS cells.

21

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

Additionally, each decision pool received inhibitory projections from

other decision pools if the two preferred directions of motion were close to

opposite. More precisely, a decision neuron in pool i (thus selective to

direction θ i) received an inhibitory projection from neurons in pool j

(selective to direction θ j) with strength

wdec ,inh→dec=⌊cos ⁡(θi−θ j+π)⌋ , (15)

and 10 % connection probability.

LIP decision neurons did not employ any internal noise.

2.2.4 Implementation details

In order for our implementation to be useful to researchers already working

with the S&H model, we tried to stay as close to the S&H C/Matlab

implementation as possible. However, there are a few minor differences

worth mentioning. First, as explained in Section 2.2.1, we normalize V1

simple cell responses in a large Gaussian neighborhood rather than across

the whole population. Second, whereas the S&H model deals with edge

effects by temporarily “padding” the input image with an invisible border, we

opted for the computationally more economical alternative to simply

decrease the responses of V1 simple cells located close to image borders.

Third, in the S&H C/Matlab implementation there are two additional scaling

factors (called v1Blur and v1Complex, with values 0.99 and 1.02, respectively)

that we do not apply in order to save execution time. Fourth, our model

processes input images at three different scales as described in (6), which is

a feature that is not implemented in the original S&H model.

The most crucial mathematical operation in the V1 stage of the model

is the convolution. Because the filter kernels used in our implementation are

relatively small, employing the fast Fourier transform (FFT) would actually

hurt performance. Instead we perform all convolution operations in the

space-time domain using a custom function, which makes use of the fact

that the Gaussian filter and its derivative are dimensionally separable. Future

22

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

work could be directed towards further optimizing the convolution operation

in CUDA.

23

583

584

3. Results

We conducted a number of experiments to ensure the accuracy and

efficiency of our implementation. Here we demonstrate that the network is

able to exhibit direction and speed tuning for drifting bar and plaid stimuli

that are in agreement with neurophysiological recordings, and that the

network qualitatively reproduces both the psychometric and chronometric

function in a 2AFC motion discrimination task. Additionally, we measured

both the computational performance and memory consumption of our model

and compared it to the S&H C/Matlab implementation.

GPU simulations were run on a NVIDIA Tesla M2090 (6 GB of memory)

using CUDA, and CPU simulations (including Matlab) were run on an Intel

Xeon X5675 at 3.07 GHz (24 GB of RAM). The same exact network running

on a single GPU produced all results; the only difference per experiment was

the presented input stimulus. The full network consisted of 153,216 neurons

and approximately 33 million synapses, which corresponds to a 32×32

pixels input resolution.

3.1 Direction tuning

We tested the ability of our model MT cells to signal the direction of motion

for drifting grating and plaid stimuli. Responses were simulated for CDS cells

and PDS cells in MT. The first stimulus was a drifting sinusoidal grating

consisting of spatial and temporal frequency components that were

preferred by MT neurons selective to a speed of 1.5 pixels per frame (that is,

ωspat=0.1205 cycles/pixel , ωtemp=0.1808 cycles/frame¿ . The second stimulus

was a pair of superimposed gratings drifting in a direction orthogonal to their

orientation, which together formed a coherently drifting plaid pattern. The

two gratings both had the same spatial frequency ωspat, but their orientation

and drift direction differed by 120 degrees. The direction of these particular

patterns lay equidistant between the directions of motion of the two

24

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

component gratings. The stimulus contrast for both grating and plaid was

30 %.

Our model was able to reproduce direction tuning curves that are in

agreement with single-cell electrophysiological data (Movshon et al. 1985;

Rodman and Albright 1989; Movshon and Newsome 1996) for V1 cells, MT

CDS cells, and MT PDS cells. Fig. 4 shows polar plots of direction tuning for

V1 neurons (Panels b and f), MT CDS cells (Panels c and g), and MT PDS cells

(Panels d and h), where the angle denotes motion direction and the radius is

the firing rate in spikes per second (compare also Fig. 9 in Simoncelli and

Heeger (1998) and Fig. 1 in Rust et al. (2006)). Tuning curves were obtained

by calculating the mean firing rate of a neuron’s response to a drifting

grating during two seconds of stimulus presentation. These responses were

averaged over all neurons in the population selective to the same direction

of motion (black: mean neuronal response, blue: mean plus standard

deviation on the population average, green: mean minus standard

deviation). As a result of suppressing edge effects, neurons that coded for

locations closer than five pixels from the image border were only weakly

activated, and were thus excluded from the plot. The tuning curves in the

top row were generated in response to the sinusoidal grating drifting

upwards, which is illustrated in Panel a. Analogously, the tuning curves in the

bottom row were generated in response to the plaid stimulus drifting

upwards, which is illustrated in Panel e (red arrow: pattern motion direction,

black arrows: motion direction of the grating components). The direction

tuning curve for gratings is unimodal for all three neuron classes, but the

direction tuning curve for plaids shows two distinct lobes for V1 complex

cells (Panel f) and MT CDS cells (Panel g). Each lobe corresponds to one of

the component gratings of the plaid. Only MT PDS cells (Panel h) responded

to the motion of the entire plaid pattern rather than to the motions of the

individual component gratings.

In order to quantify the pattern selectivity of our model PDS cells, we

computed the pattern index for each CDS and PDS cell (see Fig. 5) using the
25

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

standard technique (Movshon et al. 1985; Movshon and Newsome 1996; M.

A. Smith et al. 2005). Based on the tuning curve for the drifting grating

described above, we generated two predictions for each cell’s tuning curve

to drifting plaids (Fig. 5a); either the cell would respond to the plaid in the

same way as it responded to the grating (“pattern” prediction, black solid

line), or it would respond independently to the two grating components

(“component” prediction, black dashed line). We then computed the

correlation (rc , r p) between the cell’s actual response to a plaid stimulus and

the component and pattern predictions. To remove the influence of

correlations between the predictions themselves, we calculated partial

correlations Rc and Rp for the component and pattern predictions,

respectively, using the standard formulas:

Rc=
rc−r p r pc

√ (1−r p
2) (1−r pc

2)
Rp=

rp−rc rpc

√ (1−rc
2) (1−rpc

2)
, (16)

where rc and r p are the simple correlations between the data and the

component and pattern predictions, respectively, and r pc is the simple

correlation between the predictions (Movshon and Newsome 1996). Because

the sampling distribution of Pearson’s r is not normal, we converted the

correlation measures Rc and Rp to a Fisher Z-score,

Zc=

0.5ln(
1+Rc

1−Rc
)

√ 1
df

=
atanh (Rc)

√ 1
df

Z p=
atanh⁡(Rp)

√ 1
df

,
(17)

where the numerator is the Fisher r -to-Z transformation and df is the

degrees of freedom, equal to the number of values in the tuning curve (in

our case 24) minus three (M. A. Smith et al. 2005). The Z-scores of all CDS

and PDS cells (excluding neurons coding for locations closer than five pixels

from the image border) in the network are plotted in Fig. 5b. Each value of

Zc and Z p was tested for significance using a criterion of 1.28, which is

equivalent to P=0.90 (M. A. Smith et al. 2005). For a PDS cell (red) to be

26

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

judged as pattern-selective, the value of Z p had to exceed the value of Zc by

a minimum of 1.28 (black solid lines). All PDS cells in Fig. 5b met this

criterion and, therefore, were indeed pattern-selective. Analogously, all CDS

cells (blue) could be judged as component-selective.

3.2 Speed tuning

We next considered the ability of our implementation to reproduce MT speed

tuning curves as demonstrated in Simoncelli and Heeger (1998). MT neurons

have been divided into three distinct classes based on their speed tuning

properties (Rodman and Albright 1987). The first class of neurons is

relatively sharply tuned for a particular speed and direction of motion

(“speed-tuned” or “band-pass”). This class of neurons is also strongly

suppressed by motion in the anti-preferred (opposite) direction; the

suppression is strongest when the stimulus moves in the opposite direction

at roughly the preferred speed. The second class of neurons prefers low

speeds in both the preferred and anti-preferred direction (“low-pass”). The

third class responds to high speed stimuli in both directions (“high-pass”).

Fig. 6 faithfully reproduces the speed tuning characteristics of these

three distinct classes (compare also Fig. 10 in Simoncelli and Heeger (1998)).

The stimulus consisted of a single bar drifting over the entire visual field

either to the right (preferred direction) or to the left (anti-preferred direction)

at different speeds. Each data point is the mean firing rate of a particular MT

CDS neuron located near the center of the visual field, averaged over the

time course of a specific speed and direction configuration. The relatively low

mean firing rates can be explained by the fact that the stimulus resides

outside the neuron’s receptive field for most of the time. The first neuron

class (Panel a, “band-pass”) preferentially responded to a bar moving at

1.5 pixels per frame to the right, and was strongly suppressed when the bar

moved at the same speed to the left. The second neuron class (Panel b, “low-

pass”) exhibited a preference for low speeds (0.125 pixels per frame) in both

directions. With increasing speed the response of the neuron to dots moving

27

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

in the anti-preferred direction weakened. This behavior can be explained by

the fact that the Fourier planes corresponding to low speed motions in

opposite directions are both close to the ωt=0 plane, and thus close to each

other (Simoncelli and Heeger 1998). Also, this class of neurons was

suppressed by fast stimuli moving in either direction. Similarly, the third

neuron class (Panel c, “high-pass”), which had a high preferred speed

(9 pixels per frame) in one direction, was excited by fast stimuli moving in

the opposite direction, but was suppressed by slow stimuli moving in either

direction.

3.3 Random dot kinematogram

In order to compare the performance of the model with behavioral data from

2AFC motion discrimination tasks, we developed a paradigm equivalent to

the RDK experiments performed with monkeys and humans (Roitman and

Shadlen 2002; Resulaj et al. 2009). We constructed a simple decision

criterion based on the race model (Shadlen and Newsome 2001; P. L. Smith

and Ratcliff 2004), in which eight pools of decision neurons (one for each of

the directions of motion, 50 neurons per pool) sum the responses of MT PDS

cells selective to a particular direction and speed of motion. The first decision

pool to emit 500 spikes (on average ten spikes per neuron) “won the race”

and thus signaled a choice for that direction. A correct decision was the

event in which the winning decision pool was selective to the actual motion

direction of the stimulus. The time it took the network to reach the decision

threshold was termed the reaction time (RT).

The RDK stimulus was constructed out of approximately 150 dots

(15 % dot density, maximum stimulus contrast) on a 32x32 input movie. An

example frame is shown as the input stimulus in Fig. 1. Each stimulus frame

was presented to the network for 50 ms. A trial consisted of 20 stimulus

frames of a particular motion direction and coherence level. Motion

coherence in the stimulus was varied between 0 and 50 %. Coherently

moving dots drifted in one of eight possible directions, in 45 degree

28

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

increments, at a speed of 1.5 pixels per frame. Note that, therefore, only MT

PDS cells that were selective to this particular stimulus speed were

connected to the decision layer.

Choice accuracy and RT as a function of task difficulty (coherence of dot

motion) are shown in Fig. 7 (Panel a and b, respectively), where the thick red

lines are human behavioral data extracted from a RT experiment (see Fig. 3

and Table 2 in Roitman and Shadlen (2002)) and simulated data is shown in

blue. Each data point (blue) is the mean outcome of 80 trials (fixed

coherence level, ten repetitions per motion direction), and the vertical bars

are the standard error and standard deviation for accuracy (Panel a) and RT

(Panel b), respectively. As in Fig. 3 in Roitman and Shadlen (2002), we did

not show RTs on error trials.

Our network performance is comparable to human accuracy, and it

qualitatively emulates the effect of motion strength on RT. Decreasing RT for

a relatively easy task (e.g., high motion coherence) is a direct consequence

of the race model. Conversely, when the difficulty of a decision is high (e.g.,

low coherence level), information favoring a particular response grows more

slowly (P. L. Smith and Ratcliff 2004), and the probability of making an error

is higher (Shadlen and Newsome 2001). The quantitative difference between

behavioral and simulated RT in Fig. 7 could be eradicated by fine-tuning the

excitatory weights from MT cells to the decision layer. However, such an

exercise would be meaningless, because our model does not take into

consideration neural areas involved in characteristics of the decision-making

process that influence the length of RT, such as the time-course of LIP

neuronal dynamics or the gating of saccadic eye movements (Shadlen and

Newsome 2001), which have been successfully modeled in detail by others

(Grossberg and Pilly 2008).

3.4 Computational performance

In order to compare our CUDA implementation of V1 (that is, the file

v1colorME.cu) to the original, unmodified S&H implementation (which features

29

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

code in both C and Matlab) we computed V1 complex cell responses (see

Section 2.2.1) at a single spatiotemporal scale to a drifting sinusoidal grating

(the same stimulus as described in Section 3.1) and recorded the model’s

execution time. The S&H C/Matlab code was executed as

shModel(stim,pars,’v1Complex’), where stim was the input stimulus, and pars were

the default parameters (shPars). Fig. 8a shows the execution time per video

frame for both models. Our GPU implementation (red) was not only faster

(except for relatively small networks) than the S&H C/Matlab implementation

(blue), but it also scaled better with network size. Note that the C/Matlab

implementation was a single-threaded computation. The largest speedup, a

factor of 12, was observed for a network consisting of 96×96=9 ,216

neurons. It is likely that even greater speedups could have been achieved on

larger networks, but these networks could not run with the S&H C/Matlab

implementation because they ran out of memory. Timing was performed

using standard commands tic and toc in Matlab, and the <ctime> function time

in C++/CUDA. For the S&H C/Matlab implementation, the time it took to

create the stimulus was not included in the time measurement. On the other

hand, in the CUDA implementation the stimulus had to be read from file

frame-by-frame and copied to the GPU card. However, we did not include the

time it takes to transfer the response back from the device to the host.

Additionally, the S&H C/Matlab implementation is memory-intensive

(see Fig. 8b), and execution times for networks above size

128×128=16 ,384 could not be computed because the CPU ran out of

memory, even though we had a relatively large amount of RAM (24 GB)

available. Measuring memory usage in Matlab is not straight-forward. In

order to demonstrate the excessive memory consumption of the S&H

C/Matlab implementation (see Fig. 8b) we opted to measure two metrics: the

size of the output argument ans to function call shModel (blue, filled circle in

Fig. 8b) and the maximum memory usage of the Matlab process at any point

in time (blue, open circle). The first was measured with native Matlab

command whos, and the latter was measured by running a bash script in the

30

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

background that reported the memory usage of the process every second

(using linux command ps). The blue dashed line is the 24 GB limit of the

system’s RAM. Note the log scale on the ordinate. Less memory was required

to run the process than to store the output argument, which consisted of a

matrix whose size was proportional to the product of the stimulus

dimensions and the number of frames. A straightforward way of making the

S&H C/Matlab implementation capable of handling large inputs would thus be

to break up the output argument into smaller chunks of data. On the other

hand, the memory usage of the GPU implementation was significantly lower

(red line in Fig. 8b) and scaled better with network size. We used CUDA

command cuMemGetInfo to identify the amount of allocated memory on the

GPU. The red dashed line is the upper limit of GPU memory available to the

user (roughly 5.2 GB on our card).

Comparing the performance between GPU simulation mode and CPU

simulation mode with the full network on the specific processor remains to

be demonstrated. Recall from Section 2.1.2 that in GPU mode all data

structures are allocated on the GPU, whereas in CPU mode the network

would be allocated on the CPU’s memory, and only the generation of motion

energy responses (written in CUDA) would be delegated to the GPU. Hence

we evaluated the computational performance by running the full network in

both CPU and GPU mode with input images from 16×16 pixels (38,784

neurons) to 64×64 pixels (610,944 neurons). The simulation speed is given

as the ratio of execution time over the simulation time (see Fig. 9a) for

networks run in CPU mode (blue) and GPU mode (red). Note that in both

modes, the V1 CUDA implementation was executed (green), whose run-time

is part of the total simulation time (in blue and red). The GPU simulations not

only ran faster, but also simulation speed scaled better with network size.

Note that the CPU simulation was a single-threaded computation. The full

network at 40×40 input resolution (239,040 neurons) ran in real-time on the

GPU. At 32×32 input resolution (153,216 neurons) the simulation was 1.5

times faster than real-time. This result compares favorably with previous

31

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

releases of our simulator (Nageswaran et al. 2009; Richert et al. 2011),

which is partly due to code-level optimizations, but mostly due to differences

in GPU hardware and the V1 stage of the network being spatiotemporal

filters instead of spiking neurons. As the network size increased, the GPU

simulations showed a significant speedup over the CPU (see Fig. 9b).

Speedup was computed as the ratio of CPU to GPU execution time. The

largest network we could fit on a single GPU roughly corresponded to 64×64

input resolution (610,944 neurons), which ran approximately 30 times faster

than on the CPU. Larger networks currently do not fit on a single GPU and as

such must be run on the CPU, which would be more than 70 times slower

than real-time judging from Fig. 9a.

32

820

821

822

823

824

825

826

827

828

829

830

4. Discussion

We presented a large-scale spiking model of visual area MT that 1) is capable

of exhibiting both component and pattern motion selectivity, 2) generates

speed tuning curves that are in agreement with electrophysiological data, 3)

reproduces behavioral responses from a 2AFC task, 4) outperforms a

previous rate-based implementation of the motion energy model (Simoncelli

and Heeger 1998) in terms of computational speed and memory usage, 5) is

implemented on a publicly available SNN simulator that allows for real-time

execution on off-the-shelf GPUs, and 6) is comprised of a neuron model,

synapse model, and address-event representation (AER), which is compatible

with recent neuromorphic hardware (Srinivasa and Cruz-Albrecht 2012).

The model is based on two previous models of motion processing in MT

(Simoncelli and Heeger 1998; Rust et al. 2006), but differs from these

models in several ways. First, our model contains the tuned normalization in

the MT stage that was not present in Simoncelli and Heeger (1998) but

introduced by Rust et al. (2006). Second, the implementation by Rust et

al. (2006) was restricted to inputs that are mixtures of 12 sinusoidal gratings

of a fixed spatial and temporal frequency, whereas our model can operate on

any spatiotemporal image intensity. Third, MT PDS cells in our model sum

over inputs from MT CDS cells as opposed to inputs from V1 cells, although

the two approaches are conceptually equivalent. Fourth, instead of using

linear summation and a static nonlinear transformation, all neuronal and

synaptic dynamics in our model MT were achieved using Izhikevich spiking

neurons and conductance-based synapses.

One could argue that the inclusion of Izhikevich spiking neurons and

conductance-based synapses is unnecessary, since previous incarnations of

the motion energy model did not feature these mechanisms yet were

perfectly capable of reproducing speed tuning and motion selectivity.

However, our approach is to be understood as a first step into modeling

33

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

large-scale networks of visual motion processing in more biological detail,

with the ultimate goal of understanding how the brain solves the aperture

problem, among other open issues in motion perception. Integrating the

functionality demonstrated in previous models with more neurobiologically

plausible neuronal and synaptic dynamics is a necessary first step into

analyzing the temporal dynamics of model neurons in MT, which may 1) help

to explain how MT PDS cell establish their pattern selectivity not instantly but

over a time-course on the order of 100 ms (M. A. Smith et al. 2005) and 2)

enable the addition of spike-based learning rules such as STDP; both of

which might be harder to achieve with previous model incarnations.

Additionally, the introduction of the present neuron model, synapse model,

and address-event representation (AER) did not affect performance, yet

enabled the integration of the S&H model with recent neuromorphic

hardware (Srinivasa and Cruz-Albrecht 2012) (see also Section 4.3).

On the other hand, it is possible (if not likely) that some response

dynamics produced by the neural circuitry in the retina, the lateral

geniculate nucleus (LGN), and V1 may account for certain response

properties of neurons in MT. Thus future work could be directed towards

implementing the entire early visual system in the spiking domain. However,

for the purpose of this study we deem a rate-based preprocessor to be an

adequate abstraction, as the core functionality of directionally selective cells

in V1 seem to be well-characterized by local motion energy filters (Adelson

and Bergen 1985; DeAngelis et al. 1993; Movshon and Newsome 1996).

4.1 Neurophysiological evidence and model alternatives

There is evidence that MT firing rates represent the velocity of moving

objects using the IOC principle. A psychophysical study showed that the

perception of moving plaids depends on conditions that specifically affect the

detection of individual grating velocities (Adelson and Movshon 1982). This is

consistent with a two-stage model in which component velocities are first

detected and then pooled to compute pattern velocity. Subsequent

34

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

physiological studies broadly support such a cascade model (Perrone and

Thiele 2001; Rust et al. 2006; M. A. Smith et al. 2005).

However, other psychophysical results exist where the perceived

direction of plaid motion deviates significantly from the IOC direction (Ferrera

and Wilson 1990; Burke and Wenderoth 1993). Alternatives to the IOC

principle are, for example, vector average (VA) or feature tracking. VA

predicts that the perceived pattern motion is the vector average of the

component velocity vectors. Blob or feature tracking is the process of

locating something (a “feature”) that does not suffer from the aperture

problem, such as a bright spot or a T-junction, and tracking it over time

(Wilson et al. 1992). Ultimately, one needs to consider the interactions of the

motion pathway with form mechanisms (Majaj et al. 2007), and model the

processing of more complex stimuli (e.g., motion transparency, additional

self-motion, multiple moving objects) (Raudies et al. 2011; Layton et al.

2012). Clarifying by which rule (or combination of rules) the brain integrates

motion signals is still a field of ongoing research. For recent reviews on the

topic see (Bradley and Goyal 2008; Nishida 2011).

Although clear evidence for spatiotemporal frequency inseparability in

MT neurons has been found (Perrone and Thiele 2001), which supports the

idea of a motion energy model, later studies reported it to be a weak effect

(Priebe et al. 2003; Priebe et al. 2006). The actual proportion of neurons in

the primate visual system that are tuned to spatiotemporal frequency is

currently not known.

4.2 Model limitations

Although our model is able to capture many attributes of motion selectivity

(e.g., direction selectivity, speed tuning, component and pattern motion), it

is not yet complete for the following reasons. First, it does not explicitly

specify the exact pattern velocity, but instead reports an activity distribution

over the population of MT neurons, whose firing rates are indicative of the

observed pattern motion. In order to estimate the speed of a target stimulus,

35

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

it has been proposed to use a suitable population decoding mechanism that

operates on MT responses (Perrone 2012; Hohl et al. 2013). Second, our

model does not attempt to predict the temporal dynamics of MT PDS cells,

which often respond with broad selectivity when first activated, sometimes

even resembling CDS cells, and only over a time-course on the order of

100 ms establish their pattern motion selectivity (M. A. Smith et al. 2005). A

possible explanation for these temporal dynamics is given in Chey et al.

(1997). Third, it does not consider the visual form pathway and abstracts

early visual details that may be critical for operation in natural settings.

Fourth, the extent to which each stage in the motion energy model can be

mapped onto specific neuronal populations is rather limited. Tiling the

spatiotemporal frequency space according to the motion energy model is

biologically implausible, and the temporal extent of the filters is

unrealistically long (especially the low speed filters). However, a way to

combine spatiotemporal filters based on V1 neuron properties into a pattern

motion detector has been proposed in Perrone and Thiele (2002).

Another more fundamental limitation is that the S&H model (or for that

matter, any spatiotemporal-energy based model including the elaborated

Reichardt detector) can only sense so-called first-order motion, which is

defined as spatiotemporal variations in image intensity (first-order image

statistics) that give rise to a Fourier spectrum. Second-order stimuli, such as

the motion of a contrast modulation over a texture, are non-Fourier and thus

invisible to the model, yet can be readily perceived by humans (Chubb and

Sperling 1988). In addition, the existence of a third motion channel has been

suggested, which is supposed to operate through selective attention and

saliency maps (Lu and Sperling 1995). Also, MT has been shown to be

involved in color-based motion perception (Thiele et al. 2001).

There is also a plainly technical limitation to our model, which is

manifested in the amount of available GPU memory. Due to their size, large-

scale spiking networks have demanding memory requirements. The largest

network that could fit on a single NVIDIA Tesla M2090 (with 6 GB of memory)
36

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

was comprised of 610,944 neurons and approximately 137 million synapses,

which corresponds to processing a 64×64 input video. In order to run larger

networks on current-generation GPU cards, a change in model or (software

and hardware) architecture is required. One should note that this is only a

temporary limitation and could become obsolete as soon as with the next

generation of GPU cards. Another possible solution would be to employ multi-

GPU systems; however, more work is required to efficiently integrate our

SNN simulator with such a system.

4.3 Practical implications

The present network might be of interest to the neuroscientist and computer

vision research communities for the following reasons.

First, our implementation outperforms the S&H C/Matlab

implementation by orders of magnitude in terms of computational speed and

memory usage. Thus our CUDA implementation can be used to save

computation time, as well as be applied to input resolutions that the

C/Matlab implementation cannot handle due to memory constraints.

Additionally, the CUDA implementation can act as a stand-alone module that

could potentially be used in computer vision as an alternative to

computationally expensive operations such as Gabor filtering for edge

detection or dense optic flow computations.

Second, we have demonstrated that our approach is fast, efficient, and

scalable; although current GPU cards limit the size of the simulations due to

memory constraints. Nevertheless, our model processes a 40×40 input

video at 20 frames per second in real-time, which corresponds to a total of

239,040 neurons in the simulated V1, MT, and LIP areas, at 20 frames per

second using a single GPU, which enables the potential use of our software in

real-time applications ranging from robot vision to autonomous driving.

Third, our implementation might be of particular interest to the

neuromorphic modeling community, as the present neuron model, synapse

model, and AER are compatible with recent neuromorphic hardware

37

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

(Srinivasa and Cruz-Albrecht 2012). Thus our algorithm could be used as a

neural controller in neuromorphic and neurorobotics applications. Future

work could be directed toward creating an interface by which networks can

be automatically exported onto neuromorphic hardware.

Fourth, because of the modular code structure, our implementation

can be readily extended to include, for example, higher-order visual areas or

biologically plausible synaptic learning rules such as STDP. Thus our

implementation may facilitate the testing of hypotheses and the study of the

temporal dynamics that govern visual motion processes in area MT, which

might prove harder to study using previous (rate-based) model incarnations.

Lastly, the network was constructed using a SNN simulator that is

publicly available at http://www.socsci.uci.edu/~jkrichma/CARLsim/. The

present release features the complete source code for the simulator, the

network, and analysis scripts. As such it is the next step towards our goal of

making efficient simulations of large-scale spiking networks available to a

wide range of researchers, without the need of a cluster or supercomputer.

5. Information Sharing Statement

The source code for the simulator, for the network, and analysis scripts are

publicly available at http://www.socsci.uci.edu/~jkrichma/CARLsim/. This

website does also feature installation instructions, source code

documentation and a tutorial on how to set up, run, and interact with a

simulation. In order to run the simulator in CUDA mode, the NVIDIA CUDA

software developer kit must be installed (freeware, available at

https://developer.nvidia.com/cuda-downloads).

38

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

6. Acknowledgments

This work was supported by the Defense Advanced Research Projects Agency

(DARPA) subcontract 801888-BS. We thank Jayram M. Nageswaran for his

work developing the custom spiking neural network simulator. We also thank

Michael Avery, Kris Carlson, and Steve Grossberg for valuable feedback and

discussion on this project.

39

1005

1006

1007

1008

1009

1010

1011

7. References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the

perception of motion. J Opt Soc Am A, 2(2), 284-299.

Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving

visual patterns. Nature, 300(5892), 523-525.

Bradley, D. C., & Goyal, M. S. (2008). Velocity computation in the primate

visual system. Nature Reviews Neuroscience, 9(9), 686-695, doi:Doi 10.1038/

Nrn2472.

Browning, N. A., Grossberg, S., & Mingolla, E. (2009a). Cortical dynamics of

navigation and steering in natural scenes: Motion-based object

segmentation, heading, and obstacle avoidance. Neural Networks, 22(10),

1383-1398, doi:DOI 10.1016/j.neunet.2009.05.007.

Browning, N. A., Grossberg, S., & Mingolla, E. (2009b). A neural model of how

the brain computes heading from optic flow in realistic scenes. Cogn Psychol,

59(4), 320-356, doi:10.1016/j.cogpsych.2009.07.002.

Burke, D., & Wenderoth, P. (1993). The Effect of Interactions between One-

Dimensional Component Gratings on 2-Dimensional Motion Perception.

Vision Research, 33(3), 343-350, doi:Doi 10.1016/0042-6989(93)90090-J.

Chey, J., Grossberg, S., & Mingolla, E. (1997). Neural dynamics of motion

grouping: from aperture ambiguity to object speed and direction. Journal of

the Optical Society of America a-Optics Image Science and Vision, 14(10),

2570-2594, doi:Doi 10.1364/Josaa.14.002570.

Chubb, C., & Sperling, G. (1988). Drift-Balanced Random Stimuli - a General

Basis for Studying Non-Fourier Motion Perception. Journal of the Optical

Society of America a-Optics Image Science and Vision, 5(11), 1986-2007,

doi:Doi 10.1364/Josaa.5.001986.

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience : computational

and mathematical modeling of neural systems (Computational

neuroscience). Cambridge, Mass.: Massachusetts Institute of Technology

Press.
40

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal

organization of simple-cell receptive fields in the cat's striate cortex. II.

Linearity of temporal and spatial summation. Journal of Neurophysiology,

69(4), 1118-1135.

Ferrera, V. P., & Wilson, H. R. (1990). Perceived direction of moving two-

dimensional patterns. Vision Research, 30(2), 273-287.

Fidjeland, A. K., & Shanahan, M. P. Accelerated simulation of spiking neural

networks using GPUs. In Neural Networks (IJCNN), The 2010 International

Joint Conference on, 18-23 July 2010 2010 (pp. 1-8).

doi:10.1109/IJCNN.2010.5596678.

Freeman, W. T., & Adelson, E. H. The design and use of steerable filters. In

IEEE Pattern Analysis and Machine Intelligence, 1991 (Vol. 13, pp. 891-906)

Grossberg, S., & Pilly, P. K. (2008). Temporal dynamics of decision-making

during motion perception in the visual cortex. Vision Research, 48(12), 1345-

1373, doi:DOI 10.1016/j.visres.2008.02.019.

Hohl, S. S., Chaisanguanthum, K. S., & Lisberger, S. G. (2013). Sensory

population decoding for visually guided movements. Neuron, 79(1), 167-179,

doi:10.1016/j.neuron.2013.05.026.

Indiveri, G., Chicca, E., & Douglas, R. (2006). A VLSI array of low-power

spiking neurons and bistable synapses with spike-timing dependent

plasticity. Ieee Transactions on Neural Networks, 17(1), 211-221, doi:Doi

10.1109/Tnn.2005.860850.

Izhikevich, E. M. (2003). Simple model of spiking neurons. Ieee Transactions

on Neural Networks, 14(6), 1569-1572, doi:Doi 10.1109/Tnn.2003.820440.

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons?

Ieee Transactions on Neural Networks, 15(5), 1063-1070, doi:Doi

10.1109/Tnn.2004.832719.

Izhikevich, E. M. (2007). Dynamical systems in neuroscience : the geometry

of excitability and bursting (Computational neuroscience). Cambridge, Mass.:

MIT Press.

41

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics

of neuronal groups. Cereb Cortex, 14(8), 933-944, doi:DOI

10.1093/cercor/bhh053.

Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., & Painkras, E. SpiNNaker:

Mapping neural networks onto a massively-parallel chip multiprocessor. In

IEEE International Joint Conference on Neural Networks, 2008 (pp. 2849-

2856)

Koch, C. (1999). Biophysics of computation : information processing in single

neurons (Computational neuroscience). New York: Oxford University Press.

Layton, O. W., Mingolla, E., & Browning, N. A. (2012). A motion pooling model

of visually guided navigation explains human behavior in the presence of

independently moving objects. J Vis, 12(1), doi:10.1167/12.1.20.

Livingstone, M. S., & Conway, B. R. (2007). Contrast affects speed tuning,

space-time slant, and receptive-field organization of simple cells in macaque

V1. Journal of Neurophysiology, 97(1), 849-857, doi:10.1152/jn.00762.2006.

Lu, Z. L., & Sperling, G. (1995). Attention-Generated Apparent Motion.

Nature, 377(6546), 237-239, doi:Doi 10.1038/377237a0.

Majaj, N. J., Carandini, M., & Movshon, J. A. (2007). Motion integration by

neurons in macaque MT is local, not global. Journal of Neuroscience, 27(2),

366-370, doi:10.1523/JNEUROSCI.3183-06.2007.

Merolla, P. A., Arthur, J. V., Shi, B. E., & Boahen, K. A. (2007). Expandable

networks for neuromorphic chips. Ieee Transactions on Circuits and Systems

I-Regular Papers, 54(2), 301-311, doi:Doi 10.1109/Tcsi.2006.887474.

Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The

analysis of moving visual patterns (Pattern recognition mechanisms). New

York: Springer.

Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of

striate cortical neurons projecting to area MT in macaque monkeys. Journal

of Neuroscience, 16(23), 7733-7741.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., & Veidenbaum, A. V.

(2009). A configurable simulation environment for the efficient simulation of

42

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

large-scale spiking neural networks on graphics processors. Neural

Networks, 22(5-6), 791-800, doi:DOI 10.1016/j.neunet.2009.06.028.

Nishida, S. (2011). Advancement of motion psychophysics: Review 2001-

2010. Journal of Vision, 11(5), doi:Artn 11

Doi 10.1167/11.5.11.

Pack, C. C., Berezovskii, V. K., & Born, R. T. (2001). Dynamic properties of

neurons in cortical area MT in alert and anaesthetized macaque monkeys.

Nature, 414(6866), 905-908, doi:10.1038/414905a.

Perrone, J. A. (2012). A neural-based code for computing image velocity from

small sets of middle temporal (MT/V5) neuron inputs. J Vis, 12(8),

doi:10.1167/12.8.1.

Perrone, J. A., & Thiele, A. (2001). Speed skills: measuring the visual speed

analyzing properties of primate MT neurons. Nat Neurosci, 4(5), 526-532.

Perrone, J. A., & Thiele, A. (2002). A model of speed tuning in MT neurons.

Vision Research, 42(8), 1035-1051.

Priebe, N. J., Cassanello, C. R., & Lisberger, S. G. (2003). The neural

representation of speed in macaque area MT/V5. Journal of Neuroscience,

23(13), 5650-5661.

Priebe, N. J., Lisberger, S. G., & Movshon, J. A. (2006). Tuning for

spatiotemporal frequency and speed in directionally selective neurons of

macaque striate cortex. Journal of Neuroscience, 26(11), 2941-2950,

doi:10.1523/JNEUROSCI.3936-05.2006.

Raudies, F., Mingolla, E., & Neumann, H. (2011). A model of motion

transparency processing with local center-surround interactions and

feedback. Neural Comput, 23(11), 2868-2914, doi:10.1162/NECO_a_00193.

Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of

mind in decision-making. Nature, 461(7261), 263-U141, doi:Doi

10.1038/Nature08275.

Richert, M., Nageswaran, J. M., Dutt, N., & Krichmar, J. L. (2011). An efficient

simulation environment for modeling large-scale cortical processing. Front

Neuroinform, 5, 19, doi:10.3389/fninf.2011.00019.

43

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Rodman, H. R., & Albright, T. D. (1987). Coding of Visual Stimulus Velocity in

Area Mt of the Macaque. Vision Research, 27(12), 2035-2048, doi:Doi

10.1016/0042-6989(87)90118-0.

Rodman, H. R., & Albright, T. D. (1989). Single-unit analysis of pattern-

motion selective properties in the middle temporal visual area (MT). Exp

Brain Res, 75(1), 53-64.

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral

intraparietal area during a combined visual discrimination reaction time task.

Journal of Neuroscience, 22(21), 9475-9489.

Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells

analyze the motion of visual patterns. Nat Neurosci, 9(11), 1421-1431,

doi:Doi 10.1038/Nn1786.

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual

decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of

Neurophysiology, 86(4), 1916-1936.

Simoncelli, E. P., & Heeger, D. J. (1998). A model of neuronal responses in

visual area MT. Vision Research, 38(5), 743-761, doi:Doi 10.1016/S0042-

6989(97)00183-1.

Smith, M. A., Majaj, N. J., & Movshon, J. A. (2005). Dynamics of motion

signaling by neurons in macaque area MT. Nat Neurosci, 8(2), 220-228,

doi:Doi 10.1038/Nn1382.

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple

decisions. Trends in Neurosciences, 27(3), 161-168, doi:DOI

10.1016/j.tins.2004.01.006.

Srinivasa, N., & Cruz-Albrecht, J. M. (2012). Neuromorphic Adaptive Plastic

Scalable Electronics Analog Learning Systems. Ieee Pulse, 3(1), 51-56,

doi:Doi 10.1109/Mpul.2011.2175639.

Thiele, A., Dobkins, K. R., & Albright, T. D. (2001). Neural correlates of

chromatic motion perception. Neuron, 32(2), 351-358.

44

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichardt Detectors.

Journal of the Optical Society of America a-Optics Image Science and Vision,

2(2), 300-321.

Vogelstein, R. J., Mallik, U., Culurciello, E., Cauwenberghs, G., & Etienne-

Cummings, R. (2007). A multichip neuromorphic system for spike-based

visual information processing. Neural Comput, 19(9), 2281-2300, doi:DOI

10.1162/neco.2007.19.9.2281.

Wilson, H. R., Ferrera, V. P., & Yo, C. (1992). A Psychophysically Motivated

Model for 2-Dimensional Motion Perception. Visual Neuroscience, 9(1), 79-97.

Yudanov, D., Shaaban, M., Melton, R., & Reznik, L. GPU-based simulation of

spiking neural networks with real-time performance & high accuracy. In

Neural Networks (IJCNN), The 2010 International Joint Conference on, 18-23

July 2010 2010 (pp. 1-8). doi:10.1109/IJCNN.2010.5596334.

45

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

8. Figure captions

Fig. 1 Network architecture. 32×32 grayscale images are fed through model

V1, MT, and LIP (as explained in Sections 2.2.1 – 2.2.3). Shown is a snapshot

in time of the network’s response to an example RDK stimulus in which 50 %

of the dots drift to the right. Black bold arrows denote synaptic projections.

Inhibitory projections and populations are not shown. Numbers in

parentheses next to an element are the equations that describe the

corresponding neuronal response or synaptic projections (see text). V1 filter

responses were mapped onto mean firing rates by reproducing the contrast

sensitivity function reported for V1 cells projecting to MT, as explained in

Section 2.2.1

Fig. 2 A drifting dot traces out a path (dashed line) in space (x, ignoring y)

and time (t). The colored ovals correspond to the orientation of the positive

(green) and negative (red) lobes of a spatiotemporal filter a If the filter is

oriented in the same way as the dot’s space-time path it could be activated

by this motion b A dot moving in the opposite direction would always contact

both positive and negative lobes of the filter and therefore could never

produce a strong response. Adopted from (Bradley and Goyal 2008)

Fig. 3 The contrast sensitivity function of model V1 simple cells (blue) is

plotted against electrophysiological data adapted from Fig. 7 of (Movshon

and Newsome 1996). Each data point is a V1 mean response to a drifting

grating, averaged over both one second of stimulus presentation and all

neurons in the subpopulation. Vertical bars are the standard deviation on the

population average

Fig. 4 Polar plots of direction tuning for a sinusoidal grating a–d and a plaid

stimulus e–h drifting upwards, where the angle denotes motion direction and

the radius is the firing rate in spikes per second. Tuning curves were

obtained by taking the mean firing rate of a neuron to a drifting grating

during two seconds of stimulus presentation, averaged over all neurons in

46

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

the population selective to the same stimulus direction (black: mean

neuronal response, blue: mean plus standard deviation on the population

average, green: mean minus standard deviation). Shown are mean

responses for V1 complex cells (b and f), MT CDS cells (c and g), and MT PDS

cells (d and h). Only MT PDS cells h responded to the motion of the entire

plaid pattern rather than to the motions of the individual component gratings

Fig. 5 The pattern index is computed for all MT CDS cells (blue) and all MT

PDS cells (red), and plotted as a Fisher Z-score. The black solid lines are the

classification region boundaries, indicating that all MT CDS cells have indeed

been classified as component-selective, and all MT PDS cells have been

classified as pattern-selective

Fig. 6 Speed tuning curves for three different classes of MT neurons. The

stimulus consisted of a single bar drifting over the entire visual field either to

the right (preferred direction) or to the left (anti-preferred direction) at

different speeds a Response of a “speed-tuned” neuron (selective to motion

at 1.5 pixels per frame) b Response of a “low-pass” neuron (selective to

motion at 0.125 pixels per frame) c Response of a “high-pass” neuron

(selective to motion at 9 pixels per frame)

Fig. 7 Random dot kinematogram. The RDK stimulus was constructed out of

approximately 150 dots (15 % dot density, maximum stimulus contrast) on a

32x32 input movie a Psychometric function. The network’s accuracy

increased with increasing motion strength (coherence level) b Chronometric

function. The network’s RT decreased with increasing motion strength

Fig. 8 a Execution time of a Matlab implementation (blue) of V1 complex

cells versus a CUDA implementation (red) b Observed memory usage for the

Matlab implementation (blue) and CUDA implementation (red)

Fig. 9 a Simulation speed is given as the ratio of execution time over the

simulation time for networks run in CPU mode (blue) and GPU mode (red). In

both cases, the V1 CUDA implementation was executed (green), which is

part of the total simulation time (in blue and red). Note the log scale on the

47

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

ordinate. The GPU simulations did not only run faster, but simulation speed

scaled better with network size b Speedup is given as the ratio of CPU

execution time over GPU execution time

48

1237

1238

1239

	Abstract
	1. Introduction
	2. Methods
	2.1 The simulator
	2.1.1 Setting up a simulation
	2.1.2 CPU vs. GPU simulation mode
	2.1.3 Neuron model
	2.1.4 Synapse model

	2.2 The network
	2.2.1 Spatiotemporal-energy model of V1
	2.2.2 Two-stage spiking model of MT
	2.2.3 Spiking layer of LIP decision neurons
	2.2.4 Implementation details

	3. Results
	3.1 Direction tuning
	3.2 Speed tuning
	3.3 Random dot kinematogram
	3.4 Computational performance

	4. Discussion
	4.1 Neurophysiological evidence and model alternatives
	4.2 Model limitations
	4.3 Practical implications

	5. Information Sharing Statement
	6. Acknowledgments
	This work was supported by the Defense Advanced Research Projects Agency (DARPA) subcontract 801888-BS. We thank Jayram M. Nageswaran for his work developing the custom spiking neural network simulator. We also thank Michael Avery, Kris Carlson, and Steve Grossberg for valuable feedback and discussion on this project.
	7. References
	8. Figure captions

