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Abstract

Simulating large-scale models of biological motion perception is challenging, 

due to the required memory to store the network structure and the 

computational power needed to quickly solve the neuronal dynamics. A low-

cost yet high-performance approach to simulating large-scale neural network

models in real-time is to leverage the parallel processing capability of 

graphics processing units (GPUs). Based on this approach, we present a two-

stage model of visual area MT that we believe to be the first large-scale 

spiking network to demonstrate pattern direction selectivity. In this model, 

component-direction-selective (CDS) cells in MT linearly combine inputs from

V1 cells that have spatiotemporal receptive fields according to the motion 

energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) 

cells in MT are constructed by pooling over MT CDS cells with a wide range of

preferred directions. Responses of our model neurons are comparable to 

electrophysiological results for grating and plaid stimuli as well as speed 

tuning. The behavioral response of the network in a motion discrimination 

task is in agreement with psychophysical data. Moreover, our 

implementation outperforms a previous implementation of the motion 

energy model by orders of magnitude in terms of computational speed and 

memory usage. The full network, which comprises 153,216 neurons and 

approximately 40 million synapses, processes 20 frames per second of a

40×40 input video in real-time using a single off-the-shelf GPU. To promote 

the use of this algorithm among neuroscientists and computer vision 

researchers, the source code for the simulator, the network, and analysis 

scripts are publicly available.
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1. Introduction

Visual motion perception is a challenging problem that is critical for 

navigating through the environment and tracking objects. Several software 

packages are available to the public that deal with the neurobiologically 

plausible modeling of motion perception in the mammalian brain, such as 

spatiotemporal-energy models like the motion energy model of Simoncelli 

and Heeger (1998), or gradient-based models like ViSTARS (Browning et al. 

2009a, 2009b). However, in order for these frameworks to become practical 

in, for example, neuromorphic or robotics applications, they must be capable

of running large-scale networks in real-time. Moreover, to take advantage of 

state-of-the-art neuromorphic hardware, the elements of the algorithms need

to be spiking neurons (Indiveri et al. 2006; Merolla et al. 2007; Vogelstein et 

al. 2007; Khan et al. 2008; Srinivasa and Cruz-Albrecht 2012). Developing 

such a simulation environment is challenging, due to the required memory to

store the network structure and the computational power needed to quickly 

solve the equations describing the neuronal dynamics. A low-cost yet high-

performance approach to simulating large-scale spiking neural networks 

(SNNs) in real-time is to leverage the parallel processing capability of 

graphics processing units (GPUs) (Nageswaran et al. 2009; Fidjeland and 

Shanahan 2010; Yudanov et al. 2010; Richert et al. 2011).

Based on this approach, we present a two-stage model of visual area 

MT that we believe to be the first large-scale spiking network to demonstrate

pattern direction selectivity. The model combines and extends two previous 

incarnations of the motion energy model (Simoncelli and Heeger 1998; Rust 

et al. 2006). Broadly speaking, our model integrates the V1 stage of 

Simoncelli and Heeger (1998) with the MT stage of Rust et al. (2006) in the 

spiking domain. More precisely, our model uses a bank of spatiotemporal 

filters (Adelson and Bergen 1985; Simoncelli and Heeger 1998) to model the 

receptive fields of directionally selective neurons in V1, which then project to

component-direction-selective (CDS) cells in area MT. However, the local 
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motion estimates coded by the spike patterns of these neurons often vary 

drastically from the global pattern motion of a visual stimulus, because the 

local motion of a contour is intrinsically ambiguous (“aperture problem”). 

Therefore, in order to construct pattern-direction-selective (PDS) cells in MT 

that signal the global pattern motion, we implemented three design 

principles introduced by Rust et al. (2006): 1) spatial pooling over V1 or MT 

CDS cells with a wide range of preferred directions, 2) strong motion 

opponent suppression, and 3) a tuned normalization that may reflect center-

surround interactions in MT. Whereas the implementation by Rust et 

al. (2006) was restricted to inputs that are mixtures of sinusoidal gratings of 

a fixed spatial and temporal frequency, our model can operate on any 

spatiotemporal image intensity.

The motion energy model of Simoncelli and Heeger (1998), henceforth 

referred to as the S&H model, is conceptually equivalent to an elaborated 

Reichardt detector at the end of the V1 stage (van Santen and Sperling 

1985), and is a specific implementation of the intersection-of-constraints 

(IOC) principle at the end of the MT PDS stage (Bradley and Goyal 2008). The

IOC principle in turn is one possible solution to the aperture problem; that is, 

a velocity-space construction that finds the global pattern motion as the 

point in velocity-space where the constraint lines of all local velocity samples

intersect. Adelson and Movshon (1982) differentiated among three methods 

to estimate the global pattern motion; 1) IOC principle, 2) vector average 

(VA), and 3) blob or feature tracking, which may be equally valid approaches 

to solving the aperture problem (for a recent review on the topic see Bradley 

and Goyal (2008)). Although the S&H model is not complete, in the sense 

that it does not specify the exact pattern or object velocity, the model in 

particular and the IOC principle in general are consistent with various 

experimental data. 

In the present paper, we introduce a large-scale spiking neuron model 

of cortical areas critical for motion processing, which is efficient enough to 

run in real-time on available processors. We show that the responses of 
4
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neurons in the network are comparable to electrophysiological results for 

grating and plaid stimuli, as well as speed tuning. The behavioral response of

the network in a two-alternative forced choice (2AFC) motion discrimination 

task (that is, a random dot motion coherence task) is in agreement with 

psychophysical data. Moreover, our implementation outperforms a previous 

rate-based C/Matlab implementation of the S&H model by up to a factor of 

12 in terms of computational speed and by orders of magnitude in terms of 

memory usage. The full network, which comprises 153,216 neurons and 

approximately 40 million synapses, processes 20 frames per second of a

40×40 input video in real-time using a single off-the-shelf GPU. 

The network was constructed using an open-source SNN simulator

(Richert et al. 2011) that provides a PyNN-like programming interface; its 

neuron model, synapse model, and address-event representation (AER) are 

compatible with recent neuromorphic hardware (Srinivasa and Cruz-Albrecht 

2012). To promote the use of this algorithm among the neuroscientist and 

computer vision research communities, the source code for the simulator, 

the network, and analysis scripts are publicly available at 

http://www.socsci.uci.edu/~jkrichma/CARLsim/.
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2. Methods

2.1 The simulator

The present model was developed on a simulator that was previously 

published in Nageswaran et al. (2009) and Richert et al. (2011). The first 

study demonstrated real-time performance for a simulation of 100,000 

neurons on a single NVIDIA C1060 GPU. The latter added a wide range of 

functionalities, such as equations for synaptic conductances, spike-timing-

dependent plasticity (STDP), and short-term plasticity (STP). The present 

release builds on this mainly by: 1) providing the complete source code for a 

detailed large-scale model of visual motion processing in V1 and MT, 2) 

improving the original model to demonstrate PDS responses and speed 

tuning, and 3) introducing source code-level optimizations that improve GPU 

memory management and ensure code stability. Whereas the optimizations 

should be applicable to a wide range of GPU architectures, they are not 

directly relevant to this paper and will thus not be discussed (for more 

information please refer to the release notes).

The main code to run the experiments described in this paper can be found 

in the file "examples/v1MTLIP/main_v1MTLIP.cpp", which is part of the CARLsim 2.1 

software package. The "examples" directory also contains a number of other 

experiments that were part of a previous code release—for more information

refer to Richert et al. (2011). Matlab scripts to analyze the network output 

and create the figures can be found in the directory "scripts/v1MTLIP/". Please 

note that Matlab is not necessary to use the simulator, as the scripts are 

provided mainly for analysis purposes.

2.1.1Setting up a simulation

Step-by-step instructions on how to set up, interact with, and run a 

simulation can be found in the tutorial on our website and in our previous 

code release (Richert et al. 2011). For the reader’s convenience, we include 

here a representative example to illustrate the ease of setting up and 
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running a simulation. Listing 1 randomly connects ten Poisson spike 

generators (gIn) firing at 50 Hz mean rate to a population of 100 excitatory 

Izhikevich neurons (gEx), records and stores the spike times in a binary file 

"spkEx.dat", and runs the network for a second of simulation time:

#include "snn.h"
CpuSNN sim("My network");

// set up network
int gIn=sim.createSpikeGeneratorGroup("input", 10, EXCITATORY_NEURON);
int gEx=sim.createGroup("excitatory", 100, EXCITATORY_NEURON);
sim.setNeuronParameters(gEx, 0.02f, 0.2f, -65.0f, 8.0f); // RS neurons sim.connect(gIn, gEx, 
"random", 1.0, 1.0, 0.10f, 1, 20, SYN_FIXED);

// write spike times to file
sim.setSpikeMonitor(gEx, "spkEx.dat");

// set spike rates and run network
PoissonRate inSpikes(100);
for (int i=0; i<100; i++)
  inSpikes.rates[i] = 50.0f; // 50 Hz
sim.setSpikeRate(gIn, &inSpikes);
sim.runNetwork(1,0); // run for 1 sec and 0 msec
Listing 1

In this example, connectivity (achieved through CpuSNN:connect(…)) is random 

with an initial weight of 1.0, a maximum weight of 1.0, a 10 % (0.10) 

connection probability, a synaptic delay uniformly distributed between 1 ms 

and 20 ms, and static synapses (SYN_FIXED). Note that any type of 

connectivity profile is possible by using a callback mechanism. For a 

description of the Izhikevich neuron model please refer to Section 2.1.3.

2.1.2CPU vs. GPU simulation mode

A major advantage of our simulator is the possibility to run a simulation 

either on standard x86 central processing units (CPUs) or off-the-shelf NVIDIA

GPUs, simply by passing a constant with value CPU_MODE or GPU_MODE as an 

additional function argument to CpuSNN::runNetwork(…). A new feature is the 

option to pass a “device index” to the same method, which can be used in 

multi-GPU systems to specify on which CUDA device to establish a context. 

For example, Listing 2 would run a built network for one second on the 

second GPU (if such a device exists):
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CpuSNN sim(“My network”);
... // build network
int run_sec = 1; int run_msec = 0; // run for 1 s and 0 ms
bool onGPU = true; // run on GPU
int ithGPU = 1; // run on 2nd device (0-indexed)
sim.runNetwork(run_sec, run_msec, onGPU?GPU_MODE:CPU_MODE, ithGPU);
Listing 2

The two simulation modes allow the user to exploit the advantages of 

both architectures. Whereas the CPU is more efficient for relatively small 

networks, the GPU is most advantageous for network sizes of 1,000 neurons 

and up (Nageswaran et al. 2009; Richert et al. 2011). It has been 

demonstrated that a GPU implementation (on NVIDIA GTX-280 with 1 GB of 

memory) for a simulation of 100,000 neurons and 50 million synaptic 

connections can run up to 26 times faster than a CPU version (Core2 4600 

@ 2.13 GHz with 4 GB of memory) of the same network (Nageswaran et al. 

2009). On the other hand, the CPU mode allows for execution of extremely 

large networks that would not fit within the GPU’s memory.

It is worth noting that a simulation can be run in CPU mode even if the 

code is compiled in the presence of CUDA source files. An example of this 

hybrid mode is the network explained in the present work, which contains a 

V1 stage purely written in CUDA. In this case the network would be allocated 

on the CPU’s memory, but the generation of motion energy responses would 

be delegated to the GPU.

2.1.3Neuron model

The simulator currently supports four parameter Izhikevich point-neurons

(Izhikevich 2003).  Other neuron models will follow in future releases. The 

Izhikevich model aims to reduce Hodgkin-Huxley-type neuronal models to a 

two-dimensional system of ordinary differential equations,

dv (t )

dt
=0.04v2

(t )+5v (t )+140−u(t )+i syn (t ) (1)

du (t )

dt
=a (bv(t )−u(t )). (2)

Here (1) describes the membrane potential v for a given external current i syn,

whereas (2) describes a recovery variableu; the parameter a is the rate 
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constant of the recovery variable, and the parameter b describes the 

sensitivity of the recovery variable to the subthreshold fluctuations of the 

membrane potential. All parameters in (1) and (2) are dimensionless; 

however, the right-hand side of (1) is in a form such that the membrane 

potential v has mV scale and the time t has ms scale (Izhikevich 2003). The 

Izhikevich model is well-suited for large-scale simulations, because it is 

computationally inexpensive yet capable of spiking, bursting, and being 

either an integrator or a resonator (Izhikevich 2004, 2007).

In contrast to other simple models such as the leaky integrate-and-fire 

(LIF) neuron, the Izhikevich neuron is able to generate the upstroke of the 

spike itself. Thus the voltage reset occurs not at the threshold, but at the 

peak (v cutoff=+30), of the spike. The action potential downstroke is modeled 

using an instantaneous reset of the membrane potential whenever v reaches

the spike cutoff, plus a stepping of the recovery variable:

v (v>30)=c    and   u (v>30)=u−d . (3)
The inclusion of u in the model allows for the simulation of typical spike

patterns observed in biological neurons. The four parametersa, b, c, and d 

can be set to simulate different types of neurons. Unless otherwise specified,

excitatory neurons in all our simulations were modeled as regular spiking 

(RS) neurons (class 1 excitable, a=0.02 ,b=0.2 ,c=−65 ,d=8), and all 

inhibitory neurons were modeled as fast spiking (FS) neurons (class 2 

excitable, a=0.1 ,b=0.2 ,c=−65 ,d=2) (Izhikevich 2003, 2004).

2.1.4Synapse model

A simulation can be run with either a current-based or a conductance-based 

neuron model (sometimes referred to as CUBA and COBA, respectively). All 

experiments in the present study were run in COBA mode.

In a conductance-based model, each ionic current that contributes to 

the total current i syn (see (1)) is associated with a conductance. The simulator

supports four of the most prominent synaptic conductances found in the 

cortex: AMPA (fast decay), NMDA (slow decay and voltage-dependent), 
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GABAa (fast decay), and GABAb (slow decay), which are modeled as dynamic 

synaptic channels with zero rise time and exponential decay according to

d gr (t )
dt

=
−1
τ r

gr (t )+w∑
i

δ (t−t i ) , (4)

where δ is the Dirac delta, the sum is over all presynaptic spikes arriving at 

times t i, w is the weight of that synapse, τ r is its decay time constant, and 

the subscript r  denotes the receptor type; that is, AMPA, NMDA, GABAa, or 

GABAb. Unless otherwise specified, a spike arriving at a synapse that is post-

synaptically connected to an excitatory (inhibitory) neuron increases both

g AMPA and gNMDA (gGAB Aa
 and gGAB Ab

¿ . In our simulations we set the time 

constants to τAMPA=5 ms, τNMDA= 150 ms, τGAB Aa
=6 ms, and τGAB Ab

=150  ms

(Dayan and Abbott 2001; Izhikevich et al. 2004). The rise time of these 

conductances was modeled as instantaneous, which is a reasonable 

assumption in the case of AMPA, NMDA, and GABAa (Dayan and Abbott 

2001), but a simplification in the case of GABAb, which has a rise time on the 

order of 10 ms (Koch 1999).

Then the total synaptic current i syn in (1) for each neuron is given by:

i syn=−g AMPA (v−0 )−gNMDA

(v+80
60 )

2

¿

1+(v+80
60 )

2 (v−0 ) ¿

−gGABAa (v +70)−gGAB Ab
(v+90) ,

(5)

where v is the membrane potential of the neuron, and the subscript 

indicates the receptor type. This equation is equivalent to the one described 

in Izhikevich et al. (2004).

2.2 The network

The network architecture is shown in Fig. 1. Grayscale videos are fed frame-

by-frame through a model of the primary visual cortex (V1), the middle 

temporal area (MT), and the lateral intraparietal cortex (LIP). Bold black 

arrows indicate synaptic projections. Note that inhibitory populations and 
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projections are not shown for the sake of clarity. Numbers in parentheses 

next to an element are the equations that describe the corresponding 

neuronal response or synaptic projections, as will be explained in the 

subsections below.

The V1 model consisted of a bank of spatiotemporal filters (rate-based)

according to the S&H model (Simoncelli and Heeger 1998), which will be 

described in detail in Section 2.2.1. At each point in time, a 32×32 input 

video frame was processed by V1 cells at three different spatiotemporal 

resolutions (labeled “3 scales” in Fig. 1). Simulated V1 simple cells computed

an inner product of the image contrast with one of 28 space-time oriented 

receptive fields (third derivatives of a Gaussian), which was then half-wave 

rectified, squared, and normalized within a large Gaussian envelope. V1 

complex cell responses were computed as a weighted sum of simple cell 

afferents that had the same space-time orientation, but were distributed 

over a local spatial region. We interpreted these filter responses as mean 

firing rates of Poisson spike trains (labeled “Hz” in the figure) as explained in 

Section 2.2.1, which were first scaled to match the contrast sensitivity 

function of V1 simple cells, and then used to drive Izhikevich spiking neurons

representing cells in area MT.

Area MT consisted of two distinct populations of spiking neurons 

(explained in Section 2.2.2), the first one being selective to all local 

component motions of a stimulus (CDS cells), and the other one responding 

to the global pattern motion (PDS cells). MT CDS cells responded to three 

different speeds (1.5 pixels/frame, 0.125 pixels/frame, and 9 pixels/frame) 

illustrated as three distinct populations in the MT CDS layer of Fig. 1.  

Divisive normalization between these populations enabled the generation of 

speed tuning curves that are in agreement with neurophysiological 

experiments (Rodman and Albright 1987). The three MT CDS populations 

consisted of eight subpopulations, each of which was not only selective to a 

particular speed but also to one of eight directions of motion, in 45 degree 

increments. PDS cells were constructed by 1) pooling over MT CDS cells with 
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a wide range of preferred directions, 2) using strong motion opponent 

suppression, and 3) employing a tuned normalization that may reflect 

center-surround interactions in MT (Rust et al. 2006). PDS cells were 

selective to the same speed as their CDS afferents. For the purpose of this 

paper we only implemented PDS cells selective to a speed of 1.5 

pixels/frame (see MT PDS layer in Fig. 1) to be used in a motion 

discrimination task. However, it is straightforward to implement PDS cells 

that are selective to another speed.

A layer of decision neurons (see Section 2.2.3) was responsible for 

integrating over time the direction-specific sensory information that is 

encoded by the responses of MT PDS cells. Analogous to the MT layer, the 

decision layer consisted of eight subpopulations, each of which received 

projections from a subpopulation of MT PDS cells selective to one of eight 

directions of motion. This information was then used to make a perceptual 

decision about the presented visual stimulus, such as determining the global 

drift direction of a field of random moving dots in a motion discrimination 

task (presented in Section 3.3). Fig. 1 exemplifies this situation by showing a 

snapshot of the network’s response to a random dot kinematogram (RDK) 

where dots drift to the right at a speed of 1.5 pixels/frame. The 

subpopulation of decision neurons that is coding for rightward motion is 

activated the strongest. The temporal integration of sensory information 

might be performed in one of several parietal and frontal cortical regions in 

the macaque, such as LIP, where neurons have been found whose firing rate 

are predictive of the behavioral reaction time (RT) in a RDK task (Shadlen 

and Newsome 2001; Roitman and Shadlen 2002).

The following subsections will explain the model in detail.

2.2.1Spatiotemporal-energy model of V1

The first (V1) stage of the S&H model was implemented and tested in a 

Compute Unified Device Architecture (CUDA) environment (Richert et al. 

2011). This part of the model is equivalent to Eqs. 1–4 in Simoncelli and 
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Heeger (1998) and their subsequently released C/Matlab code, which can be 

obtained from: http://www.cns.nyu.edu/~lcv/MTmodel/. Unless otherwise 

stated, we used the same scaling factors and parameter values as in the 

S&H model.

A visual stimulus is represented as a light intensity distribution

I (x ,y ,t ), that is, a function of two spatial dimensions (x , y) and time t. The 

stimulus was processed at three different spatiotemporal resolutions (or 

scales), r  (labeled “3 scales” in Fig. 1). The first scale, r=0, was equivalent to

processing at the original image (and time) resolution. The other two scales 

were achieved by successively blurring the image with a Gaussian kernel. 

The three stimuli I r (x ,y ,t ) can thus be expressed as:

I0 ( x , y ,t )=I ( x ,y ,t )

I1 ( x , y , t )=exp (− (x2
+ y2

+t2 )
2 )∗I0 ( x , y ,t )

I2 ( x , y , t )=exp (− ( x2
+y2

+t2)

2 )∗I1 ( x , y ,t ) ,

(6)

where ¿ denotes convolution. In order to circumvent the non-causality of 

these convolutions (the response depends both on past and future stimulus 

intensities), a time delay of four frames was introduced (see (Simoncelli and 

Heeger 1998)).

V1 simple cells. A large body of research has found that neurons located in

V1 that project to MT are directionally selective and may be regarded as 

local motion energy filters (Adelson and Bergen 1985; DeAngelis et al. 1993; 

Movshon and Newsome 1996). In our network, V1 simple cells are modeled 

as linear space-time-oriented filters whose receptive fields are third 

derivatives of a Gaussian (Simoncelli and Heeger 1998). These filters are 

very similar to a Gabor filter, but more computationally convenient as they 

allow for separable convolution computations.

The full set of V1 linear receptive fields consisted of 28 space-time 

orientations that are evenly distributed on the surface of a sphere in the 
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spatiotemporal frequency domain. The kth space-time-oriented filter in the 

V1 population can be described by a unit vector ûk=(ûk , x ,ûk , y ,ûk ,t ) ' that is 

parallel to the filter orientation, wherek=1 ,2 ,… ,28 and ' denotes vector 

transposition. For more information please refer to Simoncelli and 

Heeger (1998). An example of a spatiotemporal receptive field is illustrated 

in Fig. 2, where the colored ovals correspond to the orientation of the 

positive (green) and negative (red) lobes of the spatiotemporal filter. If a 

drifting dot traces out a path (dashed line) in space (x, for now ignoring y) 

and time (t) that is oriented in the same way as the lobes, then the filter 

could be activated by this motion (Fig. 2a). A dot moving in the orthogonal 

direction would not elicit a filter response because its path intersects both 

positive and negative lobes of the filter (as depicted in Fig. 2b).

First, input images were filtered with a 3D Gaussian corresponding to 

the receptive field size of a V1 simple cell:

f r ( x , y ,t )=exp (
−(x2

+y2
+t2

)

2σv1 simple
2 )∗Ir (x , y ,t ) (7)

where ¿ is the convolution operator, r  denotes the scale, and σ v1simple=1.25 

pixels.

Then the underlying linear response of a simple cell at spatial location (x , y ) 

and scale r  with space-time orientation k  is equivalent to the third-order 

derivative in the direction of ûk; that is,

Lkr ( x , y , t )=αv1 lin∑
T=0

3

[∑Y=0

3−T

[ 3!
X!Y ! T ! ( ûk ,x )

X
(ûk , y )

Y
(ûk ,t )

T ∂3f r (x , y ,t)

∂ xX ∂ yY ∂t T ]] ,(8)

where ! denotes the factorial, X=3−Y−T, and αv 1 lin=6.6084 is a scaling 

factor. Note that the two sums combined yield exactly 28 summands. This 

operation is equivalent to Eq. 2 in the original paper, and can also be 

expressed using vector notation:

Lr=αv1 lin M br , (9)
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where Lr is the set of all V1 responses at scale r , each element of br is one of

the separable derivatives in (8) at scale r , and each element of the 28×28 

matrix M is a number 3!/( X !Y !T !) (ûk , x )
X

(ûk , y )
Y

(ûk ,t )
T . Each row of M has a 

different value for k , and each column of M has different values for X , Y , and

T . We will make use of this notation in Section 2.2.2, where we will explain 

the construction of synaptic projections from V1 to MT.

At this stage of the model it is possible that filter responses Lkr at 

positions (x , y ) close to the image border have become unreasonably large. 

We suppressed these edge effects by applying a scaling factor to Lkr 

whenever (x , y ) was near an image border.

Simple cell responses were constructed by half-squaring and 

normalizing the linear responses Lkr from (8) within a large Gaussian 

envelope:

Skr ( x , y , t )=
αfilt →rate ,r αv1rect ⌊ Lkr ( x , y , t ) ⌋2

αv1normexp (
−(x2

+ y2
)

2σ v1norm
2 )∗( 1

28 ∑
k=1

28

⌊Lkr ( x , y , t ) ⌋2)+αv1 semi
2

,
(10)

where ⌊ . ⌋ denotes half-wave rectification, and ¿ is the convolution operator. 

The scaling factors αv 1rect=1.9263 and αv 1semi=0.1 (the semi-saturation 

constant) had the same values as in the original S&H model. Instead of 

having a single global normalization, our normalization occurs within a large 

spatial neighborhood (Gaussian half-width σ v 1norm=3.35 pixels), which is 

thought to be more biologically realistic. Therefore the scaling factor

αv 1norm=1.0 had to be adjusted to compensate for the implementation 

difference. This was done simultaneously by setting αfilt →rate ,r=15Hz , a 

scaling factor to map the unit-less filter responses at each scale r  onto more 

meaningful mean firing rates, as will be explained below. In brief, we opted 

to reproduce the contrast sensitivity function reported for V1 cells projecting 

to MT (Movshon and Newsome 1996). Other than that, the computation in 

(10) is conceptually equivalent to Eqs. 3–4 in Simoncelli and Heeger (1998).
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V1 complex cells. V1 complex cell responses were computed as local 

weighted averages of simple cell responses,

Ckr ( x , y ,t )=αv1compexp (−
(x2

+ y2)

2σv 1comp
2 )∗Skr(x , y ,t ) , (11)

where the half-width of the Gaussian was σ v1comp=1.6, and αv 1comp=0.1 is a 

scaling factor.

The responses Ckr (x , y ,t ) described in (11) served as output of the 

CUDA implementation. These responses were interpreted as mean firing 

rates of Poisson spike generators, following the procedure described in the 

next subsection. V1 complex cells then projected to MT CDS cells as 

explained in Section 2.2.2. 

Converting filter responses to firing rates. In order to find a meaningful 

mapping from unit-less filter responses to mean firing rates, we opted to 

reproduce the contrast sensitivity function reported for V1 cells projecting to 

MT (Movshon and Newsome 1996), which is shown in Fig. 3. The red line is 

the electrophysiological data adapted from Fig. 7 of Movshon and 

Newsome (1996), whereas the blue line is our simulated data. In order to 

arrive at this plot, we presented a drifting sinusoidal grating of varying 

contrast to V1 simple cells coding for scale r=0, and computed their mean 

response ⟨ Sk 0 ⟩ from (10) over a stimulation period of one second. The drifting

grating had a spatial frequency of ωspat=0.1205 cycles/pixel and a temporal 

frequency of ωtemp=0.1808 cycles/frame, which is equivalent to the one used

in Section 3.1 for MT direction tuning. Because the grating was drifting to the

right, we only looked at the subpopulation of V1 simple cells that responded 

maximally to this stimulus (which was true for k=24). The mean firing rate of

neurons in this subpopulation, ⟨ S24 ,0 ⟩, was then averaged over all cells in the 

subpopulation and plotted in Fig. 3 (blue curve) for αv 1norm=1.0 and
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αfilt →rate ,0=15Hz . Vertical bars are the standard deviation on the population 

average. The scaling factor αv 1norm was gradually changed until the curvature

of the blue graph approximated the curvature of the electrophysiological 

data. The scaling factor αfilt →rate ,0 was then adjusted such that the simulated 

responses saturated at approximately 100 Hz.

In order to tune V1 simple cells at the other two scales, that is, Sk 1 and

Sk 2 from (10), we used a RDK stimulus, which is depicted as the sample input

in Fig. 1 and explained in detail in Section 3.3. We chose scaling factors that 

would give equal response magnitudes at all three scales in response to the 

RDK stimulus, which resulted in αfilt →rate ,1=17Hz  and αfilt →rect ,2=11 Hz .

Because these filter response were transformed to mean firing rates, it 

was straight-forward to assign the responses Ckr (x , y , t) described in (11) to 

mean firing rates of Poisson spike generators, which served as input to the 

spiking neurons in area MT. The exact mapping of V1 complex onto MT CDS 

cells is given in (12) (see Section 2.2.2).

2.2.2Two-stage spiking model of MT

The two-stage model of MT is based on the idea that CDS cells represent an 

earlier stage of motion processing than PDS cells (Movshon et al. 1985; M. A. 

Smith et al. 2005). The present model is built on this idea, making MT CDS 

cells similar in terms of direction and speed tuning to the model V1 complex 

cells used by Simoncelli and Heeger (1998). In fact, it has been shown that 

MT cells exhibit speed tuning characteristics similar to V1 complex cells

(Priebe et al. 2006), which has led to the suggestion that speed tuning in MT 

might be inherited from V1. Livingstone and Conway (2007) have shown that

even some V1 simple cells are speed-tuned in macaque. Whereas CDS cells 

give responses whose selectivity is stable and consistent from the time they 

are first activated, PDS cells often respond with different and broader 

selectivity when first activated, sometimes even resembling CDS cells, and 

only over a time-course on the order of 100 ms do they establish pattern 
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selectivity (M. A. Smith et al. 2005). At least in anesthetized monkeys, MT is 

believed to consist of roughly 40 % CDS cells, 25 % PDS cells, and 35 % 

unclassified cells (Movshon et al. 1985). However, in awake animals the 

situation might be more complicated (Pack et al. 2001).

All cells in MT were Izhikevich spiking neurons, whose membrane 

potential was thus described by a pair of coupled differential equations (see 

(1) and (2)).

Component-direction-selective cells. CDS cells are selective to a 

particular direction and speed of motion (an orientation in space-time). The 

name is an indication that these cells, when presented with a plaid stimulus 

consisting of two superimposed sine gratings, preferably respond to the 

motion of each grating (component) rather than the global motion pattern 

produced by the combination of the two gratings (Movshon et al. 1985).

MT CDS cells in our model responded preferentially to motion in one of 

eight different directions (in 45 degree increments) and three different 

speeds (1.5 pixels per frame, 0.125 pixels per frame, and 9 pixels per frame)

at any pixel location. These values can be easily adjusted by running the 

Matlab script "scripts/v1MTLIP/projectV1toMT.m". The response properties of MT 

CDS cells were given by 1) a set of both excitatory and inhibitory 

interpolated weights (as explained next) coming from V1 complex cells

(Simoncelli and Heeger 1998), and 2) projections from an inhibitory group of 

MT interneurons to account for response normalization.

Because the directional derivatives of a Gaussian are steerable

(Freeman and Adelson 1991), the response of an arbitrarily oriented filter 

can be synthesized from a fixed bank of basis filters (the third derivatives of 

a Gaussian). Thus the projection weights from V1 complex cells to MT were 

interpolated as follows. Let α̂=( α̂x , α̂y , α̂t)' be the unit vector parallel to an 

arbitrary space-time orientation (direction and speed of motion), akin to the 
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unit vectors ûk described in Section 2.2.1. Then we can write the third 

directional derivative in direction of α̂ analogously to (9) as:

∂3 f r

∂α̂3
=[v ' ( α̂ ) M−1 ]br¿wα̂ br ,

(12)

where the matrix M and the vector br are the same as in (9), each element of

the vector v (α̂ ) is a number 6!/( X !Y !T !) α̂x
X α̂y

Y α̂t
T analogous to (8), and ' 

denotes vector transposition. The product [v ' ( α̂ ) M−1 ] thus is a set

w α̂=(w α̂ ,1 ,…,w α̂ ,28) of interpolated weights, where the kth element of this 

vector, w α̂ ,k, determined the strength of the projection from the kth V1 

complex cell onto a MT CDS cell. The two cells were connected only if they 

were located at the same pixel location, (x , y ). Speed tuning arose from the 

fact that α̂ corresponds to a specific direction and speed of motion. Thus, in 

order to achieve MT CDS cells tuned to different speeds, α̂ was the only 

parameter that needed to be adjusted (refer to the Matlab script mentioned 

above). A MT CDS cell received projections from V1 complex cells at all three

spatiotemporal resolutions, r . Note that it is possible to construct a network 

with the same functionality by using only one spatiotemporal resolution, 

which has been shown in Simoncelli and Heeger’s own C/Matlab 

implementation. Using multiple spatiotemporal resolutions, however, makes 

the network more robust in responding to motion of different-sized objects.

Because the interpolated weights could assume both positive and 

negative values, it was necessary to relay the projections with negative 

weights to a population of inhibitory neurons. In this case (that is, if wα̂ ,k<0), 

the weights in (12) are applied to excitatory projections from V1 complex 

cells to the MT inhibitory population (where w α̂ ,k , inh=|w α̂ ,k|), and the inhibitory

population sends one-to-one connections back to the pool of MT CDS cells. 

Overall the interpolated weights are equivalent to the parameters pnm in 

Eq. 5 of Simoncelli and Heeger (1998).
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In order to model response normalization equivalent to the one in Eq. 6

of Simoncelli and Heeger (1998), we introduced another pool of inhibitory 

interneurons, which integrated the activity of all MT CDS cells within a large 

Gaussian neighborhood (across direction and speed), and projected back to 

all three pools of MT CDS cells with one-to-one connections. This response 

normalization is important to qualitatively reproduce the speed tuning curves

(see Section 3.2).

Pattern-direction-selective cells. PDS cells differ from CDS cells in that 

they, when presented with a plaid stimulus consisting of two superimposed 

sine gratings, preferentially respond to the overall motion direction, not the 

individual components (Movshon et al. 1985). Because visual stimuli typically

contain many oriented components, local motion measurements must be 

appropriately combined in order to sense the true global motion of the 

stimulus (aperture problem). Thus it has been suggested that PDS neurons 

reflect a higher-order computation that acts on V1 or MT CDS afferents

(Movshon et al. 1985). MT PDS cells in our model received direct input from 

CDS cells, and thus conserved their speed and direction preferences. 

Pooling over MT CDS cells and opponent suppression were 

implemented by pooling CDS responses across spatial position and across 

direction preference, such that the strength of a projection from a CDS cell 

selective to motion direction θCDS at location (xCDS , yCDS) to a PDS cell 

selective to motion direction θPDS at location (xPDS ,yPDS) can be expressed as:

wCDS→PDS=αCDS→PDScos ( Δθ )exp(−( ( Δx )
2
+( Δy )

2)

2σPDS ,pool
2 ), (13)

where Δθ=θPDS−θCDS, Δ x=xPDS−xCDS, Δ y=yPDS−yCDS, the half-width of the 

Gaussian neighborhood σ PDS ,pool=3 pixels, and αCDS →PDS is a scaling factor. If 

the resulting weight was negative, due to |Δθ|>
π
2

, the projection was relayed

to a population of inhibitory interneurons. Following the reasoning of Rust et 
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al. (2006), the pattern index of a MT cell can be reduced simply by 

sharpening the cosine tuning component in (13) (see third column of Fig. 6 in

Rust et al. (2006)). 

Tuned normalization was implemented by an inhibitory self-connection 

with a narrowly tuned Gaussian across direction (see second column of Fig. 6

in Rust et al. (2006)). Analogous to previous projections, this was 

implemented by relaying the inhibitory projection to a pool of inhibitory 

interneurons:

wPDS→ PDS,inh=exp( −( Δθ )
2

2σPDS ,tuned ,dir
2 )exp(−( ( Δ x )

2
+ ( Δy )

2)

2σ PDS,tuned , loc
2 ) , (14)

where σ PDS ,tuned,dir <45 deg (such that only one of the eight subpopulations 

was activated), σ PDS ,tuned,loc=2 pixels, and the inhibitory population sent one-

to-one connections back to the pool of MT PDS cells.

2.2.3Spiking layer of LIP decision neurons

A layer of decision neurons was responsible for integrating over time the 

direction-specific sensory information that is encoded by the responses of MT

PDS cells. This information was then used to make a perceptual decision 

about the presented visual stimulus, such as determining the global drift 

direction of a field of random moving dots in a motion discrimination task 

(presented in Section 3.3). A good candidate for such an integrator area in 

macaques might be LIP, where neurons have been found whose firing rate 

are predictive of the behavioral reaction time (RT) in a motion discrimination 

task (Shadlen and Newsome 2001; Roitman and Shadlen 2002).

Spiking neurons in a simulated LIP area were grouped into eight pools 

of 50 neurons, each pool receiving projections from exactly one of the eight 

pools of MT PDS cells with 10 % connection probability. As a result of this 

connectivity profile, each pool of decision neurons accumulated sensory 

evidence for a particular direction of motion, based on the response of MT 

PDS cells.
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Additionally, each decision pool received inhibitory projections from 

other decision pools if the two preferred directions of motion were close to 

opposite. More precisely, a decision neuron in pool i (thus selective to 

direction θ i) received an inhibitory projection from neurons in pool j 

(selective to direction θ j) with strength

wdec ,inh→dec=⌊cos (θi−θ j+π )⌋ , (15)

and 10 % connection probability. 

LIP decision neurons did not employ any internal noise.

2.2.4 Implementation details

In order for our implementation to be useful to researchers already working 

with the S&H model, we tried to stay as close to the S&H C/Matlab 

implementation as possible. However, there are a few minor differences 

worth mentioning. First, as explained in Section 2.2.1, we normalize V1 

simple cell responses in a large Gaussian neighborhood rather than across 

the whole population. Second, whereas the S&H model deals with edge 

effects by temporarily “padding” the input image with an invisible border, we

opted for the computationally more economical alternative to simply 

decrease the responses of V1 simple cells located close to image borders. 

Third, in the S&H C/Matlab implementation there are two additional scaling 

factors (called v1Blur and v1Complex, with values 0.99 and 1.02, respectively) 

that we do not apply in order to save execution time. Fourth, our model 

processes input images at three different scales as described in (6), which is 

a feature that is not implemented in the original S&H model.

The most crucial mathematical operation in the V1 stage of the model 

is the convolution. Because the filter kernels used in our implementation are 

relatively small, employing the fast Fourier transform (FFT) would actually 

hurt performance. Instead we perform all convolution operations in the 

space-time domain using a custom function, which makes use of the fact 

that the Gaussian filter and its derivative are dimensionally separable. Future
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work could be directed towards further optimizing the convolution operation 

in CUDA.
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3. Results

We conducted a number of experiments to ensure the accuracy and 

efficiency of our implementation. Here we demonstrate that the network is 

able to exhibit direction and speed tuning for drifting bar and plaid stimuli 

that are in agreement with neurophysiological recordings, and that the 

network qualitatively reproduces both the psychometric and chronometric 

function in a 2AFC motion discrimination task. Additionally, we measured 

both the computational performance and memory consumption of our model

and compared it to the S&H C/Matlab implementation.

GPU simulations were run on a NVIDIA Tesla M2090 (6 GB of memory) 

using CUDA, and CPU simulations (including Matlab) were run on an Intel 

Xeon X5675 at 3.07 GHz (24 GB of RAM). The same exact network running 

on a single GPU produced all results; the only difference per experiment was 

the presented input stimulus. The full network consisted of 153,216 neurons 

and approximately 33 million synapses, which corresponds to a 32×32 

pixels input resolution. 

3.1 Direction tuning

We tested the ability of our model MT cells to signal the direction of motion 

for drifting grating and plaid stimuli. Responses were simulated for CDS cells 

and PDS cells in MT. The first stimulus was a drifting sinusoidal grating 

consisting of spatial and temporal frequency components that were 

preferred by MT neurons selective to a speed of 1.5 pixels per frame (that is,

ωspat=0.1205 cycles/pixel , ωtemp=0.1808 cycles/frame¿ . The second stimulus 

was a pair of superimposed gratings drifting in a direction orthogonal to their

orientation, which together formed a coherently drifting plaid pattern. The 

two gratings both had the same spatial frequency ωspat, but their orientation 

and drift direction differed by 120 degrees. The direction of these particular 

patterns lay equidistant between the directions of motion of the two 
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component gratings. The stimulus contrast for both grating and plaid was 

30 %.

Our model was able to reproduce direction tuning curves that are in 

agreement with single-cell electrophysiological data (Movshon et al. 1985; 

Rodman and Albright 1989; Movshon and Newsome 1996) for V1 cells, MT 

CDS cells, and MT PDS cells. Fig. 4 shows polar plots of direction tuning for 

V1 neurons (Panels b and f), MT CDS cells (Panels c and g), and MT PDS cells 

(Panels d and h), where the angle denotes motion direction and the radius is 

the firing rate in spikes per second (compare also Fig. 9 in Simoncelli and 

Heeger (1998) and Fig. 1 in Rust et al. (2006)). Tuning curves were obtained 

by calculating the mean firing rate of a neuron’s response to a drifting 

grating during two seconds of stimulus presentation. These responses were 

averaged over all neurons in the population selective to the same direction 

of motion (black: mean neuronal response, blue: mean plus standard 

deviation on the population average, green: mean minus standard 

deviation). As a result of suppressing edge effects, neurons that coded for 

locations closer than five pixels from the image border were only weakly 

activated, and were thus excluded from the plot. The tuning curves in the 

top row were generated in response to the sinusoidal grating drifting 

upwards, which is illustrated in Panel a. Analogously, the tuning curves in the

bottom row were generated in response to the plaid stimulus drifting 

upwards, which is illustrated in Panel e (red arrow: pattern motion direction, 

black arrows: motion direction of the grating components). The direction 

tuning curve for gratings is unimodal for all three neuron classes, but the 

direction tuning curve for plaids shows two distinct lobes for V1 complex 

cells (Panel f) and MT CDS cells (Panel g). Each lobe corresponds to one of 

the component gratings of the plaid. Only MT PDS cells (Panel h) responded 

to the motion of the entire plaid pattern rather than to the motions of the 

individual component gratings.

In order to quantify the pattern selectivity of our model PDS cells, we 

computed the pattern index for each CDS and PDS cell (see Fig. 5) using the 
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standard technique (Movshon et al. 1985; Movshon and Newsome 1996; M. 

A. Smith et al. 2005). Based on the tuning curve for the drifting grating 

described above, we generated two predictions for each cell’s tuning curve 

to drifting plaids (Fig. 5a); either the cell would respond to the plaid in the 

same way as it responded to the grating (“pattern” prediction, black solid 

line), or it would respond independently to the two grating components 

(“component” prediction, black dashed line). We then computed the 

correlation (rc , r p) between the cell’s actual response to a plaid stimulus and 

the component and pattern predictions. To remove the influence of 

correlations between the predictions themselves, we calculated partial 

correlations Rc and Rp for the component and pattern predictions, 

respectively, using the standard formulas:

Rc=
rc−r p r pc

√ (1−r p
2 ) (1−r pc

2 )
Rp=

rp−rc rpc

√ (1−rc
2) (1−rpc

2 )
, (16)

where rc and r p are the simple correlations between the data and the 

component and pattern predictions, respectively, and r pc is the simple 

correlation between the predictions (Movshon and Newsome 1996). Because 

the sampling distribution of Pearson’s r  is not normal, we converted the 

correlation measures Rc and Rp to a Fisher Z-score,

Zc=

0.5ln(
1+Rc

1−Rc
)

√ 1
df

=
atanh (Rc )

√ 1
df

Z p=
atanh(Rp)

√ 1
df

,
(17)

where the numerator is the Fisher r -to-Z transformation and df  is the 

degrees of freedom, equal to the number of values in the tuning curve (in 

our case 24) minus three (M. A. Smith et al. 2005). The Z-scores of all CDS 

and PDS cells (excluding neurons coding for locations closer than five pixels 

from the image border) in the network are plotted in Fig. 5b. Each value of

Zc and Z p was tested for significance using a criterion of 1.28, which is 

equivalent to P=0.90 (M. A. Smith et al. 2005). For a PDS cell (red) to be 
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judged as pattern-selective, the value of Z p had to exceed the value of Zc by 

a minimum of 1.28 (black solid lines). All PDS cells in Fig. 5b met this 

criterion and, therefore, were indeed pattern-selective. Analogously, all CDS 

cells (blue) could be judged as component-selective.

3.2 Speed tuning

We next considered the ability of our implementation to reproduce MT speed

tuning curves as demonstrated in Simoncelli and Heeger (1998). MT neurons 

have been divided into three distinct classes based on their speed tuning 

properties (Rodman and Albright 1987). The first class of neurons is 

relatively sharply tuned for a particular speed and direction of motion 

(“speed-tuned” or “band-pass”). This class of neurons is also strongly 

suppressed by motion in the anti-preferred (opposite) direction; the 

suppression is strongest when the stimulus moves in the opposite direction 

at roughly the preferred speed. The second class of neurons prefers low 

speeds in both the preferred and anti-preferred direction (“low-pass”). The 

third class responds to high speed stimuli in both directions (“high-pass”).

Fig. 6 faithfully reproduces the speed tuning characteristics of these 

three distinct classes (compare also Fig. 10 in Simoncelli and Heeger (1998)).

The stimulus consisted of a single bar drifting over the entire visual field 

either to the right (preferred direction) or to the left (anti-preferred direction)

at different speeds. Each data point is the mean firing rate of a particular MT 

CDS neuron located near the center of the visual field, averaged over the 

time course of a specific speed and direction configuration. The relatively low

mean firing rates can be explained by the fact that the stimulus resides 

outside the neuron’s receptive field for most of the time. The first neuron 

class (Panel a, “band-pass”) preferentially responded to a bar moving at 

1.5 pixels per frame to the right, and was strongly suppressed when the bar 

moved at the same speed to the left. The second neuron class (Panel b, “low-

pass”) exhibited a preference for low speeds (0.125 pixels per frame) in both

directions. With increasing speed the response of the neuron to dots moving 
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in the anti-preferred direction weakened. This behavior can be explained by 

the fact that the Fourier planes corresponding to low speed motions in 

opposite directions are both close to the ωt=0 plane, and thus close to each 

other (Simoncelli and Heeger 1998). Also, this class of neurons was 

suppressed by fast stimuli moving in either direction. Similarly, the third 

neuron class (Panel c, “high-pass”), which had a high preferred speed 

(9 pixels per frame) in one direction, was excited by fast stimuli moving in 

the opposite direction, but was suppressed by slow stimuli moving in either 

direction. 

3.3 Random dot kinematogram

In order to compare the performance of the model with behavioral data from 

2AFC motion discrimination tasks, we developed a paradigm equivalent to 

the RDK experiments performed with monkeys and humans (Roitman and 

Shadlen 2002; Resulaj et al. 2009). We constructed a simple decision 

criterion based on the race model (Shadlen and Newsome 2001; P. L. Smith 

and Ratcliff 2004), in which eight pools of decision neurons (one for each of 

the directions of motion, 50 neurons per pool) sum the responses of MT PDS 

cells selective to a particular direction and speed of motion. The first decision

pool to emit 500 spikes (on average ten spikes per neuron) “won the race” 

and thus signaled a choice for that direction. A correct decision was the 

event in which the winning decision pool was selective to the actual motion 

direction of the stimulus. The time it took the network to reach the decision 

threshold was termed the reaction time (RT).

The RDK stimulus was constructed out of approximately 150 dots 

(15 % dot density, maximum stimulus contrast) on a 32x32 input movie. An 

example frame is shown as the input stimulus in Fig. 1. Each stimulus frame 

was presented to the network for 50 ms. A trial consisted of 20 stimulus 

frames of a particular motion direction and coherence level. Motion 

coherence in the stimulus was varied between 0 and 50 %. Coherently 

moving dots drifted in one of eight possible directions, in 45 degree 
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increments, at a speed of 1.5 pixels per frame. Note that, therefore, only MT 

PDS cells that were selective to this particular stimulus speed were 

connected to the decision layer.

Choice accuracy and RT as a function of task difficulty (coherence of dot 

motion) are shown in Fig. 7 (Panel a and b, respectively), where the thick red

lines are human behavioral data extracted from a RT experiment (see Fig. 3 

and Table 2 in Roitman and Shadlen (2002)) and simulated data is shown in 

blue. Each data point (blue) is the mean outcome of 80 trials (fixed 

coherence level, ten repetitions per motion direction), and the vertical bars 

are the standard error and standard deviation for accuracy (Panel a) and RT 

(Panel b), respectively. As in Fig. 3 in Roitman and Shadlen (2002), we did 

not show RTs on error trials.

Our network performance is comparable to human accuracy, and it 

qualitatively emulates the effect of motion strength on RT. Decreasing RT for

a relatively easy task (e.g., high motion coherence) is a direct consequence 

of the race model. Conversely, when the difficulty of a decision is high (e.g., 

low coherence level), information favoring a particular response grows more 

slowly (P. L. Smith and Ratcliff 2004), and the probability of making an error 

is higher (Shadlen and Newsome 2001). The quantitative difference between 

behavioral and simulated RT in Fig. 7 could be eradicated by fine-tuning the 

excitatory weights from MT cells to the decision layer. However, such an 

exercise would be meaningless, because our model does not take into 

consideration neural areas involved in characteristics of the decision-making 

process that influence the length of RT, such as the time-course of LIP 

neuronal dynamics or the gating of saccadic eye movements (Shadlen and 

Newsome 2001), which have been successfully modeled in detail by others

(Grossberg and Pilly 2008).

3.4 Computational performance

In order to compare our CUDA implementation of V1 (that is, the file 

v1colorME.cu) to the original, unmodified S&H implementation (which features 
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code in both C and Matlab) we computed V1 complex cell responses (see 

Section 2.2.1) at a single spatiotemporal scale to a drifting sinusoidal grating

(the same stimulus as described in Section 3.1) and recorded the model’s 

execution time. The S&H C/Matlab code was executed as 

shModel(stim,pars,’v1Complex’), where stim was the input stimulus, and pars were 

the default parameters (shPars). Fig. 8a shows the execution time per video 

frame for both models. Our GPU implementation (red) was not only faster 

(except for relatively small networks) than the S&H C/Matlab implementation

(blue), but it also scaled better with network size. Note that the C/Matlab 

implementation was a single-threaded computation. The largest speedup, a 

factor of 12, was observed for a network consisting of 96×96=9 ,216 

neurons. It is likely that even greater speedups could have been achieved on

larger networks, but these networks could not run with the S&H C/Matlab 

implementation because they ran out of memory. Timing was performed 

using standard commands tic and toc in Matlab, and the <ctime> function time 

in C++/CUDA. For the S&H C/Matlab implementation, the time it took to 

create the stimulus was not included in the time measurement. On the other 

hand, in the CUDA implementation the stimulus had to be read from file 

frame-by-frame and copied to the GPU card. However, we did not include the

time it takes to transfer the response back from the device to the host.

Additionally, the S&H C/Matlab implementation is memory-intensive 

(see Fig. 8b), and execution times for networks above size

128×128=16 ,384 could not be computed because the CPU ran out of 

memory, even though we had a relatively large amount of RAM (24 GB) 

available. Measuring memory usage in Matlab is not straight-forward. In 

order to demonstrate the excessive memory consumption of the S&H 

C/Matlab implementation (see Fig. 8b) we opted to measure two metrics: the

size of the output argument ans to function call shModel (blue, filled circle in 

Fig. 8b) and the maximum memory usage of the Matlab process at any point 

in time (blue, open circle). The first was measured with native Matlab 

command whos, and the latter was measured by running a bash script in the 
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background that reported the memory usage of the process every second 

(using linux command ps). The blue dashed line is the 24 GB limit of the 

system’s RAM. Note the log scale on the ordinate. Less memory was required

to run the process than to store the output argument, which consisted of a 

matrix whose size was proportional to the product of the stimulus 

dimensions and the number of frames. A straightforward way of making the 

S&H C/Matlab implementation capable of handling large inputs would thus be

to break up the output argument into smaller chunks of data. On the other 

hand, the memory usage of the GPU implementation was significantly lower 

(red line in Fig. 8b) and scaled better with network size. We used CUDA 

command cuMemGetInfo to identify the amount of allocated memory on the 

GPU. The red dashed line is the upper limit of GPU memory available to the 

user (roughly 5.2 GB on our card).

Comparing the performance between GPU simulation mode and CPU 

simulation mode with the full network on the specific processor remains to 

be demonstrated. Recall from Section 2.1.2 that in GPU mode all data 

structures are allocated on the GPU, whereas in CPU mode the network 

would be allocated on the CPU’s memory, and only the generation of motion 

energy responses (written in CUDA) would be delegated to the GPU. Hence 

we evaluated the computational performance by running the full network in 

both CPU and GPU mode with input images from 16×16 pixels (38,784 

neurons) to 64×64 pixels (610,944 neurons). The simulation speed is given 

as the ratio of execution time over the simulation time (see Fig. 9a) for 

networks run in CPU mode (blue) and GPU mode (red). Note that in both 

modes, the V1 CUDA implementation was executed (green), whose run-time 

is part of the total simulation time (in blue and red). The GPU simulations not

only ran faster, but also simulation speed scaled better with network size. 

Note that the CPU simulation was a single-threaded computation. The full 

network at 40×40 input resolution (239,040 neurons) ran in real-time on the 

GPU. At 32×32 input resolution (153,216 neurons) the simulation was 1.5 

times faster than real-time. This result compares favorably with previous 
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releases of our simulator (Nageswaran et al. 2009; Richert et al. 2011), 

which is partly due to code-level optimizations, but mostly due to differences

in GPU hardware and the V1 stage of the network being spatiotemporal 

filters instead of spiking neurons. As the network size increased, the GPU 

simulations showed a significant speedup over the CPU (see Fig. 9b). 

Speedup was computed as the ratio of CPU to GPU execution time. The 

largest network we could fit on a single GPU roughly corresponded to 64×64

input resolution (610,944 neurons), which ran approximately 30 times faster 

than on the CPU. Larger networks currently do not fit on a single GPU and as 

such must be run on the CPU, which would be more than 70 times slower 

than real-time judging from Fig. 9a.
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4. Discussion

We presented a large-scale spiking model of visual area MT that 1) is capable

of exhibiting both component and pattern motion selectivity, 2) generates 

speed tuning curves that are in agreement with electrophysiological data, 3) 

reproduces behavioral responses from a 2AFC task, 4) outperforms a 

previous rate-based implementation of the motion energy model (Simoncelli 

and Heeger 1998) in terms of computational speed and memory usage, 5) is 

implemented on a publicly available SNN simulator that allows for real-time 

execution on off-the-shelf GPUs, and 6) is comprised of a neuron model, 

synapse model, and address-event representation (AER), which is compatible

with recent neuromorphic hardware (Srinivasa and Cruz-Albrecht 2012).

The model is based on two previous models of motion processing in MT

(Simoncelli and Heeger 1998; Rust et al. 2006), but differs from these 

models in several ways. First, our model contains the tuned normalization in 

the MT stage that was not present in Simoncelli and Heeger (1998) but 

introduced by Rust et al. (2006). Second, the implementation by Rust et 

al. (2006) was restricted to inputs that are mixtures of 12 sinusoidal gratings 

of a fixed spatial and temporal frequency, whereas our model can operate on

any spatiotemporal image intensity. Third, MT PDS cells in our model sum 

over inputs from MT CDS cells as opposed to inputs from V1 cells, although 

the two approaches are conceptually equivalent. Fourth, instead of using 

linear summation and a static nonlinear transformation, all neuronal and 

synaptic dynamics in our model MT were achieved using Izhikevich spiking 

neurons and conductance-based synapses.

One could argue that the inclusion of Izhikevich spiking neurons and 

conductance-based synapses is unnecessary, since previous incarnations of 

the motion energy model did not feature these mechanisms yet were 

perfectly capable of reproducing speed tuning and motion selectivity. 

However, our approach is to be understood as a first step into modeling 
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large-scale networks of visual motion processing in more biological detail, 

with the ultimate goal of understanding how the brain solves the aperture 

problem, among other open issues in motion perception. Integrating the 

functionality demonstrated in previous models with more neurobiologically 

plausible neuronal and synaptic dynamics is a necessary first step into 

analyzing the temporal dynamics of model neurons in MT, which may 1) help

to explain how MT PDS cell establish their pattern selectivity not instantly but

over a time-course on the order of 100 ms (M. A. Smith et al. 2005) and 2) 

enable the addition of spike-based learning rules such as STDP; both of 

which might be harder to achieve with previous model incarnations. 

Additionally, the introduction of the present neuron model, synapse model, 

and address-event representation (AER) did not affect performance, yet 

enabled the integration of the S&H model with recent neuromorphic 

hardware (Srinivasa and Cruz-Albrecht 2012) (see also Section 4.3).

On the other hand, it is possible (if not likely) that some response 

dynamics produced by the neural circuitry in the retina, the lateral 

geniculate nucleus (LGN), and V1 may account for certain response 

properties of neurons in MT. Thus future work could be directed towards 

implementing the entire early visual system in the spiking domain. However, 

for the purpose of this study we deem a rate-based preprocessor to be an 

adequate abstraction, as the core functionality of directionally selective cells 

in V1 seem to be well-characterized by local motion energy filters (Adelson 

and Bergen 1985; DeAngelis et al. 1993; Movshon and Newsome 1996).

4.1 Neurophysiological evidence and model alternatives

There is evidence that MT firing rates represent the velocity of moving 

objects using the IOC principle. A psychophysical study showed that the 

perception of moving plaids depends on conditions that specifically affect the

detection of individual grating velocities (Adelson and Movshon 1982). This is

consistent with a two-stage model in which component velocities are first 

detected and then pooled to compute pattern velocity. Subsequent 

34

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889



physiological studies broadly support such a cascade model (Perrone and 

Thiele 2001; Rust et al. 2006; M. A. Smith et al. 2005).

However, other psychophysical results exist where the perceived 

direction of plaid motion deviates significantly from the IOC direction (Ferrera

and Wilson 1990; Burke and Wenderoth 1993). Alternatives to the IOC 

principle are, for example, vector average (VA) or feature tracking. VA 

predicts that the perceived pattern motion is the vector average of the 

component velocity vectors. Blob or feature tracking is the process of 

locating something (a “feature”) that does not suffer from the aperture 

problem, such as a bright spot or a T-junction, and tracking it over time

(Wilson et al. 1992). Ultimately, one needs to consider the interactions of the

motion pathway with form mechanisms (Majaj et al. 2007), and model the 

processing of more complex stimuli (e.g., motion transparency, additional 

self-motion, multiple moving objects) (Raudies et al. 2011; Layton et al. 

2012). Clarifying by which rule (or combination of rules) the brain integrates 

motion signals is still a field of ongoing research. For recent reviews on the 

topic see (Bradley and Goyal 2008; Nishida 2011).

Although clear evidence for spatiotemporal frequency inseparability in 

MT neurons has been found (Perrone and Thiele 2001), which supports the 

idea of a motion energy model, later studies reported it to be a weak effect

(Priebe et al. 2003; Priebe et al. 2006). The actual proportion of neurons in 

the primate visual system that are tuned to spatiotemporal frequency is 

currently not known.

4.2 Model limitations

Although our model is able to capture many attributes of motion selectivity 

(e.g., direction selectivity, speed tuning, component and pattern motion), it 

is not yet complete for the following reasons. First, it does not explicitly 

specify the exact pattern velocity, but instead reports an activity distribution 

over the population of MT neurons, whose firing rates are indicative of the 

observed pattern motion. In order to estimate the speed of a target stimulus,
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it has been proposed to use a suitable population decoding mechanism that 

operates on MT responses (Perrone 2012; Hohl et al. 2013). Second, our 

model does not attempt to predict the temporal dynamics of MT PDS cells, 

which often respond with broad selectivity when first activated, sometimes 

even resembling CDS cells, and only over a time-course on the order of 

100 ms establish their pattern motion selectivity (M. A. Smith et al. 2005). A 

possible explanation for these temporal dynamics is given in Chey et al.

(1997). Third, it does not consider the visual form pathway and abstracts 

early visual details that may be critical for operation in natural settings. 

Fourth, the extent to which each stage in the motion energy model can be 

mapped onto specific neuronal populations is rather limited. Tiling the 

spatiotemporal frequency space according to the motion energy model is 

biologically implausible, and the temporal extent of the filters is 

unrealistically long (especially the low speed filters). However, a way to 

combine spatiotemporal filters based on V1 neuron properties into a pattern 

motion detector has been proposed in Perrone and Thiele (2002).

Another more fundamental limitation is that the S&H model (or for that

matter, any spatiotemporal-energy based model including the elaborated 

Reichardt detector) can only sense so-called first-order motion, which is 

defined as spatiotemporal variations in image intensity (first-order image 

statistics) that give rise to a Fourier spectrum. Second-order stimuli, such as 

the motion of a contrast modulation over a texture, are non-Fourier and thus 

invisible to the model, yet can be readily perceived by humans (Chubb and 

Sperling 1988). In addition, the existence of a third motion channel has been 

suggested, which is supposed to operate through selective attention and 

saliency maps (Lu and Sperling 1995). Also, MT has been shown to be 

involved in color-based motion perception (Thiele et al. 2001).

There is also a plainly technical limitation to our model, which is 

manifested in the amount of available GPU memory. Due to their size, large-

scale spiking networks have demanding memory requirements. The largest 

network that could fit on a single NVIDIA Tesla M2090 (with 6 GB of memory)
36
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was comprised of 610,944 neurons and approximately 137 million synapses, 

which corresponds to processing a 64×64 input video. In order to run larger 

networks on current-generation GPU cards, a change in model or (software 

and hardware) architecture is required. One should note that this is only a 

temporary limitation and could become obsolete as soon as with the next 

generation of GPU cards. Another possible solution would be to employ multi-

GPU systems; however, more work is required to efficiently integrate our 

SNN simulator with such a system.

4.3 Practical implications

The present network might be of interest to the neuroscientist and computer 

vision research communities for the following reasons.

First, our implementation outperforms the S&H C/Matlab 

implementation by orders of magnitude in terms of computational speed and

memory usage. Thus our CUDA implementation can be used to save 

computation time, as well as be applied to input resolutions that the 

C/Matlab implementation cannot handle due to memory constraints. 

Additionally, the CUDA implementation can act as a stand-alone module that 

could potentially be used in computer vision as an alternative to 

computationally expensive operations such as Gabor filtering for edge 

detection or dense optic flow computations.

Second, we have demonstrated that our approach is fast, efficient, and

scalable; although current GPU cards limit the size of the simulations due to 

memory constraints. Nevertheless, our model processes a 40×40 input 

video at 20 frames per second in real-time, which corresponds to a total of 

239,040 neurons in the simulated V1, MT, and LIP areas, at 20 frames per 

second using a single GPU, which enables the potential use of our software in

real-time applications ranging from robot vision to autonomous driving.

Third, our implementation might be of particular interest to the 

neuromorphic modeling community, as the present neuron model, synapse 

model, and AER are compatible with recent neuromorphic hardware
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(Srinivasa and Cruz-Albrecht 2012). Thus our algorithm could be used as a 

neural controller in neuromorphic and neurorobotics applications. Future 

work could be directed toward creating an interface by which networks can 

be automatically exported onto neuromorphic hardware.

Fourth, because of the modular code structure, our implementation 

can be readily extended to include, for example, higher-order visual areas or 

biologically plausible synaptic learning rules such as STDP. Thus our 

implementation may facilitate the testing of hypotheses and the study of the

temporal dynamics that govern visual motion processes in area MT, which 

might prove harder to study using previous (rate-based) model incarnations.

Lastly, the network was constructed using a SNN simulator that is 

publicly available at http://www.socsci.uci.edu/~jkrichma/CARLsim/. The 

present release features the complete source code for the simulator, the 

network, and analysis scripts. As such it is the next step towards our goal of 

making efficient simulations of large-scale spiking networks available to a 

wide range of researchers, without the need of a cluster or supercomputer.

5. Information Sharing Statement

The source code for the simulator, for the network, and analysis scripts are 

publicly available at http://www.socsci.uci.edu/~jkrichma/CARLsim/. This 

website does also feature installation instructions, source code 

documentation and a tutorial on how to set up, run, and interact with a 

simulation. In order to run the simulator in CUDA mode, the NVIDIA CUDA 

software developer kit must be installed (freeware, available at 

https://developer.nvidia.com/cuda-downloads).
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8. Figure captions

Fig. 1 Network architecture. 32×32 grayscale images are fed through model

V1, MT, and LIP (as explained in Sections 2.2.1 – 2.2.3). Shown is a snapshot 

in time of the network’s response to an example RDK stimulus in which 50 % 

of the dots drift to the right. Black bold arrows denote synaptic projections. 

Inhibitory projections and populations are not shown. Numbers in 

parentheses next to an element are the equations that describe the 

corresponding neuronal response or synaptic projections (see text). V1 filter 

responses were mapped onto mean firing rates by reproducing the contrast 

sensitivity function reported for V1 cells projecting to MT, as explained in 

Section 2.2.1

Fig. 2 A drifting dot traces out a path (dashed line) in space (x, ignoring y) 

and time (t). The colored ovals correspond to the orientation of the positive 

(green) and negative (red) lobes of a spatiotemporal filter a If the filter is 

oriented in the same way as the dot’s space-time path it could be activated 

by this motion b A dot moving in the opposite direction would always contact

both positive and negative lobes of the filter and therefore could never 

produce a strong response. Adopted from (Bradley and Goyal 2008)

Fig. 3 The contrast sensitivity function of model V1 simple cells (blue) is 

plotted against electrophysiological data adapted from Fig. 7 of (Movshon 

and Newsome 1996). Each data point is a V1 mean response to a drifting 

grating, averaged over both one second of stimulus presentation and all 

neurons in the subpopulation. Vertical bars are the standard deviation on the

population average

Fig. 4 Polar plots of direction tuning for a sinusoidal grating a–d and a plaid 

stimulus e–h drifting upwards, where the angle denotes motion direction and

the radius is the firing rate in spikes per second. Tuning curves were 

obtained by taking the mean firing rate of a neuron to a drifting grating 

during two seconds of stimulus presentation, averaged over all neurons in 
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the population selective to the same stimulus direction (black: mean 

neuronal response, blue: mean plus standard deviation on the population 

average, green: mean minus standard deviation). Shown are mean 

responses for V1 complex cells (b and f), MT CDS cells (c and g), and MT PDS

cells (d and h). Only MT PDS cells h responded to the motion of the entire 

plaid pattern rather than to the motions of the individual component gratings

Fig. 5 The pattern index is computed for all MT CDS cells (blue) and all MT 

PDS cells (red), and plotted as a Fisher Z-score. The black solid lines are the 

classification region boundaries, indicating that all MT CDS cells have indeed 

been classified as component-selective, and all MT PDS cells have been 

classified as pattern-selective

Fig. 6 Speed tuning curves for three different classes of MT neurons. The 

stimulus consisted of a single bar drifting over the entire visual field either to

the right (preferred direction) or to the left (anti-preferred direction) at 

different speeds a Response of a “speed-tuned” neuron (selective to motion 

at 1.5 pixels per frame) b Response of a “low-pass” neuron (selective to 

motion at 0.125 pixels per frame) c Response of a “high-pass” neuron 

(selective to motion at 9 pixels per frame)

Fig. 7 Random dot kinematogram. The RDK stimulus was constructed out of 

approximately 150 dots (15 % dot density, maximum stimulus contrast) on a

32x32 input movie a Psychometric function. The network’s accuracy 

increased with increasing motion strength (coherence level) b Chronometric 

function. The network’s RT decreased with increasing motion strength

Fig. 8 a Execution time of a Matlab implementation (blue) of V1 complex 

cells versus a CUDA implementation (red) b Observed memory usage for the 

Matlab implementation (blue) and CUDA implementation (red)

Fig. 9 a Simulation speed is given as the ratio of execution time over the 

simulation time for networks run in CPU mode (blue) and GPU mode (red). In 

both cases, the V1 CUDA implementation was executed (green), which is 

part of the total simulation time (in blue and red). Note the log scale on the 
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ordinate. The GPU simulations did not only run faster, but simulation speed 

scaled better with network size b Speedup is given as the ratio of CPU 

execution time over GPU execution time
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