
Resource Estimation in High Performance Medical Image
Computing

Rueben Banalagay,
Electrical Engineering, Vanderbilt University EECS, 2301 Vandervilt P1, PO Box 351679 Station
B, Nashville 37235-1679, TN, USA

Kelsie Jade Covington,
Electrical Engineering, Vanderbilt University EECS, 2301 Vandervilt P1, PO Box 351679 Station
B, Nashville 37235-1679, TN, USA

D.M. Wilkes, and
Electrical Engineering, Vanderbilt University EECS, 2301 Vandervilt P1, PO Box 351679 Station
B, Nashville 37235-1679, TN, USA

Bennett A. Landman
Electrical Engineering, Vanderbilt University EECS, 2301 Vandervilt P1, PO Box 351679 Station
B, Nashville 37235-1679, TN, USA. Biomedical Engineering, Vanderbilt University, Nashville
37235, TN, USA

Bennett A. Landman: bennett.landman@vanderbilt.edu

Abstract

Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-

stage scripts) to integrate and realize advancements from image acquisition, image processing, and

computational analysis. With the dramatic increase in data size for medical imaging studies (e.g.,

improved resolution, higher throughput acquisition, shared databases), interesting study designs

are becoming intractable or impractical on individual workstations and servers. Modern pipeline

environments provide control structures to distribute computational load in high performance

computing (HPC) environments. However, high performance computing environments are often

shared resources, and scheduling computation across these resources necessitates higher level

modeling of resource utilization. Submission of ‘jobs’ requires an estimate of the CPU runtime

and memory usage. The resource requirements for medical image processing algorithms are

difficult to predict since the requirements can vary greatly between different machines, different

execution instances, and different data inputs. Poor resource estimates can lead to wasted

resources in high performance environments due to incomplete executions and extended queue

wait times. Hence, resource estimation is becoming a major hurdle for medical image processing

© Springer Science+Business Media New York 2014

Correspondence to: Bennett A. Landman, bennett.landman@vanderbilt.edu.

Information Sharing Statement
This work is available in open source and within the JIST platform (RRID:nlx_151344) through the Neuroimaging Informatics Tools
and Resources Clearinghouse (NITRC) project “JIST.” All source code is at https://www.nitrc.org/projects/jist/. The Hypervisor is
stored in the “Hyperadvisor” module in the source code repository. A public instance of the Hypervisor is available via the default
settings of JIST.

HHS Public Access
Author manuscript
Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

Published in final edited form as:
Neuroinformatics. 2014 October ; 12(4): 563–573. doi:10.1007/s12021-014-9234-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/jist/

algorithms to efficiently leverage high performance computing environments. Herein, we present

our implementation of a resource estimation system to overcome these difficulties and ultimately

provide users with the ability to more efficiently utilize high performance computing resources.

Keywords

Java image science toolkit; JIST RRID:nlx_151344; Resource estimation; High performance
computing; Decision trees

Introduction

With the increased use of more complex algorithms on progressively larger amounts of

medical image data, there is a growing need to use high performance computing

environments, such as grid clusters, to process results quickly and efficiently (e.g., (Rex et

al. 2003; Pieper et al. 2006; Sheehan et al. 1996; Parker and Johnson 1995; Lucas et al.

1992; Konstantinides and Rasure 1994; Lucas et al. 2010)). However, high performance

computing (HPC) environments are often shared resources, and submitting software tasks

requires an estimate of the CPU runtime and memory usage needed for execution.

Moreover, higher level data management systems (e.g., XNAT database, pipeline, and web

portal (Marcus et al. 2005)) are increasingly being used to manage both archival and

pipeline process; the full automation and potentially heterogeneous processing tasks further

complicate accurate resource estimation.

Neuroscience pipelines (LONI Pipeline (Rex et al. 2003), JIST (Lucas et al. 2010), NyPipe,

NA-MIC Tools (Pieper et al. 2006), AVS (Sheehan et al. 1996), SCIRun (Parker and

Johnson 1995), Koros (Konstantinides and Rasure 1994), NiPype (Gorgolewski et al. 2011),

XNAT pipelines (Marcus et al. 2005), etc.) run on top of HPC environments (e.g. Sun Grid

Engine, Oracle Redwood City, CA). In single user settings (i.e., a small cluster of nodes

within a research lab), these environments may be configured to ignore resource quotas.

However, in larger deployments resource scheduling is essential to ensure fair allocation of

shared resources among a diverse user base. The grid management software has access to

the control files and binaries that are used by each process, but does not have any context

with which to interpret the data that will be processed. Therefore, the state of the art is to ask

the user to specify the anticipated memory and time usage for their processes. Therefore, the

requirement for resource estimation is increasingly imposing a challenge for efficiently

leveraging high performance computing. Accurate estimates are essential as an

underestimation results in the premature termination of the submitted task by the high

performance control engine, while an overestimation results in longer queue wait times for

the task. Both cases would, inevitably, result in resources wasted on either insufficient or

unneeded execution.

In contrast to algorithmic worst-case analysis, high performance computing resource

estimation requires one to consider more factors than the behavior of the asymptotic

behavior of the underlying algorithm. A program’s real-world runtime and memory

requirements are also dependent on the current inputs, hardware environment, storage

access, and, potentially, external factors (e.g., network conditions). Such dependencies

Banalagay et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

create difficulties on multiple levels. First, different programs require different inputs,

thereby limiting any comparisons between different tasks. In addition, the values of the

inputs for an individual task can vary between executions, thus changing the resource

requirements needed for completion. Lastly, hardware environments can vary from user to

user; while the underlying code stays the same, the different hardware characteristics can

lead to different resource requirements on different machines. Thus, such heterogeneities on

both the software and hardware level make it difficult to provide a consistent framework in

which to estimate the resource requirements of a particular task. Figure 1 illustrates this

point, as a single algorithm in a complex multi-stage imaging pipeline has, in itself, varying

resource requirements from run to run and from machine to machine.

While software resource estimation is a fairly new topic in the medical image computing

community, similar work has been undertaken in estimating CPU resource usage for general

workloads submitted to high performance computing environments. Methods used for this

problem have included using K-nearest neighbor smoothing (Iverson et al. 1999) and time-

series smoothing (Sonmez et al. 2009) of the historical data. Genetic algorithms (Smith et al.

1997) have been used to combine similar runtime instances of a program in order to create

local models for that group.

Herein, we advocate that the application specific control logic (the “neuroscience pipelines”)

have sufficient access to the complexity such that they can form reasonable estimates of

resource usage by monitoring past performance. We implement the proposed approach

within the context of JIST, but the estimation framework is designed as a standalone service

and does not depend on the particulars of the neuroscience pipeline. We extend and evaluate

a preliminary implementation of a “Hypervisor” system for resource estimation in medical

imaging. We use the term “Hypervisor” to indicate that the process is supervising/

monitoring entity that does not directly manage computation flow (i.e., the “pipeline

environment”). Simply put, the Hypervisor assists in resource allocation but does not

schedule resources or control logical program flow.

In the software community, a focus of research is to estimate the development effort of new

software projects based on the effort outcomes of previous development projects. Among

the many machine learning methods used for the problem, the more common approaches

include ordinary least squares regression, robust regression, stepwise ANOVA,

classification and regression trees, analogy based estimation, case based reasoning, fuzzy

systems, artificial neural networks, and support vector machines (Dejaeger et al. 2012;

Briand and Wieczorek 2001; Gray and MacDonell 1997). Each of these methods has

advantages and disadvantages depending on the context and the data being used to train an

estimation model; there is no “best” method for approaching this problem (Briand and

Wieczorek 2001). In fact, even the problem of determining if a program will terminate (the

halting problem) is provably unsolvable (Turing 2004). Here, we first example the efficacy

of baseline prediction methods and focus on using regression/decision trees; a tree structure

allows us to meaningfully cluster similar task execution instances without regards to the

categorical or ordinal nature of the input variables.

Banalagay et al. Page 3

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The proposed Hypervisor is evaluated in the context of the Java Image Science Toolkit

(JIST) (Lucas et al. 2010). JIST is a cross-platform, open source plugin to MIPAV (Medical

Image Processing and Visualization) (McAuliffe et al. 2001), an image processing software

from the National Institute of Health. The JIST platform is capable of providing end users

with a graphical environment conducive to rapid algorithm development and large scale

image processing (Lucas et al. 2010). In particular, we focus on integrating with the Layout

Tool and Process Manager functionality within JIST (Fig. 2). The Layout Tool serves as a

means to easily drag and drop JIST modules and customize their input and output

parameters. Resulting JIST Layouts can then be loaded into the Process Manager for real-

time management, execution, and feedback of JIST jobs and batch processes. The goal of

our Hypervisor implementation is to leverage the modular nature of JIST layouts; we collect

input and resource usage data on individual modules along with the current hardware

environment order to create better resource estimates for future module executions. Note

that the Hypervisor is implemented separately from the JIST framework, supports

ubiquitous Apache Axis 2 business logic, and could be used as a resource manager for other

programs with Axis 2 support.

The presented work builds on an earlier version of a Hypervisor that used a K-nearest

neighbors approach to cluster similar instances of tasks to create a Gaussian resource

estimation model (Covington 2011). The previous version’s K-nearest neighbors algorithm

requires the creation of distance metrics for comparison, and the practical, varied

combinations of scalars, vectors, and strings as part of a task’s input resulted in difficulties

in creating consistent distance metrics to capture meaningful similarities between the

different task execution contexts.

Methods

The Hypervisor system is based on a client–server model between remote JIST users and an

Apache Axis 2 webserver (http://axis.apache.org/axis2/java/core/) with a MySQL database

(http://www.mysql.com/). The Axis 2 webserver facilitates web communications between

the server and JIST clients by allowing both sides to communicate as Plain Old Java Objects

(POJO). Note that Axis 2 is a scalable communication protocol that can be accessed without

deep knowledge of underlying network technologies. The MySQL database is configured to

store the relevant data of previous Hypervisor requests for use in creating resource

estimates. Figure 3 gives an overview of the system components and the flow of data within

the system.

The Hypervisor server runs on a 64 bit (Ubuntu, Canonical Ltd., Isle of Man) virtual

machine running (VirtualBox, Oracle, Redwood Shores, CA) an Apache Axis 2 webserver.

Incoming data collected from completed JIST processes are stored in a MySQL database as

follows:

• Tables in the database correspond to a unique module.

• Rows in a particular table represent the data from different executions of that

module

Banalagay et al. Page 4

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://axis.apache.org/axis2/java/core/
http://www.mysql.com/

• Columns of the table represent the inputs of the module along with the machine

environment and actual resource requirements of a particular module execution.

The data for each table is used to train regression tree models for the algorithm that each

table represents. In effect, the regression tree finds clusters in the table data for use in

estimating resource requirements. Due to the relatively slow nature of training regression

trees in relation to the need for fast resource estimates upon request, we have split our

system into two parts as described below: (1) Offline Training and (2) Online Estimation

and Update.

Offline Training

Each table in the database represents one algorithm and is used to train two regression trees

— one for estimating the CPU time and one for memory requirements for that algorithm.

Figure 4 summarizes the flow of data in the offline training procedure. Each of the recorded

variables is considered as a numeric entry in a vector. Some of the entries (also called

features) will be predictive of the resource utilization while others will not be. We use a

machine learning process to identify salient features and reveal the predictive models.

Offline training typically takes less than 10 min on a lightweight virtual machine.

Specifically, the vector x=[x1x2…xm]T contains the values of the recorded inputs to that

instance of the algorithm while the y value is a scalar representing the actual recorded CPU

time or the used memory needed for execution. These input/output pairs are then stacked

into feature vectors v=[xTy]T to grow a regression tree in a similar manner as described in

Breiman (Breiman et al. 1984). Given a set of feature vectors T={v1, v2, …, vk} at a node N,

the algorithm creates m orderings of T with respect to each of the m elements in x. If the ith

element of x is ordinal, T is arranged so that all of the xi elements of T are in ascending

order. If xi is categorical with different categories c={c1, c2, …, cj}, we define μ(ca) as the

average of all y values such that xi=ca. T is then ordered so that the categories of xi are in

ascending order of μ(ca)

For each of the resulting m orderings, we find a binary rule of the form xi<β or xiεS⊂C that

naturally splits T into a left set Ti and a right set Tr in which the following expression is

minimized:

(1)

where pi and pr are the proportion of the feature vectors in T that are in Ti and Tr,

respectively, while σ2(Ti) and σ2(Tr) are the variance of the y values in Ti and Tr,

respectively. Note, this criterion performs best when peaks are present in the distribution of

y values in T as natural splits can be found by creating clusters around the peaks.

The created m splitting rules are then compared with each other to find the one splitting rule

by which Eq. (1) is minimized. That rule is then stored at node N, and child nodes Ni and Nr

are added that store the samples in Ti and Tr respectively. The algorithm continues to

bifurcate the added nodes in the same manner until leaf nodes are created where the number

Banalagay et al. Page 5

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of samples in the node is less than a user-defined value. The tree structure, splitting criteria,

and samples at each node are stored for use in the online portion of the Hypervisor system.

Online Estimation and Update

Figure 5 summarizes the behavior of our online estimation and update module. Upon

receiving an estimation request from a remote JIST client, the Hypervisor system loads the

relevant tree into memory. The system then traverses down the tree by comparing the input

vector of the incoming request with the splitting rules stored at each node in the tree. Once

the system reaches a leaf node L the system returns an estimate given by

(2)

where a is a user defined scaling factor and μ(L) and σ(L) are the mean and standard

deviation of the output values of the feature vectors stored at that leaf node. In effect, the

user selects an a value that dictates the number of standard deviations away from the mean

she is comfortable overestimating; a larger a value would be less likely to fail, but smaller a

values may waste less resources. In the simplified case of a Gaussian distribution at a node,

this value would be roughly analogous to choosing the likelihood that an estimate would be

sufficient for successful execution.

Breiman (Breiman et al. 1984) has pointed out that the sample mean and standard deviation

at a node are generally poor estimators of the true mean and standard deviations for that

particular cluster. We prefer to continually refine our estimates until the next offline training

occurs. To address both of these issues, we use the incoming results of successfully executed

JIST processes to update the tree estimates. Upon successful completion of a JIST process,

the input and output results are sent to the Hypervisor. The system then uses the input data

to traverse down the tree to a leaf in the same manner as the estimation phase. However, this

time, the new output is added to the outputs stored in the leaf node. This procedure then has

the benefit of quickly updating the mean and standard deviation at the leaf node in order to

provide better values for future requests.

Experimental Design

One commonly used layout (“Siemens_CATNAP” (Li et al. 2012)) for JIST was run

approximately 1,000 times on 42 different datasets across 22 machines and our local high

performance computing cluster. During data collection, memory and time limits were set

such that no jobs failed. Table 1 provides a breakdown of the overall scope of the computing

resources utilized for generating resource usage data. We used 300 randomly selected data

points to train the CPU time and memory decision trees for each algorithm. CPU trees were

set to a leaf size of 50 and a of 4 while the memory trees were set to a leaf size of 50 and a

of 2. Such testing parameters are arbitrary; we chose tree parameters that provided

reasonable estimates from our initial experiments. To provide a baseline comparison, we

consider two simple, but highly conservative estimators that would most likely be employed

by a human user when attempting to estimate the resource usage of his JIST layout. The

first, which we call “Worst Seen FIFO”, uses the worst-case resource requirement observed

thus far in the randomly ordered set of samples. Random ordering was used to ensure that

Banalagay et al. Page 6

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

unrecognized structure in job calls did not influence outcomes. To initialize Worst Seen

FIFO, a very large estimate is used with the first job so that an initial worst case may be

observed. We also consider a “Worst case Omniscient” estimator that has a priori

knowledge of the worst-case resource usage of all the jobs in a set and always returned that

value as its estimate.

Results

We examined two primary concerns of a resource estimation system: percentage of jobs

failed and average overestimation error. A “failed job” indicates that the prediction given by

the system was less than the actual resources needed and the job would have been

terminated. To quantify excess resources, we find the overestimation error as the ratio of the

system’s prediction to the actual required resources. Tables 2 and 3 summarize the

performance of all three estimators with respect to the failure rates and the overestimation

errors.

To concisely summarize performance, we consider the total amount of wasted resources

(i.e., reserved, but not used). This metric includes all of the resources that were wasted due

to failed jobs in addition to the unused resources allocated due to overestimation. As a

simple model we consider a resource estimate ŷ. Every time the job fails due to an

underestimate, we increase the estimate by a unit multiplicative factor (i.e., 2×, 3×, 4×, …).

Therefore, if it takes a attempts to get an estimate that is sufficient for execution, the person

has effectively allocated resources. If the job actually

takes y resources, we define the total amount of resources wasted as

(3)

Figure 6 shows the results of the three estimators with respect to the different algorithms in

our dataset.

Sensitivity to Training Parameters

For our offline training module, we examined the effect of the control parameters on the

quality of the produced decision trees in terms of total wasted resources. First, we used 300

data points to train the trees while keeping the alpha value set to 4 for CPU estimates and 2

for memory estimates and tested, in increments of 10, varying leaf sizes from 10 to 300.

Figure 7 shows the total wasted resources for each algorithm for both the CPU and memory

estimator along with the line styles used for each of the different algorithms. Second, we

again trained each tree on 300 data points while keeping the leaf size fixed at 50 for each,

but varied the alpha values from 0 to 10 (Fig. 8). Finally, to observe the estimator’s behavior

in a continuous use environment with new data constantly added to the database, we look at

the resources wasted as the training size increases, in increments of 20, from 20 samples to

500 samples. For a training size of s samples, the leaf size would be set to . Figure 9

shows how the estimator’s performance scales with the training size.

Banalagay et al. Page 7

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Discussion

The presented Hypervisor resource estimation framework strikes a good balance between

acceptable failure rates and overestimation errors (Tables 1–3). While the failure rates of the

FIFO estimator are lower, the presented method is able to provide much tighter CPU time

estimates that waste significantly fewer resources at the cost of only a slight gain in the

overall percentage of failed jobs (even when including the overhead associated with

restarting failed jobs). Hence, over the course of a large study, it is better to allow a few jobs

to fail (and be resubmitted) so that more jobs may start more quickly and place resource

demands on shared systems. The same conclusion can be drawn for the memory estimator

even though the results of individual algorithms are more mixed. Upon examination of the

processing modules with the worst resource estimation performance, we see that these

modules relied more on the actual content of the input files rather than the size of the files

themselves. Such algorithms highlight a unique difficulty of performing resource estimation

in a medical context — the need to collect context specific data while respecting patient

privacy (i.e., we do not transmit identifiable information or any actual image data to the

Hypervisor). Nonetheless, the Hypervisor system is capable of providing estimates that are

competitive, if not better, than the fixed-value controls that could be using without an online

estimation system.

For both the CPU and memory estimators (Fig. 7), there appears to be little effect of leaf

size on resource waste. However, caution should be given for leaf sizes that are too large as

the estimator loses its clustering capabilities and provides worse estimates by converging to

a running average estimator. On the other hand, we recommend against choosing too small

of leaf sizes as one would run the risk of over-fitting the data.

The optimal a seen in Fig. 8 depends on the underlying algorithm. On the whole however,

the alpha value appears to reflect its intended function in the estimation algorithm’s

behavior; a smaller alpha value roughly relates to more wasted resources since a particular

module would be more likely to fail. On the other hand, the overall shape of the graphs show

that, at a certain point, the alpha value has much more of an effect in increasing the

overestimation error than decreasing the failure rate. Consistent with this model,

intermediate values of alpha would be optimal and we find that alpha values between 2 and

5 work well in practice to balance the tradeoff between failure rates and overestimation

errors.

For the CPU estimator, the Hypervisor provides consistent results regardless of the number

of data points available for training (Fig. 9). The memory estimator depicts a similar

behavior; yet there seems to be a higher sensitivity to training size for some of the

algorithms. On the whole however, the estimator appears to scale well with incoming data

by reliably supplying the same level of performance.

The proposed system is modular. First, the backend runs on an Apache Axis 2 server

(available on the “Hypervisor” module of the NITRC project JIST). The communication

protocol follows Axis 2 standards and is not JIST dependent. The information captured is

the algorithm name and high-level descriptions of the input data. Our research group runs

Banalagay et al. Page 8

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the Hypervisor as a software-as-a-service (SAAS) on a virtual Linux server. These resources

can be accessed with any Axis 2 compliant interface. Second, we have constructed an Axis 2

interface for JIST that reports data to Axis 2 and retrieves estimates. This code runs on the

user’s machine and could be directed to another monitoring service via a user-specified IP

address (if a developer wished to develop another Hypervisor implementation or

deployment).

In summary, we have demonstrated an implementation for a resource estimation system for

use in medical image computing. While future work would involve investigations into more

complex machine learning methods and more detailed data collection, we have shown

reasonable resource estimates are attainable using straightforward methods from the

resource estimation community. The Hypervisor framework enables medical imaging users

to more effectively leverage high performance computing environments.

Acknowledgments

This research was supported in part by 1R03EB012461 and R01EB15611. This work was conducted in part using
the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville,
TN. The content is solely the responsibility of the authors and does not necessarily represent the official views of
the NIH.

References

Breiman, L. Classification and regression trees. Belmont: Wadsworth International Group; 1984.

Briand LC, Wieczorek I. Resource estimation in software engineering. Encyclopedia of Software
Engineering. 2002

Covington, K. MS Thesis. Vanderbilt University; 2011. Informatics for high-throughput and distrubted
analysis of medical images.

Dejaeger K, Verbeke W, Martens D, Baesens B. Data mining techniques for software effort
estimation: a comparative study. Software Engineering, IEEE Transactions on. 2012; 38:375–397.

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, et al. Nipype: a
flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in
Neuroinformatics. 2011; 5

Gray AR, MacDonell SG. A comparison of techniques for developing predictive models of software
metrics. Information and Software Technology. 1997; 39:425–437.

Iverson MA, Ozguner F, Potter LC. Statistical prediction of task execution times through analytic
benchmarking for scheduling in a heterogeneous environment. 1999:99–111.

Konstantinides K, Rasure J. The Khoros software development environment for image and signal
processing. Image Processing, IEEE Transactions on. 1994; 3:243–252.

Li B, Bryan F, Landman B. Next generation of the JAVA Image Science Toolkit (JIST) visualization
and validation. InSight Journal. 2012; 08

Lucas B, Abram G, Collins N, Epstein D, Gresh D, McAuliffe K, et al. An architecture for a scientific
visualization system. 1992:107–114.

Lucas B, Bogovic J, Carass A, Bazin PL, Prince J, Pham D, et al. The Java Image Science Toolkit
(JIST) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics. 2010;
8:5–17. [PubMed: 20077162]

Marcus, DS.; Olsen, TR.; Ramaratnam, M.; Buckner, RL. XNAT: a software framework for manging
neuroimaging laboratory data. Ontario: Organization of Human Brain Mapping; 2005.

McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL. Medical image processing,
analysis & visualization in clinical research. Computer-Based Medical Systems, IEEE Symposium
on. 2001; 0:381.

Banalagay et al. Page 9

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Parker, SG.; Johnson, CR. SCIRun: a scientific programming environment for computational steering.
Proceedings of the 1995 ACM/IEEE Conference on Supercomputing (CDROM); ACM; 1995.

Pieper, S.; Lorensen, B.; Schroeder, W.; Kikinis, R. The NA-MIC Kit: ITK, VTK, pipelines, grids and
3D slicer as an open platform for the medical image computing community. Biomedical Imaging:
Nano to Macro, 2006. 3rd IEEE International Symposium on; 2006. p. 698-701.

Rex DE, Ma JQ, Toga AW. The LONI pipeline processing environment. NeuroImage. 2003; 19:1033–
1048. [PubMed: 12880830]

Sheehan B, Fuller S, Pique M, Yeager M. AVS software for visualization in molecular microscopy.
Journal of Structural Biology. 1996; 116:99–106. [PubMed: 8742730]

Smith, W.; Foster, I.; Taylor, V. Job Scheduling Strategies for Parallel Processing. London: Springer;
1998. Predicting application run times using historical information.

Sonmez, O.; Yigitbasi, N.; Iosup, A.; Epema, D. Trace-based evaluation of job runtime and queue wait
time predictions in grids. Proceedings of the 18th ACM International Symposium on High
Performance Distributed Computing; ACM; 2009.

Turing A. On computable numbers, with an application to the Entscheidungsproblem (1936). B Jack
Copeland. 2004:58.

Banalagay et al. Page 10

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Overview of the need for accurate estimates in high performance medical imaging. Complex

multi-stage imaging layouts need to provide accurate estimations of their resource

requirements in order to leverage high performance computing resources. The upper-right

inlay shows histograms of the runtime for a single software module (“File Collection

Efficient Registration”) on datasets acquired on 21 individuals

Banalagay et al. Page 11

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
User interface for the JIST system. The JIST Layout Tool (Left) provides visual programing

capabilities for medical imaging pipelines while the JIST Process Manager (Right) manages

dependencies and controls job execution

Banalagay et al. Page 12

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Overview and flowchart of the Hypervisor system. The resource estimation system can be

enabled through the JIST Layout Tool; users can click to opt whether or not to get a

Hypervisor resource estimate and to select the address of a Hypervisor server to use. By

default, a public Hypervisor is specified. Once the user wishes to run a created layout by

running the JIST Process Manager, resource estimates will be automatically available to

JIST experiments marked as “Ready”. JIST will send to the Hypervisor an estimation

request along with the following information: the name of the process, the user’s hardware

environment, and the inputs of the process. In the interest of privacy, no files or filenames

are collected—file sizes are sent to the Hypervisor instead. Furthermore, upon the actual

execution of a particular JIST process, another estimate will be requested from the

Hypervisor server. Once the JIST process completes successfully, the same data from above

will be saved to the MySQL database along with the final CPU time and memory usage of

the task. The online estimation procedure returns resource estimates in several milliseconds

while the offline training module runs nightly and in parallel to any resource estimate

requests

Banalagay et al. Page 13

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Overview of the offline training module of the Hypervisor system. The algorithm creates

feature vectors based on the collected input/output data and uses them to train a decision

tree. At each node of the decision tree, the algorithm creates child nodes by finding the best

individual feature to split the vectors along

Banalagay et al. Page 14

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Overview of the online estimate and update module. The prediction returned for a particular

input vector is given by traversing the tree to a terminal node by using the stored splitting

rules found in the offline training portion of the algorithm. That particular terminal node’s

prediction value is then updated with the actual resource requirements of the current job

Banalagay et al. Page 15

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Total resources wasted by each estimator, broken down by JIST algorithm

Banalagay et al. Page 16

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Effect of leaf size on the resource waste consumption of our estimator. The training sample

was set to 300 with the alpha value for the CPU time estimator and memory estimator set to

4 and 2 respectively

Banalagay et al. Page 17

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Effect of a on the resource waste consumption of our estimator. The training sample size

was set to 300 with a terminal leaf size of 50 for both the CPU and memory estimators

Banalagay et al. Page 18

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 9.
Overall wasted resource consumption of our algorithm as a function of sample training size.

The leaf size was set to vary with the square root of the training sample while the alpha

value for the CPU time estimator and the memory estimator was set to 4 and 2 respectively

Banalagay et al. Page 19

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Banalagay et al. Page 20

T
ab

le
 1

Su
m

m
ar

y
of

 th
e

da
ta

A
lg

or
it

hm
 N

am
e

C
P

U
 t

im
e

μ±
σ

 (
m

in
)

M
em

or
y

U
se

d
μ±

σ
 (

M
B

)
N

um
be

r
of

 D
at

a
P

oi
nt

s
N

um
be

r
of

 C
om

pu
te

rs
T

ot
al

 C
P

U
 t

im
e

(D
ay

s)

M
ed

ic
A

lg
or

ith
m

M
ul

tiD
ef

or
m

V
ol

um
e

5.
94

±
2.

04
31

19
.7

7±
26

.0
8

88
6

20
3.

65

D
W

IT
en

so
rC

on
tr

as
ts

1±
0.

24
14

94
.1

5±
24

7.
14

98
2

20
0.

68

E
xt

ra
ct

B
va

lG
ra

dF
ro

m
PA

R
0.

15
±

0.
47

42
.5

2±
9.

71
11

86
22

0.
12

M
ed

ic
A

lg
or

ith
m

Fi
be

rT
ra

ck
er

1.
04

±
0.

51
81

1.
99

±
21

6.
13

98
0

20
0.

71

M
ed

ic
A

lg
or

ith
m

C
om

bE
PI

T
ra

ns
A

nd
D

ef
or

m
s

13
.8

±
3.

43
20

7.
64

±
54

.3
7

93
1

21
8.

92

M
ed

ic
A

lg
or

ith
m

V
A

B
R

A
10

1.
97

±
31

.4
3

52
8.

73
±

15
99

8
22

70
.6

7

D
W

IT
en

so
rC

ol
or

E
nc

od
ed

M
ap

0.
21

±
0.

04
61

8.
16

±
10

.2
7

98
1

20
0.

14

V
ol

um
eC

ol
le

ct
io

nT
oC

om
bi

ne
dS

la
bC

ol
le

ct
io

n
3.

33
±

1.
12

10
0.

39
±

67
.3

5
95

0
20

2.
2

M
ed

ic
A

lg
or

ith
m

E
xt

ra
ct

Fi
le

C
ol

le
ct

io
nC

om
po

ne
nt

s
2.

43
±

3.
28

8.
86

±
3.

74
11

70
22

1.
97

M
ed

ic
A

lg
or

ith
m

T
hr

es
ho

ld
0.

08
±

0.
07

58
.0

6±
32

.2
6

39
10

20
0.

24

C
om

pu
te

M
ea

nB
0

0.
2±

0.
49

44
.9

5±
15

.2
1

11
49

22
0.

16

C
om

bi
ne

dS
la

bC
ol

le
ct

io
nT

oV
ol

um
eC

ol
le

ct
io

n
0.

31
±

0.
12

15
1.

9±
80

.9
6

98
2

20
0.

21

M
ed

ic
A

lg
or

ith
m

E
ff

ic
ie

nt
Fi

le
C

ol
le

ct
io

nR
eg

is
tr

at
io

n
93

.0
4±

24
2.

28
20

.3
7±

10
.9

10
78

22
69

.6
5

D
W

IT
en

so
rE

st
L

L
M

SE
0.

87
±

0.
26

26
.5

7±
9.

45
97

8
20

0.
59

M
ed

ic
A

lg
or

ith
m

FL
IR

T
3.

22
±

1.
27

15
8.

63
±

9.
8

11
40

22
2.

55

Su
m

m
ar

y:
15

.1
7

(A
vg

)
49

2.
85

 (
A

vg
)

12
20

 (
A

vg
)

21
 (

A
vg

)
16

2.
46

 (
T

ot
al

)

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Banalagay et al. Page 21

T
ab

le
 2

C
PU

 u
sa

ge
 p

er
fo

rm
an

ce
 s

um
m

ar
y

B
as

el
in

e
Se

tt
in

gs
:

L
ea

f
Si

ze
=5

0,
 A

lp
ha

=0
R

ec
om

m
en

de
d

Se
tt

in
gs

:
L

ea
f

Si
ze

=5
0,

A

lp
ha

=4
“W

or
st

 S
ee

n
F

IF
O

”
E

st
im

at
or

W
or

st
 S

ee
n

O
m

ni
ci

en
t”

E

st
im

at
or

A
lg

or
ith

m
 N

am
e

M
SE

†
‡

†
‡

‡

M
ed

ic
A

lg
or

ith
m

M
ul

tiD
ef

or
m

V
ol

um
e

2.
10

E
+

10
0.

95
1.

48
0.

68
4.

97
8.

54

D
W

IT
en

so
rC

on
tr

as
ts

6.
26

E
+

09
1.

19
1.

83
0.

71
2.

99
4.

70

E
xt

ra
ct

B
va

lG
ra

dF
ro

m
PA

R
9.

03
E

+
07

0.
44

1.
64

1.
60

99
.3

4
12

3.
45

M
ed

ic
A

lg
or

ith
m

Fi
be

rT
ra

ck
er

2.
60

E
+

08
1.

76
1.

75
0.

71
5.

67
5.

87

M
ed

ic
A

lg
or

ith
m

C
om

bE
PI

T
ra

ns
A

nd
D

ef
or

m
s

1.
00

E
+

07
2.

16
3.

17
0.

64
2.

91
3.

08

M
ed

ic
A

lg
or

ith
m

V
A

B
R

A
3.

24
E

+
09

0.
62

2.
80

0.
80

5.
22

7.
83

D
W

IT
en

so
rC

ol
or

E
nc

od
ed

M
ap

2.
38

E
+

08
1.

92
1.

89
0.

51
3.

37
3.

45

V
ol

um
eC

ol
le

ct
io

nT
oC

om
bi

ne
dS

la
bC

ol
le

ct
io

n
2.

91
E

+
08

2.
59

6.
38

0.
95

4.
36

5.
00

M
ed

ic
A

lg
or

ith
m

E
xt

ra
ct

Fi
le

C
ol

le
ct

io
nC

om
po

ne
nt

s
1.

60
E

+
14

1.
41

5.
15

0.
60

31
.8

4
39

.7
4

M
ed

ic
A

lg
or

ith
m

T
hr

es
ho

ld
1.

57
E

+
10

1.
19

1.
54

0.
28

16
.5

8
30

.6
1

C
om

pu
te

M
ea

nB
0

2.
82

E
+

12
0.

29
1.

59
0.

61
78

.1
0

99
.5

1

C
om

bi
ne

dS
la

bC
ol

le
ct

io
nT

oV
ol

um
eC

ol
le

ct
io

n
4.

23
E

+
07

1.
03

2.
05

0.
51

5.
87

6.
29

M
ed

ic
A

lg
or

ith
m

E
ff

ic
ie

nt
Fi

le
C

ol
le

ct
io

nR
eg

is
tr

at
io

n
6.

73
E

+
06

1.
47

1.
49

0.
46

43
.4

1
45

.0
8

D
W

IT
en

so
rE

st
L

L
M

SE
2.

62
E

+
08

2.
93

12
.3

7
1.

02
3.

49
3.

74

M
ed

ic
A

lg
or

ith
m

FL
IR

T
4.

25
E

+
10

3.
45

7.
42

0.
53

8.
44

8.
88

A
ve

ra
ge

s:
1.

09
E

+
13

1.
56

3.
50

0.
71

21
.1

0
26

.3
8

† Pe
rc

en
t F

ai
le

d

‡ A
ve

ra
ge

 O
ve

re
st

im
at

e
E

rr
or

 (
Pr

ed
ic

te
d/

A
ct

ua
l)

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Banalagay et al. Page 22

T
ab

le
 3

M
em

or
y

us
ag

e
pe

rf
or

m
an

ce
 s

um
m

ar
y

B
as

el
in

e
Se

tt
in

gs
:

L
ea

f
Si

ze
=5

0,
 A

lp
ha

=0
R

ec
om

m
en

de
d

Se
tt

in
gs

:
L

ea
f

Si
ze

=5
0,

A

lp
ha

=2
“W

or
st

 S
ee

n
F

IF
O

”
E

st
im

at
or

“W
or

st
 S

ee
n

O
m

ni
ci

en
t”

E

st
im

at
or

A
lg

or
ith

m
 N

am
e

M
SE

†
‡

†
‡

‡

M
ed

ic
A

lg
or

ith
m

M
ul

tiD
ef

or
m

V
ol

um
e

23
83

.7
1

0.
79

1.
68

0.
68

1.
02

1.
02

D
W

IT
en

so
rC

on
tr

as
ts

82
.7

1
4.

17
1.

11
0.

71
1.

65
1.

69

E
xt

ra
ct

B
va

lG
ra

dF
ro

m
PA

R
14

62
4.

73
3.

37
1.

11
0.

42
2.

86
2.

96

M
ed

ic
A

lg
or

ith
m

Fi
be

rT
ra

ck
er

40
44

3.
20

2.
21

1.
54

0.
92

2.
04

2.
23

M
ed

ic
A

lg
or

ith
m

C
om

bE
PI

T
ra

ns
A

nd
D

ef
or

m
s

33
4.

74
1.

94
1.

59
0.

97
1.

76
1.

79

M
ed

ic
A

lg
or

ith
m

V
A

B
R

A
46

38
.7

9
0.

15
6.

63
0.

90
1.

07
1.

07

D
W

IT
en

so
rC

ol
or

E
nc

od
ed

M
ap

63
.6

2
5.

31
1.

75
0.

41
1.

11
1.

11

V
ol

um
eC

ol
le

ct
io

nT
oC

om
bi

ne
dS

la
bC

ol
le

ct
io

n
93

.4
0

4.
12

1.
20

0.
63

5.
31

5.
42

M
ed

ic
A

lg
or

ith
m

E
xt

ra
ct

Fi
le

C
ol

le
ct

io
nC

om
po

ne
nt

s
93

.0
8

1.
80

2.
12

0.
51

4.
32

5.
55

M
ed

ic
A

lg
or

ith
m

T
hr

es
ho

ld
74

5.
40

1.
88

1.
02

0.
13

3.
25

3.
39

C
om

pu
te

M
ea

nB
0

18
1.

79
2.

58
1.

05
0.

35
2.

69
2.

73

C
om

bi
ne

dS
la

bC
ol

le
ct

io
nT

oV
ol

um
eC

ol
le

ct
io

n
70

05
.9

4
0.

15
19

.5
0

0.
41

13
.7

0
13

.6
9

M
ed

ic
A

lg
or

ith
m

E
ff

ic
ie

nt
Fi

le
C

ol
le

ct
io

nR
eg

is
tr

at
io

n
13

.5
7

3.
38

1.
01

0.
56

3.
92

4.
41

D
W

IT
en

so
rE

st
L

L
M

SE
72

.0
8

1.
13

1.
12

0.
51

5.
13

5.
59

M
ed

ic
A

lg
or

ith
m

FL
IR

T
7.

45
9.

20
1.

49
0.

44
1.

32
1.

36

A
ve

ra
ge

s:
4.

72
E

+
03

2.
81

2.
93

0.
57

3.
41

3.
60

† Pe
rc

en
t F

ai
le

d

‡ A
ve

ra
ge

 O
ve

re
st

im
at

e
E

rr
or

 (
Pr

ed
ic

te
d/

A
ct

ua
l)

Neuroinformatics. Author manuscript; available in PMC 2015 April 01.

