Skip to main content
Log in

Evaluation of Two Automated Methods for PET Region of Interest Analysis

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Manual definition of regions of interest (ROIs) has been considered the reference standard method in PET data evaluation. The method is labor-intensive, prone to rater bias and may show low reproducibility. Automated template-based methods for ROI definition may overcome these limitations. The aim of this study was to validate the two automated methods FreeSurfer and the AAL template for definition of ROIs for the PET data analysis. PET data obtained using the radioligands [11C]AZD2184 (amyloid-β radioligand) and [11C]AZ10419369 (5-HT1B receptor radioligand) were evaluated. PET measurements acquired on one high and one lower resolution PET system were included. Outcome measures obtained using automated methods were compared to those obtained using manual ROIs, using linear regression analysis, intraclass correlation coefficients, and repeated measures ANOVA. ROIs provided by the automatic methods were larger than the manually delineated regions, which in some cases introduced biased estimates of the outcome measures. However, with the exception of the caudate, both AAL and FreeSurfer generally provided outcome measures that were in good agreement to those obtained from manually delineated ROIs, as long as the manually defined cerebellum was used as a reference region. Both AAL and FreeSurfer can be used for quantification of PET data, with similar accuracy in the estimates of outcome measures. Thus, the choice of method could be based upon necessity of fast analysis as provided by AAL, or more detailed ROIs and measures of cortical thickness as provided by FreeSurfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson, J. D., Varnas, K., Cselenyi, Z., Gulyas, B., Wensbo, D., Finnema, S. J., et al. (2010). Radiosynthesis of the candidate beta-amyloid radioligand [11C]AZD2184: positron emission tomography examination and metabolite analysis in cynomolgus monkeys. Synapse, 64(10), 733–741. doi:10.1002/syn.20782.

    Article  PubMed  CAS  Google Scholar 

  • Bahar-Fuchs, A., Villemagne, V., Ong, K., Chetelat, G., Lamb, F., Reininger, C. B., et al. (2013). Prediction of amyloid-beta pathology in amnestic mild cognitive impairment with neuropsychological tests. Journal of Alzheimer’s Disease, 33(2), 451–462. doi:10.3233/JAD-2012-121315.

    PubMed  CAS  Google Scholar 

  • Bergstrom, M., Boethius, J., Eriksson, L., Greitz, T., Ribbe, T., & Widen, L. (1981). Head fixation device for reproducible position alignment in transmission CT and positron emission tomography. Journal of Computer Assisted Tomography, 5(1), 136–141.

    Article  PubMed  CAS  Google Scholar 

  • Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., et al. (1998). Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging, 17(3), 463–468. doi:10.1109/42.712135.

    Article  PubMed  CAS  Google Scholar 

  • Cselenyi, Z., Jonhagen, M. E., Forsberg, A., Halldin, C., Julin, P., Schou, M., et al. (2012). Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. Journal of Nuclear Medicine, 53(3), 415–424. doi:10.2967/jnumed.111.094029.

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein, S. A., Koller, J. M., Piccirillo, M., Kim, A., Antenor-Dorsey, J. A., Videen, T. O., et al. (2012). Characterization of extrastriatal D2 in vivo specific binding of [18F](N-methyl)benperidol using PET. Synapse, 66(9), 770–780. doi:10.1002/syn.21566.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Article  PubMed  CAS  Google Scholar 

  • Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., et al. (2004a). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23(Suppl 1), S69–S84. doi:10.1016/j.neuroimage.2004.07.016.

    Article  PubMed  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004b). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.

    Article  PubMed  Google Scholar 

  • Forsberg, A., Engler, H., Blomquist, G., Langstrom, B., & Nordberg, A. (2012). The use of PIB-PET as a dual pathological and functional biomarker in AD. Biochimica et Biophysica Acta, 1822(3), 380–385. doi:10.1016/j.bbadis.2011.11.006.

    Article  PubMed  CAS  Google Scholar 

  • Forsberg, A., Jureus, A., Cselenyi, Z., Eriksdotter, M., Freund-Levi, Y., Jeppsson, F., et al. (2013). Low background and high contrast PET imaging of amyloid-beta with [11C]AZD2995 and [11C]AZD2184 in Alzheimer’s disease patients. European Journal of Nuclear Medicine and Molecular Imaging. doi:10.1007/s00259-012-2322-6.

    Google Scholar 

  • Gronenschild, E. H., Habets, P., Jacobs, H. I., Mengelers, R., Rozendaal, N., van Os, J., et al. (2012). The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLoS One, 7(6), e38234. doi:10.1371/journal.pone.0038234.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson, K. A., Sperling, R. A., Gidicsin, C. M., Carmasin, J. S., Maye, J. E., Coleman, R. E., et al. (2013). Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement. doi:10.1016/j.jalz.2012.10.007.

    Google Scholar 

  • Lammertsma, A. A., & Hume, S. P. (1996). Simplified reference tissue model for PET receptor studies. NeuroImage, 4(3 Pt 1), 153–158. doi:10.1006/nimg.1996.0066.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, M., Douiri, A., Kim, L. G., Modat, M., Chan, D., Ourselin, S., et al. (2010). Atrophy patterns in Alzheimer’s disease and semantic dementia: a comparison of FreeSurfer and manual volumetric measurements. NeuroImage, 49(3), 2264–2274. doi:10.1016/j.neuroimage.2009.10.056.

    Article  PubMed  Google Scholar 

  • McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30–46. doi:10.1037/1082-989x.1.1.30.

    Article  Google Scholar 

  • Mengod, G., Cortés, R., Vilaró, M. T., Hoyer, D. (2010). Distribution of 5-HT receptors in the Cnetral Nervous System. In C. Müller, & B. Jacobs (Eds.), Handbook of behavioral neurobiology of serotonin (1 ed., Vol. 1, pp. 123–138). London: Elsevier Academic Press.

  • Mosconi, L., De Santi, S., Rusinek, H., Convit, A., & de Leon, M. J. (2004). Magnetic resonance and PET studies in the early diagnosis of Alzheimer’s disease. Expert Review of Neurotherapeutics, 4(5), 831–849. doi:10.1586/14737175.4.5.831.

    Article  PubMed  Google Scholar 

  • Nyberg, S., Jonhagen, M. E., Cselenyi, Z., Halldin, C., Julin, P., Olsson, H., et al. (2009). Detection of amyloid in Alzheimer’s disease with positron emission tomography using [11C]AZD2184. European Journal of Nuclear Medicine and Molecular Imaging, 36(11), 1859–1863. doi:10.1007/s00259-009-1182-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierson, M. E., Andersson, J., Nyberg, S., McCarthy, D. J., Finnema, S. J., Varnas, K., et al. (2008). [11C]AZ10419369: a selective 5-HT1B receptor radioligand suitable for positron emission tomography (PET). Characterization in the primate brain. NeuroImage, 41(3), 1075–1085. doi:10.1016/j.neuroimage.2008.02.063.

    Article  PubMed  Google Scholar 

  • Rajah, M. N., & D’Esposito, M. (2005). Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain, 128(Pt 9), 1964–1983. doi:10.1093/brain/awh608.

    Article  PubMed  Google Scholar 

  • Roland, P. E., Eriksson, L., Stone-Elander, S., & Widen, L. (1987). Does mental activity change the oxidative metabolism of the brain? Journal of Neuroscience, 7(8), 2373–2389.

    PubMed  CAS  Google Scholar 

  • Rosario, B. L., Weissfeld, L. A., Laymon, C. M., Mathis, C. A., Klunk, W. E., Berginc, M. D., et al. (2011). Inter-rater reliability of manual and automated region-of-interest delineation for PiB PET. NeuroImage, 55(3), 933–941. doi:10.1016/j.neuroimage.2010.12.070.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rousset, O. G., Ma, Y., & Evans, A. C. (1998). Correction for partial volume effects in PET: principle and validation. Journal of Nuclear Medicine, 39(5), 904–911.

    PubMed  CAS  Google Scholar 

  • Rowe, C. C., Ellis, K. A., Rimajova, M., Bourgeat, P., Pike, K. E., Jones, G., et al. (2010). Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiology of Aging, 31(8), 1275–1283. doi:10.1016/j.neurobiolaging.2010.04.007.

    Article  PubMed  Google Scholar 

  • Rusjan, P., Mamo, D., Ginovart, N., Hussey, D., Vitcu, I., Yasuno, F., et al. (2006). An automated method for the extraction of regional data from PET images. Psychiatry Research, 147(1), 79–89. doi:10.1016/j.pscychresns.2006.01.011.

    Article  PubMed  Google Scholar 

  • Savitz, J. B., & Drevets, W. C. (2012). Neuroreceptor imaging in depression. Neurobiology of Disease. doi:10.1016/j.nbd.2012.06.001.

    PubMed  Google Scholar 

  • Savli, M., Bauer, A., Mitterhauser, M., Ding, Y. S., Hahn, A., Kroll, T., et al. (2012). Normative database of the serotonergic system in healthy subjects using multi-tracer PET. NeuroImage, 63(1), 447–459. doi:10.1016/j.neuroimage.2012.07.001.

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A. S., et al. (1999). Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage, 10(3 Pt 1), 233–260. doi:10.1006/nimg.1999.0459.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Saykin, A. J., Kim, S., Firpi, H. A., West, J. D., Risacher, S. L., et al. (2010). Comparison of manual and automated determination of hippocampal volumes in MCI and early AD. Brain Imaging and Behavior, 4(1), 86–95. doi:10.1007/s11682-010-9088-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrout, P. E. (1998). Measurement reliability and agreement in psychiatry. Statistical Methods in Medical Research, 7(3), 301–317.

    Article  PubMed  CAS  Google Scholar 

  • Sibomana, M., Byars, L., Panin, V., Lenox, M., Kehren, F., Rist, J., et al. (2004) Simultaneous measurement of transmission and emission contamination using a collimated Cs-137 point source for the HRRT. In Nuclear Science Symposium/Medical Imaging Conference, Rome, ITALY, OCT 16–22, 2004 (Vol. 1–7, pp. 2647–2651).

  • Svarer, C., Madsen, K., Hasselbalch, S. G., Pinborg, L. H., Haugbol, S., Frokjaer, V. G., et al. (2005). MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. NeuroImage, 24(4), 969–979. doi:10.1016/j.neuroimage.2004.10.017.

    Article  PubMed  Google Scholar 

  • Svedberg, M. M., Hall, H., Hellstrom-Lindahl, E., Estrada, S., Guan, Z., Nordberg, A., et al. (2009). [11C]PIB-amyloid binding and levels of Abeta40 and Abeta42 in postmortem brain tissue from Alzheimer patients. Neurochemistry International, 54(5–6), 347–357. doi:10.1016/j.neuint.2008.12.016.

    Article  PubMed  CAS  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289. doi:10.1006/nimg.2001.0978.

    Article  PubMed  CAS  Google Scholar 

  • Varnas, K., Hall, H., Bonaventure, P., & Sedvall, G. (2001). Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [3H]GR 125743. Brain Research, 915(1), 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Varnas, K., Halldin, C., & Hall, H. (2004). Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Human Brain Mapping, 22(3), 246–260. doi:10.1002/Hbm.20035.

    Article  PubMed  Google Scholar 

  • Varnas, K., Nyberg, S., Halldin, C., Varrone, A., Takano, A., Karlsson, P., et al. (2011). Quantitative analysis of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. Journal of Cerebral Blood Flow and Metabolism, 31(1), 113–123. doi:10.1038/jcbfm.2010.55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varrone, A., Sjoholm, N., Eriksson, L., Gulyas, B., Halldin, C., & Farde, L. (2009). Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. European Journal of Nuclear Medicine and Molecular Imaging, 36(10), 1639–1650. doi:10.1007/s00259-009-1156-3.

    Article  PubMed  Google Scholar 

  • Varrone, A., Svenningsson, P., Forsberg, A., Varnas, K., Tiger, M., Nakao, R., et al. (2014). Positron emission tomography imaging of 5-hydroxytryptamine1B receptors in Parkinson’s disease. Neurobiology of Aging, 35(4), 867–875. doi:10.1016/j.neurobiolaging.2013.08.025.

    Article  PubMed  CAS  Google Scholar 

  • Watson, C. C. (2000). New, faster, image-based scatter correction for 3D PET. IEEE Transactions on Nuclear Science, 47(4), 1587–1594. doi:10.1109/23.873020.

    Article  Google Scholar 

  • Watson, C. C., Newport, D., Casey, M. E., DeKemp, R. A., Beanlands, R. S., & Schmand, M. (1997). Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Transactions on Nuclear Science, 44(1), 90–97. doi:10.1109/23.554831.

    Article  Google Scholar 

  • Wienhard, K., Dahlbom, M., Eriksson, L., Michel, C., Bruckbauer, T., Pietrzyk, U., et al. (1994). The ECAT EXACT HR: performance of a new high resolution positron scanner. Journal of Computer Assisted Tomography, 18(1), 110–118.

  • Yasuno, F., Hasnine, A. H., Suhara, T., Ichimiya, T., Sudo, Y., Inoue, M., et al. (2002). Template-based method for multiple volumes of interest of human brain PET images. NeuroImage, 16(3 Pt 1), 577–586.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all the members of the PET group for their excellent assistance during this study. The authors also thank the MR research centre at Karolinska University Hospital, for allocating computational resources during the initial phase of the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schain.

Additional information

Martin Schain and Katarina Varnäs have contributed equally in the present study, and should both be regarded as first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schain, M., Varnäs, K., Cselényi, Z. et al. Evaluation of Two Automated Methods for PET Region of Interest Analysis. Neuroinform 12, 551–562 (2014). https://doi.org/10.1007/s12021-014-9233-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-014-9233-6

Keywords

Navigation