
An efficient and extendable Python library to

analyze neuronal morphologies

Benjamin Torben-Nielsen∗

May 1, 2014

Neuronal morphology has been of interest to neuroscientists since Ca-
jal and Golgi. Due to technical advances and data-sharing initiatives1 we
have access to more neuronal reconstructions than one could accumulate in
a lifetime up to recently. It is known that while neuronal morphology is
highly diverse and variant2 it is pivotal for brain functioning because the
overlap between axons and dendrite limits the network connectivity (Peters’
rule3) and dendrites define how inputs are integrated to produce and output
signal4. Moreover, morphological anomalies and changes are often impli-
cated in neuro-developmental and degenerative diseases5. These insights
could not have been established without the ability to rigorously quantify
neuronal morphologies.

Nowadays quantification is done on reconstructed neuronal morpholo-
gies, that is, digital representations of neuronal structures. Reconstruction
is done with dedicated software programs such as Neurolucida6 that turn
a “picture” (or a stack thereof) into information usable for quantification
by a computer. Neurolucida also comes with some built in functionalities
for the analysis of morphologies. However, currently, the de facto standard

∗Computational Neuroscience Unit, Okinawa Institute of Science and Technology Grad-
uate University, Okinawa, Japan

1Giorgio A. Ascoli, Duncan E. Donohue, and Maryam Halavi. “NeuroMorpho.Org: A
central resource for neuronal morphologies”. en. In: Journal of Neuroscience 27.35 (Aug.
2007), pp. 9247–9251.

2Ivan Soltesz. Diversity in the neuronal machine: Order and variability in interneu-
ronal microcircuits. New-York: Oxford University Press, USA, 2005.

3A Peters and BR Payne. “Numerical relationships between geniculocortical afferents
and pyramidal cell modules in cat primary visual cortex”. In: Cerebral Cortex 3.1 (1993),
pp. 69–78.

4Benjamin Torben-Nielsen and Klaus M. Stiefel. “An inverse approach for elucidating
dendritic function”. In: Frontiers in Computational Neuroscience 4 (2010), p. 128.

5W E Kaufmann and H W Moser. “Dendritic anomalies in disorders associated with
mental retardation.” In: Cerebral Cortex 10.10 (Oct. 2000), pp. 981–991.

6Jacob R Glaser and Edmund M Glaser. “Neuron imaging with neurolucida - A PC-
based system for image combining microscopy”. In: Computerized Medical Imaging and
Graphics 14.5 (1990), pp. 307–317.

1

file format to digitally store and publicly share neuronal reconstructions is
the program-indepedent SWC format7. Two widely adopted tools exist to
analyse SWC files, L-Measure8 and the trees toolbox9. L-Measure is the
current “golden standard” in morphological analysis and written in Java. It
has a web-interface and a standalone version with a graphical user interface
(GUI). The trees toolbox is a Matlab10 toolbox. Both tools allow users
to load and quantify (populations of) digitally reconstructed neurons. The
trees toolbox has the advantage of being implemented in Matlab and hence
users can easily integrate it in their own work-flow by scripting in Matlab.
Lately, there is a trend in computational neuroscience to use the Python
programming language but there is no standalone program or library in
Python to perform basic morphological quantification.

We designed and implemented btmorph, a Python library that contains
a data structure and a set of routines to efficiently represent and analyze
neuronal morphologies. The rationale of this library is to provide a solid,
well tested backbone in the form of a data structure and atomic morphome-
tric functions that allow users to analyze morphologies in a flexible way. By
design, we treat neuronal morphologies as tree structures and all provided
morphometrics can be computed on any (sub)tree structure. As such, mor-
phometrics can be performed on the whole structure (as is usually done) or
on any subtree; subtrees can be trees made up by a specific neurite type
(axon, apical dendrite, . . .) or can be selected specifically by, for instance,
centrifugal order. This rationale focusing on flexibility and extensibility con-
trast with the more monolithic approach of existing tools to analyze mor-
phologies and allows users to integrate, and built upon, the functionality of
btmorph.

The functionality of btmorph is available through a documented ap-
plication programming interface11 (API). A current list of atomic functions
is listed in Table 1. The typical workflow is that a user loads an SWC file
into the provided tree-structure. The obtained tree is passed to a statistics
class and morphometrics are computed on the fly when users query them.
Users can then query morphometric measures of the whole tree, subtrees and
even specific nodes (e.g., branching nodes). Because btmorph is written in
Python users can exploit the full spectrum of tools available in Python (Mat-

7RC Cannon et al. “An on-line archive of reconstructed hippocampal neurons”. In:
Journal of Neuroscience Methods 84.12 (Oct. 1998), pp. 49–54.

8Ruggero Scorcioni, Sridevi Polavaram, and Giorgio A Ascoli. “L-Measure: a web-
accessible tool for the analysis, comparison and search of digital reconstructions of neuronal
morphologies.” In: Nature Protocols 3.5 (Jan. 2008), pp. 866–876.

9Hermann Cuntz et al. “One rule to grow them all: A general theory of neuronal
branching and its practical application”. In: PLoS Computational Biology 6.8 (2010),
e1000877.

10 c©The MathWorks, Inc.
11http://btmorph.readthedocs.org/en/latest/api.html

2

plotlib12, Scipy13, and sqlite314 to name a few) to perform further analysis,
visualization and storage of results obtained through btmorph

The target audience of btmorph consists of researchers who can read
and modify Python scripts. However, we also provide straightforward wrap-
pers around the code to perform essential functionality such as analyzing
multi-dimensional (e.g., conditional) data in single neurons or to record
population statistics. A typical session using btmorph is shown in Fig-
ure 1: with only a few lines of code a dendrogram is generated as well as
a histogram summarizing differences in segment length ending in branching
points or terminal points. Several additional visualizations are included as
well such as a 3D plot (not shown) and pseudo-3D plot plot with three 2D
projections and a population density plot that generates a heat-map of the
neurite processes (Figure 2).

Figure 1: Exemplar use of btmorph. A: Code snippet (line numbers added
for clarity). B-D: Results of executing the code snippet. B: line 2 (of the
snippet)generates a 2D rendering of the morphology and save the file as
PDF. C: line 3 generates a dendrogram of the same morphology. D:execution
of lines 4-11 load a morphology into the provided data structure (STree2)
and computes and visualizes the segment length statistics of this neuron.

An important advantage of using an external library is that publicly-
available, open-source code is usually subject to extensive testing. btmorph
is no exception and is bench-marked against L-Measure. An overview of the

12http://matplotlib.org/
13http://scipy.org/
14https://sqlite.org/

3

Feature Explanation

Topological features

stems Number of trunks sprouting from the soma
segments Number of segments. That is stretches of neurite be-

tween branching points and between the soma and
branching points

terminals Number of terminal points
order Centrifugal order of a point in the tree, i.e., the num-

ber of branch points between that point and the soma
degree Number of terminal points in the subtree starting at

any point
partition asymmetry Topological measure of asymmetry in a tree as defined

in15

Geometrical features

total length Summed length of the complete morphology (in µm)
width Total extend in the X axis (in µm)
height Total extend in the Y axis (in µm)
depth Total extend in the Z axis (in µm)
segment length Length of the segment (ending in a given branching

point)
segment Euclidean distance Euclidean distance of a segment (ending in a given

branching or terminal point)
contraction Measure of meandering in neurites
bifurcation angle Angle between two daughter branches in the plane

defined by the parent and its daughters
Rall’s power Power p for which the following equation has the

smallest error: Dp = d1
p + d2

p. Two implementa-
tions. One with brute-force and one based on the
downhill simplex (Nelder-Mead) search method.

Rall’s ratio d1
p+d2

p

Dp , p = 3/2 being Rall’s theoretically predicted
power that would minimize Dp = d1

p + d2
p.

Table 1: Atomic morphometric features presently available in btmorph.

4

0 50
X

0

500

Y

0 50
Z

0

500

Y

0 50
X

0

50Z

(a) btmorph.true 2D projections

300 200 100 0 100 200
X

0

200

400

600

Y

150 100 50 0 50 100 150
Z

0

200

400

600

Y

300 200 100 0 100 200
X

150

100

50

0

50

100

150

Z

(b) btmorph.population 2D density projections

Figure 2: Demonstration of included visualizations. Left: a pseudo-3D plot
made up of three 2D projections. Right: a population density plot with
a heat map indicating the locations of all neurites in a population again
in three 2D projections. The function names are shown in the captions.
(Selected L5 pyramidal neurons from the Kawaguchi archive downloaded
from NeuroMorpho.org)

comparison between L-Measure and btmorph is available on the document-
ing website16. Moreover, we include unit-tests implemented using the Nose
testing framework17. Currently, only the de facto standard SWC-format is
supported. When other morphological description formats (e.g., NeuroML)
gain more momentum, they can be incorporated in a straightforward fashion
by implementing an adapter that loads these description into the btmorph
tree structure. In the future, we plan to add more morphometric features
and wrappers and we hope that users will also contribute their own mor-
phological measures to the open source code.

Information sharing statement

The presented Python library is released as open-source software and is pub-
licly available on BitBucket18. This library is cross-platform and runs on
any desktop computer with a working installation of Python and the addi-
tional packages Numpy, Scipy and Matplotlib. The downloadable package
contain several examples, two wrappers and a hands-on tutorial illustrating
how to use the library.

16http://btmorph.readthedocs.org/
17https://nose.readthedocs.org/en/latest/
18https://bitbucket.org/btorb/btmorph

5

