
Automatic Dendritic Length Quantification for High Throughput 
Screening of Mature Neurons

Timothy Smafield1, Venkat Pasupuleti1, Kamal Sharma2, Richard L. Huganir2, Bing Ye3, 
and Jie Zhou1

1Department of Computer Science, Northern Illinois University, DeKalb, IL 60115 USA

2Department of Neuroscience, John Hopkins University, Baltimore, MD 21205 USA

3Life Sciences Institute and Department of Cell and Developmental Biology, University of 
Michigan, Ann Arbor, MI 48109 USA

Abstract

High-throughput automated fluorescent imaging and screening are important for studying 

neuronal development, functions, and pathogenesis. An automatic approach of analyzing images 

acquired in automated fashion, and quantifying dendritic characteristics is critical for making such 

screens high-throughput. However, automatic and effective algorithms and tools, especially for the 

images of mature mammalian neurons with complex arbors, have been lacking. Here, we present 

algorithms and a tool for quantifying dendritic length that is fundamental for analyzing growth of 

neuronal network. We employ a divide-and-conquer framework that tackles the challenges of 

high-throughput images of neurons and enables the integration of multiple automatic algorithms. 

Within this framework, we developed algorithms that adapt to local properties to detect faint 

branches. We also developed a path search that can preserve the curvature change to accurately 

measure dendritic length with arbor branches and turns. In addition, we proposed an ensemble 

strategy of three estimation algorithms to further improve the overall efficacy. We tested our tool 

on images for cultured mouse hippocampal neurons immunostained with a dendritic marker for 

high-throughput screen. Results demonstrate the effectiveness of our proposed method when 

comparing the accuracy with previous methods. The software has been implemented as an ImageJ 

plugin and available for use.
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1. Introduction

High-throughput screening of cultured neurons has become an increasingly important tool 

for investigation of neuronal mechanisms and drug discovery, such as efficient identification 

of synaptogenic genes and pathways (Fox, 2003) (Hawker, 2007) (Dunkle, 2003) (Sharma, 

et al., 2013). Traditionally, the scale of screens had been held back by culturing and staining 

techniques but it is rapidly changing with the advances in high-content culturing, 

immunolabeling, and image acquisition (Al-Ali, Blackmore, Bixby, & Lemmon, 2013). For 

example, a recent high-throughput genetic screen allowed for over-expression of any set of 

genes or shRNA targeting the genes in a 96-well format, using mature primary neurons that 

are beyond simpler cellular systems (Sharma, et al., 2013).

A critical step in such screening is the identification of phenotypic changes, which requires 

an efficient and reliable quantification of important metrics. One such critical metric to be 

quantified in a neuronal genetic screen is the length of neuronal dendrites. Dendritic length 

has a profound influence over the neuronal system function (Pittenger & Duman, 2008) 

(Faherty, Kerley, & Smeyne, 2003). It has also been combined with other metrics (such as 

synapse distribution) to explore various mechanism of neuronal activity, development and 

disease (Glausier & Lewis, 2013) (Becker, Armstrong, & Chan, 1986) (Patt, Gertz, Gerhard, 

& Cervós-Navarro, 1991). Therefore, an automated quantification tool is essential for high-

throughput screening. However, currently, such quantification has been limited to young 

neurons with short dendrites that have minimal intersections. For mature neurons where 

dendrites are significantly long and form a complex network, a common practice is to select 

regions of interest manually in the high-throughput multi-well images and perform the 

analysis. The length of this region is then measured using a tool that requires a lot of user 

interaction, e.g. NeuronJ (Meijering, et al., 2004). Such practice is laborious and unpractical 

for a large-scale screen. Moreover, manual selection of region of interest can also introduce 

subjective bias.

While length quantification based on methods such as image skeletonization have been 

attempted recently, the lack of an effective image analysis tool to automatically process 

mature neurons for quantitative measure remains a bottleneck for large scale screening 

(Sharma, et al., 2013) (Nieland, et al., 2014). This is because images of mature neurons, 

such as mammalian pyramidal neurons, typically contain many cultured neurons, each of 

which has a complex dendritic arbor. Due to the size and complexity of the images, they 

may have areas of dendrite branches with varying levels of illumination, contrast, and arbor-

density. They may also have different levels of artifact noises, especially at the cross points 

of multiple dendritic branches. In consequence, the signal-to-noise ratio is typically low. The 

big contrast variation and arbor characteristics in different parts of the image of a neuron or 

multiple neurons makes it unlikely that a single length quantification algorithms and/or a 

single set of parameters of image analysis will be a cure-all for the entire image.

In this paper, we develop algorithms that tackle the complexity of the mature neuronal 

images and provide an open tool, DendriteLengthQuantifier, as an ImageJ plugin to 

automatically estimate total dendritic length in high-throughput setting. After reviewing the 

Smafield et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2016 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



related work in Section 2, we detail the methodology for automatic dendritic length 

quantification. Experimental results are given in Section 4, followed by discussions.

2. Related Work

The aim of this research is to provide automatic and reliable dendritic length quantification 

for a high-throughput image with multiple neurons. In addition to related methods that focus 

on dendritic length estimation, we will also discuss several popular neuron reconstruction 

tools which can be used for length quantification in low-throughput settings.

2.1 Tools for Dendritic Quantification

Existing tools and methods that yield neuronal length metric vary on the degree of 

automation.

A popular example of a semi-manual tool is an ImageJ plugin called NeuronJ (Meijering, et 

al., 2004), which is among a class of methods that use searching-based algorithms to trace 

the dendrite in order to get quantification metrics. In NeuronJ, the user utilizes a computer 

mouse to select a starting point and an ending point. NeuronJ makes use of a minimal 

cumulative cost search algorithm to determine a path between the two points. The algorithm 

is highly resilient against varying levels of noise and neurite intensity contrast. The 

drawback is that semi-manual methods are time consuming and labor intensive, which make 

them impractical in dealing with high-throughput data sets. Due to this drawback, it is a 

typical practice for researchers to just trace selective parts of the dendritic arbor. This 

approach is inherently non-holistic and dependent on subjective judgment.

In addition to neurite estimates, NeuronJ provides a partial digital reconstruction of the 

neuronal morphology. Similar recent efforts on reconstruction of two dimensional and three 

dimensional neuron images have yielded many tools such as NeuroMantic (Myatt, 

Hadlington, Ascoli, & Nasuto, 2012), Vaa3D (Peng, Ruan, Long, Simpson, & Myers, 2010), 

NeuronStudio (Rodriguez, Ehlenberger, Hof, & Wearne, 2006), and some commercial 

candidates such as NeuroLucida and Imaris. While the reconstruction tools are achieving 

different levels of automation with ongoing motivations including DIADEM competition 

(Liu, 2011), in practice they are not used as often as semi-manual ones. As an indication of 

reality, a majority of neuron morphology of the online neuron morphology database 

NeuronMorph.org still come from manual instead of automatic reconstruction (Myatt, 

Hadlington, Ascoli, & Nasuto, 2012). One major reason is because the results still require a 

lot of labor-consuming proof-reading which is manual post processing that fills missing 

segments or fixes other issues (Peng, Long, Zhao, & Myers, 2011). This is inappropriate for 

high-throughput demands.

Different from tools which need human-machine interactions during or after, some methods 

are designed for extracting and quantifying neurites of cultured neurons in high-throughput 

settings. For example, NeuriteTracer (Pool, Thiemann, Bar-Or, & Fournier, 2008), 

CellProfiler (Nieland, et al., 2014) and some others (Vallotton, et al., 2007) (Narro, et al., 

2007). NeuriteTracer and similar software binarize images before extracting the neurites by 

skeletonization to calculate the centerline of the neurites. The method described by Zhang et 
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al. (Zhang, et al., 2007) quantifies the length of the neurite segments by a live-wire search 

method that link the detected seed points. The method described by Wu et al. (Wu, Schulte, 

Sepp, Littleton, & Hong, 2010) uses a contrast-limit adaptive histogram equalization method 

to overcome the non-uniform illumination in high-throughput screening images. The method 

then uses orientation-guided neurite tracing to carry out neurite quantification. These tools 

typically require minimal interaction. However, they only work effectively with neurons of 

simple morphologies. In these neurons, the neurite segments coming out of cell bodies are 

short with little branching and minimal branch intersecting, lacking the complex arbor 

structure and branching pattern of mature neurons.

2.2 Algorithms for Dendritic Quantification

Among the above tools with varying levels of automation and application, there are several 

main algorithms employed for dendritic estimation.

One line of investigation involves the use of stereological principles to acquire length 

estimates (Rønn, et al., 2000). This approach, designed to be less labor-intensive than direct 

tracing, uses grids superimposed on images obtained from fluorescence microscopy. The 

intersections between the grid lines and the dendrites are counted and subjected to statistical 

analyses to produce length per neuron estimates. This approach has been applied to both 

primary and secondary neurites. Higher order neurites are generally ignored. The method 

works best with less densely plated cells; difficulties develop when attempting to analyze 

overlapping and extensively branching arbors.

The exploratory tracing algorithm guided by direction (Al-Kofahi, et al., 2002) uses the peak 

response from a set of directional two-dimensional (2-D) correlation kernels to determine 

the direction of the branch as it progresses forward. The method was initially used in 

applications with similar tree-like morphology (e.g. retinal vasculature) (Can, Shen, Turner, 

Tanenbaum, & Roysam, 1999) before being associated with neuroscience applications. This 

approach is attractive because the processing is performed at the local level, therefore it 

scales with the complexity of the neurons rather than image size. The algorithm can work 

with the gray-level image directly without the binarization of the entire image first. Overall 

the method is robust against curvature and discontinuous branches. The direction estimation 

is, however, sensitive to noise. The design of stopping conditions for tracing can encounter 

issues when the dendrites have dense branches with a lot of crossovers. Tracing using a 

shortest path algorithm, as employed by NeuronJ, is a minimal cumulative cost search 

algorithm that determines a path between the two points of source and destination. It has 

often being used as the interactive algorithms in semi-automatic tools with cost functions 

defined based on foreground pixel intensity and/or the flow of the structure (Meijering E., 

2010).

Another alternative to automated tracing methods is the segmentation approach. One of the 

major differences between segmentation and other approaches is that it involves the 

processing of every pixel in the image. For example, NeuriteTracer (Pool, Thiemann, Bar-

Or, & Fournier, 2008) and NeuronMetrics (Narro, et al., 2007) both utilize skeletonization, 

which contains two very important steps. The first step is the binarization of the image based 

on an automated estimation of the background threshold. Next, the foreground is stripped 
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until the diameter is only one pixel across. The length estimate is then derived by counting 

the total number of the foreground pixels. Skeletonization has a significant time advantage 

as it is fully automated and works well with crowded images that have high contrast. 

However, the limitation of global threshold detection methods restricts its ability to handle 

low-contrast images. To remedy the issue, some tools (e.g. NeuronMetrics) have an optional 

manual post-processing feature that fills in the gaps caused by faint segments. As previously 

mentioned, this is inappropriate for high-throughput demands.

3. Materials and Methods

3.1 High-Throughput Experiments

Neurons were prepared from E17 mouse embryos and plated in 96-well optical plates by 

automated dispensing at the density of 9500 neurons per well. Media was changed to a 

serum-free condition and cultures were maintained as described earlier (Brewer & Cotman, 

1989). Neurons were fixed with 4% paraformaldehyde and 4% sucrose in PBS, followed by 

permeabilization in 0.25% Triton X-100. After blocking in 10% BSA-PBS, neurons were 

incubated in primary antibodies against MAP-2 (NOVUS) at 1:20,000 dilution on 

PBS-3%BSA overnight at 4 °C. Neurons were washed in PBS and incubated in Alexa Fluor 

conjugated secondary antibodies (Life Technologies). In the end after washing, neurons 

were maintained in a fixation solution.

Automated imaging was carried out on a BD Pathway Imaging Platform (BD Biosciences) 

with a 40× objective in 2×2 montages from each well with 1×1 binning. Figure 1 shows 

examples of the images obtained by the high-throughput system. The contrast differences 

among the sub-images were caused by uneven staining, bleaching, or the camera’s 

automated adjustment.

3.2 Quantification Process Flow

High-throughput screen images of cultured mature neurons typically have varying levels 

arbor-density, non-uniform contrasts, and artifact noises. As a consequence, global 

processing of these images using one algorithm with a single set of parameters is often 

ineffective. A single length estimation algorithm, either tracing-based or thinning-based, 

does not deliver desirable performance. This is due to different properties of the algorithms 

and the fact that different areas of the dendrite may present different branch characteristics.

To address the challenges and obtain automatic, robust dendritic length estimates for mature 

neurons, we employed several new approaches at different stages of the process. The flow of 

our novel method is described in Figure 2 with highlights described below:

1. A divide-and-conquer strategy that divides the images into grid windows is 

utilized. Each grid window is processed automatically and independently, and then 

the results are merged together resulting in an overall estimate. This enables the 

adaptive processing of each grid window to tackle the unique complexity that it 

presents.

2. Fully automatic estimation algorithms are developed for each grid. The three 

algorithms used are: Localized Skeletonization (LSK), Adaptive Exploratory 
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Tracing (AET) and Curvature-preserving Shortest Path (CSP). The need to 

interactively specify starting and/or ending points is eliminated. In AET, stopping 

criterion based on adaptive threshold selection is incorporated in the direction-

guided tracing. CSP uses a cost function to find the shortest path that avoids taking 

shorting cuts when tracing curved, branching arbors.

3. An ensemble approach for length estimate at each grid window that takes 

advantage of both tracing-based and thinning-based algorithms to achieve a higher 

degree of reliability. LSK, AET and CSP are combined in our process, which leads 

to an improved overall efficacy.

Each highlight, namely the divide-and-conquer, adaptive tracing, and ensemble estimation, 

will be detailed in sections 3.3 to 3.7.

3.3 The Divide-and-Conquer Strategy

The microscopic image of mature neurons acquired during the high-throughput process is 

divided into M rows and N columns, resulting in M*N grids, where M and N are positive 

integers. Both M and N are set by default to 10, and are adjusted dynamically based on the 

size of the image (more details below). Each grid window is the base unit for preprocessing, 

enhancement, and dendritic length estimation. The length estimate quantification is done 

independently in each grid window. A post-processing merging analysis unit merges the 

individually estimated lengths together while avoiding the counting of branches along the 

boundaries of neighboring grids more than once. The total dendritic length, Ltotal, in a 

neuronal image is given by Equation 1.

(1)

where rm.n is the raw length estimate in the grid window in row m and column n, em,n is the 

duplicated estimation detected during the boundary analysis with its neighboring windows, 

which is subtracted from rm,n to yield the final estimate Lmn for a given grid window at 

(m,n). The details of boundary analysis are described later in this section. The summation of 

Lmn over the grids provides the total neuronal length of the image.

One essential advantage of such a strategy is that the processing is limited to the local grid 

window. Therefore, it overcomes great contrast variation in an image and helps to extract 

higher order branches that are often quite dim. More importantly, localizing the estimation 

lowers the complexity of the branch pattern being processed in each particular window. For 

example, when direction-guided tracing is used to estimate the length, the direction change 

of the branches within the window of interest is limited. This allows us to employ more 

reliable, automatic, and adaptive tracing without the need for user interaction. Ultimately, 

the divide-and-conquer strategy provides the flexibility of applying either one or multiple 

estimation algorithms (and parameters) in a manner that is independent to its neighboring 

windows. Note that although grids have been used in image analysis (Al-Kofahi, et al., 

2002), they differ from our strategy in that they are typically used for localized 

preprocessing instead of algorithm independence. It is also worth mentioning that such an 
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approach allows for parallel implementation, which may lead to further improvement in the 

speed of high-throughput processing.

The main task of the merging process in the divide-and-conquer framework is to sum up the 

individual estimates of each grid window. Occasionally, there may be branches that run 

along the boundaries of two neighboring grid windows. This may cause double tracing. A 

boundary analysis module is used to resolve this issue. The grid windows of a neuronal 

images are processed from top to bottom and left to right. For each window, a boundary 

analysis is performed to check if there are any dendrites along its upper and left boundaries 

that have already been detected by the grid windows that are directly above and to the left of 

it, respectively. If, for example, the right boundary of the current window’s left neighbor and 

the left boundary of the current window both have a dendrite detected along the boundary 

(as illustrated in Figure 3), then the branch in the current window is considered as a 

duplicated estimate (em,n in Eq. 1), and it is removed from the total length count for the 

current window. Meanwhile, the dendrites detected along the right and bottom boundaries in 

the current window are saved and used in the boundary analysis of the windows directly 

below it and to the right of it.

The size of the grid window is set to be between 50 and 100 pixels in size. The program 

dynamically calculates the grid based on the image’s size: By default it first sets M and N to 

10 (i.e. 10*10 of 100 grid windows). If the default setting makes either dimension of a grid 

window outside of the desired range (50–100 pixels), the values of M and N are incremented 

(if initial size is larger than 100 pixels) or decremented (if the initial size is less than 50 

pixels) until both dimensions fall within the range of [50, 100]. This setting was chosen 

based on parameter analysis (see Results).

The algorithms in this paper are implemented in the DendriteLengthQuantifier as a plugin 

for the freely available NIH ImageJ.

3.4 Preprocessing and Localized Skeletonization (LSK)

Preprocessing is performed at both global level and the individual grid window level.

At the global level, a rolling ball algorithm is used to detect and remove soma from the 

dendritic image unless a soma channel has been provided separately (Sternberg, 1983). The 

soma masks, provided or calculated, are also used in the quantification step to validate the 

detected dendrite traces by making sure that the detected dendrites are not in the area where 

the somas were. The image is denoised using a 3×3 median filter. It is then enhanced using 

contrast-limited adaptive histogram equalization (CLAHE) (Zuiderveld, 1994) for 

background correction and to improve local contrast (Fig. 2B). Different from traditional 

histogram equalization, CLAHE corrects the background and improves the contrast with 

non-uniform illumination at different local areas, which is suitable for the images we 

process.

At each grid level, different preprocessing techniques are performed based on the specific 

length estimation algorithm employed on the grid (i.e. LSK, AET or CSP). For the localized 

skeletonization (LSK) algorithm, the grid image is first inverted to be black-on-white. Then 
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binarization is performed by automatic, histogram-based thresholding (Otsu, 1975). Image 

dilation is performed followed by erosion to fill in holes in the binarized image. A thinning 

operation is then performed to reduce the foreground structure to 1 pixel wide in all 

directions. Five rounds of pruning are performed after the thinning operation to remove the 

spurious details, yielding a cleaner centerline. For AET and CSP, preprocessing starts with 

denoising the grid window using a 3×3 median filter. The following enhancements are then 

performed:

a. The grid window is subject to contrast enhancement using histogram stretching. 

Four percent of the pixels are allowed to become saturated.

b. Hessian-based enhancement highlights the curvilinear structure of the dendrites. 

The post-Hessian image is obtained by eigenvector analysis of the Hessian matrix, 

which is a square matrix of second-order partial derivatives of the greyscale 

intensity function. The Hessian-transform has been a beneficial step for neuronal 

tracing (Meijering, et al., 2004). We use largest Eigenvalue of the Hessian matrix, 

which yields the post-Hessian image for the next step processing (Figure 4B).

c. Histogram stretching is then applied to the post-Hessian image to clear up artifacts 

and fuzzy boundaries caused by Hessian transform (Figure 4B). This is done by 

chopping the histogram below a background intensity value and then stretching the 

resulting minimum and maximum intensity values to 0 and 255. The value is 

conservatively chosen to avoid removing foreground. The resulting image is used 

for AET and CSP tracing.

3.5 Adaptive Exploratory Tracing (AET): Direction-Guided Tracing with Adaptive Stopping 
Criterion

3.5.1 Direction-Guided Tracing—Direction-guided tracing (Can, Shen, Turner, 

Tanenbaum, & Roysam, 1999) is an exploratory tracing method that does not process every 

pixel in the image and works with a gray-level image. It needs one starting position and an 

initial direction for tracing. The tracing goes on until one of the stopping criteria is satisfied, 

e.g., reaching the end of a dendrite. We adopt the direction-guided exploratory tracing and 

make it adaptive and robust for our purpose.

The algorithm uses the peak response of a pair of two-dimensional correlation kernels to 

determine the direction of the dendrite branch. For each direction, we have a pair of kernels 

correspond to the left and right edges of the branch it is currently tracing. There are 16 pairs 

of kernels defined corresponding to 16 directions, 22.5 degrees apart. For example, the left 

kernel of the horizontal x-axis direction is defined as:
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The response is defined as the convolution between the kernel and the post-Hessian image 

intensity. For example, for the kernel above, the response is (Al-Kofahi, et al., 2002):

The kernels are defined such that they have a maximal response when oriented over an edge. 

When a summed response of left and right edges reaches a maximum, it reveals the direction 

to follow during tracing. The exploratory tracing also yields the radius of the dendrite, which 

is half of the distance between the detected left and right edges of the dendrite.

3.5.2 Dendrite Estimation Algorithm Based on AET—The length estimate algorithm 

is a self-initiating quantification algorithm in the sense that it does not need any interaction. 

The algorithm involves the following steps:

1. Grid window preprocessing and dendrite enhancement using Hessian transform 

followed by histogram normalization.

2. Automatic initial point detection along grid boundaries.

3. Sort the initial points based on their radii.

4. Start tracing from the first initial point (thinnest branch), until it meets at least one 

stopping criterion. Save the length of the trace and clear the traced area.

5. Repeat 4 until initial points are exhausted.

6. Sum the total length of the traces to get the estimate for the dendritic length in the 

grid window.

For dendrite tracing in a given grid window, we assume initial points can be detected along 

the grid boundary. This is a reasonable assumption due to the continuity of dendrites and the 

small size of the divided grid window we process. Figure 4A shows several common cases 

of the traces in a window with detected initial points highlighted as arrows. Figure 4D shows 

the flow of the estimation algorithm using AET.

To perform initial point detection, thin strips that are four pixels wide along the four 

boundaries are cropped and binarized. If there are at least three foreground pixels for a line 

vertical to the boundary direction, we get a potential part of a branch, or a candidate initial 

point for start tracing in the grid. Getting the width of a continuous foreground section on 

the boundary yields the diameter of a branch candidate. This candidate is subject to a branch 

diameter thresholding. If the branch has a diameter/radius greater than a set minimum, then 

the midpoint of the branch is used as an initial point. All the initial points are sorted based 

on their diameters. Tracing is done for each automatically detected initial point on the four 

borders of the edge window, starting from the one of smallest diameter (thinnest). This is to 

prevent the area removal of a thick branch impact nearby thin branches. For each tracing, the 

initial direction is perpendicular to the border. We then use eight directions surrounding the 

current direction, 22.5 degrees apart, to explore the next direction of the trace. The direction 

with the highest response is considered the direction for next trace point. Once a dendrite 
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branch is traced, the structure is removed from the image by clearing a circular region of 

interest around each trace point, to prevent multiple tracing of the same branch. The radius 

of the circular region of interest is determined by adding a fixed buffer to the calculated 

radius of the dendrite branch obtained during exploration.

If the divide-and-conquer was not used and the tracing was done on an entire image, one 

potential issue with direction-based tracing would be that tracing could be discontinued at 

crossovers or branching joints in the middle of the image. In the case of our grid-based 

quantification, the tracing starts from initial points along the boundaries of each grid. 

Different initial points can lead to the joint, so such situations will not affect the overall 

length estimates.

3.5.3. Adaptive Stopping Criteria—Four stopping criteria were used in AET to stop the 

tracing. They include:

#1 Reaching the background (end of a trace);

#2 Reaching one of the four borders;

#3 Reaching an infinite loop.

#4 Maximum response of all directions is lower than a threshold.

Criterion #1 is import to ensure the trace being on the track. Traditional methods such as 

Otsu’s method for detecting the background were found to be ill-suited for crowded, high 

contrast grid segments: If multiple branches had highly variant greyscale intensities, the 

fainter branches could be mistaken for background pixels. In order to deal with this issue, a 

more adaptive approach was required to prevent the trace from entering the background. We 

used the Robust Adaptive Threshold Selection (RATS) method (Wilkinson, 1998). RATS 

recursively divides the input image into a quadtree hierarchy of sub-regions. It uses the 

gradient weighted sum of the pixels to automatically determine a local threshold. The Sobel 

operator is used to estimate the gradient. If the sum of the gradients fails to exceed a noise 

estimate input parameter, the regional threshold of the parent region is used instead. The 

thresholds are bilinearly interpolated across the image to form the binary mask. Note that 

RATS is used here to provide a binary mask for stopping criterion #1, instead of image 

segmentation. As a result, we use RATS to produce an overmask, which detects the 

foreground area that can be slightly bigger than the actual area covered by dendrites, but not 

smaller. This avoids prematurely stopping the tracing of faint branches. Figure 4C gives an 

example of a binary stopping mask generated by RATS.

Criterion #2 is encountered when a trace starts from an initial point and then reaches to one 

of the grid window’s borders. Infinite looping described in #3 happens rarely but it is 

possible with an abrupt change of branch angle. If there are any remaining parts to be traced 

for that branch, they will be captured from the other end of the branch starting from a 

different initial point. The overall length is not comprised when a branch is traced from both 

sides. Criterion #4 could happen with dense branching or thick joint. When it is encountered, 

the same strategy described for #3 is used to measure the branch(es) by performing multiple 

tracing from different initial points.
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3.6 Self-Initiating Length Estimation Using Curvature-Preserving Shortest Path (CSP)

As one of the automatic algorithms applied to a grid window, we use the shortest-path 

algorithm to get all the traces in the grid. The backbone of the CSP is the Dijkstra’s path 

search algorithm (Dijkstra, 1959), which requires two points: the source node and the 

destination node. Initial point detection is performed along the boundary as described in 

Section 3.5. Shortest paths between each pair of these points, with one being the source and 

another being the destination, are found. The pairing of these points is arbitrary, other than 

the condition that the source and destination notes cannot be on the same edge of the grid 

window. Therefore, the algorithm will find a path as long as there is a way to reach from 

source to destination, sometimes via branching. After the trace points between each 

legitimate pair are obtained, the trace is removed from the image to prevent multiple traces 

on the same branch. The summation of the path length gives the dendritic length metric. 

Figure 5 illustrates the CSP algorithm.

One concern for such a search-based tracing algorithm is its computational efficiency, which 

is highly related to both the computational data structure and the cost function for the search. 

The primary data structure used is a binary heap implemented as a priority queue. 

Asymptotically, the best implementation of the priority queue for Dijkstra’s algorithm is the 

Fibonacci heap (Fredman & Tarjan, 1987). However, the advantage of using a Fibonacci 

heap only materializes when using a very large, dense graph, due to the large constants 

involved in the required operations. Consequently, a binary heap is used instead. The binary 

heap has logarithmic amortized time for the delete minimum operation, but smaller 

constants compared to the Fibonacci heap. Another data structure used is a hash set which 

offers constant time performance for adding and lookup operations given a properly 

implemented hash function. In addition, efficiency is dependent on the size of the searched 

region (area of wavefront), which is related to the cost-function defined for the optimal 

search, as we will explain next.

3.6.1 Curvature-preserving cost-function—The Hessian processing step yielded a 

processed neuronal image which contained the eigenvalues of the Hessian matrix that 

represents the likelihood of the curvilinear structure for each pixel. Such values have been 

described as the “neuriteness” of the pixel (Meijering, et al., 2004). A shortest path 

algorithm was used in that tool to link manually selected starting and ending points. Because 

those were interactively chosen, the cost function was simply defined to be neuriteness plus 

a term that favors the “smooth flow” of the trace. It was because an interactively selected 

pair of points were expected to correspond to the actual starting and ending points of a 

branch without acute angle changes.

However, it is not suitable for our automatic algorithm to use such a cost function due to the 

self-initiating nature of our tracing: It is possible that a path will need to be found between a 

pair of two points that are not natural starting and ending points of an arbor. In such cases, 

the algorithm needs to be able to go through sharp angle changes of branching in order to 

reach the destination. Instead of favoring smooth flow, we want to preserve the curvature of 

such angle changes to avoid short-cutting the path, and to get a more accurate length 

estimate of the dendrite centerline. Thus, the cost function needs to be reexamined.
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Initially, a cost function was developed that had a linear relationship with neuriteness as 

existing literature:

The neuriteness λx,y is subtracted from 255 as that is the maximal intensity value of an eight 

bit image after Hessian preprocessing. The threshold value t is used to prevent the wavefront 

from expanding into the background which is not only computationally expensive, but could 

cause false positives. This is because Dijkstra’s algorithm has a tendency to settle nodes in a 

circular wavefront pattern. As a result, any path of final cost between two initial points will 

be traced regardless of the magnitude. Truncating the function to infinity at the threshold 

intensity has the effect of constructing a barrier that funnels the wave function down the 

dendrite branch. Figure 6A shows the search wave front when using a cost function without 

the background truncating (t set to zero), while Figure 6B has the threshold set by Otsu’s 

method which has a much smaller search region for improved efficiency.

An investigation into the nature of the cost function led to the discovery of an interesting 

relationship between the growth rate of the function and the tracing method’s bias for 

shorter Euclidean distance. The higher the growth order of the cost function, the more costly 

it became to traverse the dim portions of the branch. The resulting path will trace the 

brightest part of the Hessian image, which will correspond to the curvature of the dendrite. 

Observing the tracing with cost functions having different growth rates will illustrate the 

effect, as shown in Figure 6. The cost function used in Figure 6C had a logarithmic growth 

rate (i.e. log(255 – λx,y)). The resulting tracing method had a tendency to take short cuts 

through lower intensity regions of the image. The higher cost of tracing lower intensity 

pixels was offset by tracing less of them. The ideal cost function was one that made short-

cut paths expensive compared to longer paths that traversed higher intensity pixels. This was 

achieved by using cost functions with higher growth rates. The initial cost function had a 

linear growth rate, as shown in Figure 6D. It can be observed that the tracing methods still 

retain a bias for lower Euclidean distance. However, the method better traced the curvature 

of the dendrite compared to the method with a logarithmic cost function. Cost functions with 

rates greater than polynomial can be ruled out based on restrictions of numerical precision 

due to arithmetic underflow. Based on heuristic experiments, the best performing growth 

rate for a cost function was found to be cubic, which is the cost function used in our 

algorithm as defined in Equation (2) where λx,y is the pixel intensity in post-Hessian grid 

image. These traces preserved the curvature very well, and avoided taking shortcuts.

(2)
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3.7 Automatic Dendritic Length Estimate Based on Ensemble of Multiple Approaches

Instead of using a single estimation algorithm as in traditional work, we employed three 

length estimation algorithms for each grid window, namely Localized SKeletonization 

(LSK), Adaptive Exploratory Tracing (AET), and Curvature-preserving Shortest Path search 

(CSP). The first is based on segmentation, and the latter two are considered tracing-based 

methods. The resulting estimate is an ensemble of the three methods. One possible ensemble 

is a weighted sum of individual estimates from the different algorithms:

In reality, individual algorithms have respective biases as reviewed in related work. For 

example, the thinning operation is performed in all directions including the one 

perpendicular to the branch growth. Therefore, it may yield spurious lines that over-estimate 

the length. On the other hand, tracing can have premature stops that under-estimate the 

dendritic length. Ideally, if the combined result can compensate each algorithm’s weakness, 

the resulting Lmn can give a more reliable estimate. Considering their different types of 

biases, one simple ensemble is to use the average of all three methods. We thus employ a 

statistical average of three individual estimates, essentially setting wLSK = wAET = wCSP = 

1/3. We get the length estimate by average ensemble as following:

(3)

The divide-and-conquer strategy provides a framework to allow other ways of algorithm 

ensemble. For comparison, we performed a multi-variate regression analysis on ten 

randomly chosen neuronal images, with each algorithm being one variable and the length 

being the prediction. The model was fitted with the golden standard estimate. The highest 

coefficient of determination (R2) compared with the R2 from individual estimates is 

obtained when it set the Lmn,LSK, Lmn,AET and Lmn,CSP to 0.51, 0.24 and 0.25 respectively.

(4)

4. Results

We tested our results on a set of 50 high-throughput neuronal images obtained using the 

system described in Section 3.1 and shown in Figure 1. The images were of size 1344×1024 

pixels, and each image contained a varying number of neurons with total dendritic length 

ranging from thousands to tens of thousands pixels, at a scale of 0.15622 μm/pixel.

4.1 Qualitative Results

Figure 7 gives an example of Localized Skeletonization (LSK) using divide-and-conquer 

method. In comparison with Figure 7b, which uses global skeletonization, the grid-based 

approach (Figure 7c) is able to extract the dim branches that would otherwise be missed due 

Smafield et al. Page 13

Neuroinformatics. Author manuscript; available in PMC 2016 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to contrast variation among different regions. This illustrates an advantage in using the grid 

window approach which is adaptive to local contrast difference.

Figure 8 shows examples of how the three individual estimation methods work on the 

images. In general, both LSK and CSP handle branching and rapid change of direction well, 

as illustrated in Figure 8a and Figure 8c. LSK also effectively worked with discontinued 

branches, but it only worked the best when binarization and soma removal were performed 

well. Adaptive exploratory tracing (AET, Figure 8b) had some advantages of its own. The 

stopping criteria made it a conservation tracing algorithm that resulted in fewer false 

positives. AET requires only one initial point as input, as opposed to the shortest path 

algorithm which requires a source point and a target point. This allowed AET to trace 

dendrite branches that lack a clearly defined end point. The fact that different algorithms had 

different strengths made it possible for the ensemble methodology to provide more accurate 

results.

Figure 8D visualizes the tracing results of AET and CSP overlaid on an image of three 

neurons. The estimations are in agreement with the actual dendrite branches except the false 

positives near the soma area.

4.2 Quantitative Results

The quantitative validation process requires gold-standard estimates from each image. 

Following literature (Pool, Thiemann, Bar-Or, & Fournier, 2008), the gold-standard 

estimates were generated manually using NeuronJ.

We calculated the quantification accuracy of overall length estimate as:

(5)

As listed in Table 1, our fully automatic pipeline for dendritic length estimation achieved an 

average accuracy of 88.8% on 50 images for cultured mature mouse hippocamal neurons. 

The results are reported as Ens_AVG, which is the ensemble obtained by getting the average 

of LSK, AET and CSP in each grid segment calculated based on Equation (3). Among the 

50 images, about half (23 out of 50) of the results yielded an accuracy of 90% or better. For 

more than a quarter images (13 out of 50), the algorithm obtained an estimation with an 

accuracy higher than 95%, with three images obtaining higher than 99% accuracy. For 31 

out of 50 images, lower estimates than the gold standard were obtained. This left 19 out of 

the 50 images that had estimations higher than the gold standard. These statistics will be 

discussed in Section 5. The results in Table 1 also showed that our tool can effectively detect 

the differences of dendritic length in different images (regions). For example, for image #21 

and #46, the tool reported dendritic lengths different from each other. Our method validated 

that the difference was 13,044 (pixels). This was very close to what NeuronJ reported at 

13,224 pixels. The discrepancy between our tool and NeuronJ was only 1.4%, despite our 

tool being automatic while NeuronJ is semi-automatic. The results indicated the 
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effectiveness of our proposed approach, which will be further demonstrated by comparison 

with other methods in the next section.

Equation (5) is used to quantify the estimation accuracy of the overall length of dendrites. It 

is meaningful under the condition that few falsely traced dendrites are generated. To verify 

this, we examined the dendritic image in Figure 8D to count the over estimation and under 

estimation for the three tracing algorithms (LSK, AET, CSP). Compared with gold standard 

from semi-manual tracing, total over-estimation of dendrites (false positive traces) ranged 

from 239 pixels to 376 pixels for the three tracing algorithms with detected dendritic length 

being 17K to 18K pixels. The average precision rate of three algorithms was 97.5%. These 

results confirmed that the accuracy defined in Equation (5) is a suitable measure for our 

method. For Figure 8D, the average recall rate of the three algorithms, calculated using 

underestimation, was 82%. These results indicated that when conservative, our algorithms 

are precise.

4.3 Comparison with Other Methods

In Table 2, we compare the results of several methods for dendritic length estimation on the 

same set of images. The table displays the individual methods (AET, CSP, LSK) and two 

ensemble methods (Ens_AVG and Ens_Weighted) in our divide-and-conquer framework. It 

also shows the results of a third-party tool, NeuriteTracer (Pool, Thiemann, Bar-Or, & 

Fournier, 2008). NeuriteTracer was chosen for comparison because it is publicly available 

and based on global skeletonization after binarization, which is a representative method for 

current automated estimation methods. NeuriteTracer requires the user to manually choose a 

threshold for binarization. Based on the recommendation of its user guide, we adjusted the 

parameter of NeuriteTracer using histogram and visual inspection in order to find the best 

threshold for the images. Based on these findings, the threshold limit was set to 20. We tried 

several settings and reported its best performance in Table 2. NeuriteTracer also requires the 

user to supply a separate soma channel, while our tool provides the option of automatically 

extracting the soma mask. The same soma masks were used in each of the methods to ensure 

a fair comparison.

From the average accuracy, we can see that all of our methods (AET, CSP, LSK, Ens_AVG, 

and Ens_Weighted) were more effective than the results reported by NeuriteTracer. Overall, 

the best performing methods were the ensemble methods, Ens_Weighted and Ens_AVG. 

Ens_AVG achieved the highest average accuracy of 88.8%. The average accuracy of 

Ens_AVG was 8 percent higher than that of NeuriteTracer. The p-value for the paired t-test 

between Ens_AVG and NeuriteTracer was 0.0002, indicating that the difference was 

statistically significant.

The reason that our results were superior to those of NeuriteTracer can likely be attributed to 

the divide-and-conquer framework. NeuriteTracer uses global skeletonization as the 

foundation of its algorithm, which can encounter obstacles when working with complex 

branch patterns with high local variation. To further validate the effectiveness of the divide 

and conquer strategy, we also ran the global skeletonization algorithm without using the 

divide-and-conquer strategy on all of the 50 testing images. We measured the dendritic 

lengths using skeletonization on the entire images and computed the accuracies. The results 
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were then compared with those of LSK, which is also a skeletonization-based algorithm but 

uses the divide-and-conquer strategy. For the algorithm without using divide-and-conquer, 

the accuracies ranged from 39.85% (image 9) to 92.10% (image 41), with an average 

accuracy of 63.90%. The results were significantly lower than the results of LSK which had 

an average accuracy of 87.69%. This comparison strongly supported the effectiveness of the 

adopted strategy.

The results also confirmed that AET, CSP and LSK can have different performance biases 

on different images. For example, LSK has a lower accuracy than those obtained from AET 

and CSP on image 15. However, for image 43, AET had lower accuracy than the other two 

methods. We found that the accuracy difference associated with image 15 was because LSK 

has an over estimation of dendritic length. Image 43 is a crowded image, and AET, being a 

conservative exploratory tracing method, yielded an under-estimation.

Compared with Ens_Weighted, which needs to perform multivariate regression on images to 

estimate the weights, Ensemble_AVG is simpler to implement and avoids image-dependent 

bias. Supported by quantitative results and practice considerations, we chose Ens_AVG as 

the method implemented in the dendrite quantification tool DendriteLengthQuantifier 

available for download (see link in Supplemental Results).

4.4 Parameter Analysis

In our methodology of grid-based divide-and-conquer, a critical parameter is the size of the 

grid segments. To adapt to local characteristics, it is obvious that the grid window size 

should not be large. However, it may not be the case that a smaller grid window size is 

better under all circumstances. For example, RATS, being a recursive method based on 

quadrant trees, requires a reasonable sized image to work effectively. To understand the grid 

segment’s impact on length estimation, we conducted grid size analysis using a 

representative example image shown in Figure 2. We then calculated its Pearson correlation 

with gold standard on each grid segment. Figure 9 shows that when fitted using second order 

polynomial, the best performance is achieved in the middle range of grid size between 

roughly 50 and 100 pixels in both width and height. Therefore, the 

DendriteLengthQuantifier tool dynamically calculates the grid size using the method 

explained in Section 3.2 to ensure that the grid size falls into this range.

For the results reported in Table 1 and 2 of images sized 1344×1024, grid was set as 14 

columns and 11 rows. The Hessian transform’s smoothing factor was set to 5. For AET, the 

tracing step size was set to 3. For each of the tested images (with more than 1 million pixels 

per image), the processing time of our algorithm was 15 seconds on a regular PC with 

default settings of ImageJ 1.48q. Since our approach is automatic, the algorithm is suitable 

for high-throughput processing of neuronal images. Parallelized implementation on grids is 

expected to further speed up the algorithm in future work.

5 Discussion

The qualitative and quantitative results have shown the effectiveness of processes and 

algorithms employed in our method. Such algorithms include divide-and-conquer and 
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several preprocessing and tracing strategies to improve local adaptation. The motivation 

behind developing an ensemble approach is to exploit the advantages of each algorithm. The 

algorithms performed differently on image segments with varying characteristics such as 

noise, crowdedness, and contrast differences, as explained in Section 4.1. In particular, using 

a weighted ensemble of the three algorithms yields the highest length estimate accuracy. 

One justification for using a combined estimate on such images is the fact that there are 

typically different sources of error common in each method. The idea is similar to using an 

ensemble classifier in machine learning where a committee is used to get a balanced view 

that can lead to improved reliability. For example, one algorithm may overestimate in some 

cases where another algorithm would underestimate. When the average of the results of each 

of the algorithms is used to yield the overall estimate, errors from different sources may be 

balanced out and the combined accuracy on the image could potentially be higher. Visual 

inspection and quantitative validation on high-throughput images confirm our proposed 

methodology.

5.1 Remaining Issues

Despite that quantitative results demonstrated the efficacy of our method, it still has some 

remaining problems. Images that show an underestimation of dendritic length may due to 

dim branches that are not accounted for by the automatic approach although they could be 

recognized manually. We have incorporated modules to mitigate some causes of false 

positives, but they can be further improved. One impact is related to the area around somas. 

Removal of the soma area is a pre-requisite for automatic length estimation. If somas were 

not completely removed, they could influence the dendrite length estimate. While rolling 

ball soma detection on the dendrite channel was used for general applicability of the tool, 

having a separate channel of soma staining can help improve the accuracy of the estimate. 

Another source of error or ambiguity comes from thick branches that sometimes cause trace 

over-count. Shortest path (CSP) appears to be more robust than the other methods in such 

situations. A merging analysis component also helps resolve this issue to some extent, but it 

is not eliminated. In addition, the Hessian-transform may introduce artifacts when a region is 

mostly black with subtle texture. We employed a pre-detection strategy for such a situation. 

If the entire image was largely black, it would not be processed. If the image had a very low 

mean, then histogram was chopped in order to remove the texture at low intensity.

Algorithm validation is another issue worth further consideration. Length accuracy based on 

the gold standard is a straightforward and meaningful measure. However, several limitations 

need to be mentioned. First of all, the tool that was used to generate the gold standard, 

NeuronJ, is a semi-automated tool. Although it is often used in literature for validation 

purpose, its traces were computationally generated based on human interaction. This may 

have resulted in algorithm bias as well as human bias. Secondly, the current measure of 

length is a global measure that does not imply the quality of connectivity or agreement with 

the actual branches. For example, it is possible that some areas over-estimation overcome 

other areas underestimation.
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5.2 On Divide-and-Conquer

One important potential advantage of the grid-based divide-and-conquer strategy, in addition 

to those illustrated in the paper (e.g., better local adaptation), is that it opens up various 

possibilities of algorithm ensemble. The simple weighted combination we adopted already 

brings significant improvement over state-of-the-art methods. In future work, we will 

explore other possibilities of fusing different methods, which may lead to further improved 

efficacy.

We also need to point out that the divide-and-conquer strategy requires consideration to 

overcome the interference of the generated boundary edges during dendrite tracing and 

quantification, as explained in Section 3.3. The focus of the current work is to yield dendrite 

length automatically. This goal allows us to make use of the average of the results of 

multiple algorithms in the ensemble-based dendritic length estimation. It can also avoid the 

confusion between crossover and branching, which is a challenging issue for 2D images (it 

is less an issue for 3D images because crossovers do not overlap in 3D). For the individual 

tracing methods, such as AET and CSP, the strategy is expected to be extensible to 

calculating other morphometric conditions with additional effort. For example, the seed 

points along the boundary for AET and CSP can be examined and the traces can be linked 

over the neighboring grid windows, which can potentially yield morphometrics such as 

branch points and numbers.

In summary, this paper developed automatic algorithms as well as an open and free tool for 

dendritic length quantification in cultured mature mammalian neurons. The proposed 

method uses a divide-and-conquer strategy to tackle the complexity of the dendritic arbor 

and local variation. It also provides a framework for algorithm fusion. Proposed algorithms 

and ensemble strategy achieved improved efficacy for dendrite length estimation on high-

throughput images of cultured mammalian neurons.
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Figure 1. Example of high-throughput images of cultured mature mouse hippocampal neurons
This is a 2*2 montage obtained by BD Pathway Imaging system. Size: 2688*2048. Scale: 

0.15622 micron/pixel.
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Figure 2. The schematic illustration of our methodology
A. The raw image. Green channel is the MAP2 stained dendrite channel. B. Preprocessing of 

the dendrite channel including soma removal and image enhancement. C. The divide-and-

conquer framework for dendrite length quantification.
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Figure 3. 
An illustrative example for boundary analysis that reduces duplicate estimation.
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Figure 4. Dendrite length estimation Based on AET
A. Examples of grid window images. The detected initial points as indicated using blue 

arrows. B. Preprocessing to highlight the faint and/or broken dendrites using Hessian 

transform and histogram stretching. C. Stopping mask generation using RATS. D. 

Estimation algorithm flow. The branch on the right is traced first because it is thinner.
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Figure 5. Dendrite length estimation Based on CSP
The flow starts from finding initial points on post-Hessian grid window, followed by 

calculating and storing paths from legitimate pairs of initial points. The path placement is 

then repeated and traces are removed until all points are processed.
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Figure 6. Comparison of different search waves and choices of the cost function in CSP
A. Shortest path wavefront without threshold truncating. The yellow wavefront indicates the 

area where the pixels are searched. B. Shortest path wavefront with threshold truncating. C. 

Tracing results (in red) when using cost function with a logarithmic growth rate. D. Tracing 

results when using a cost function with linear growth rate. E. Tracing results when using a 

cost function with cubic growth rate. The branching curvature is better preserved compared 

with C and D.
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Figure 7. Comparison of the LSK method with global alternative
A. Original image (raw image has been enhanced for better visualization). Blue masks 

indicate the area with dim branches. B. Global skeletonization. C. LSK with the divide-and-

conquer strategy. The improved local adaptiveness allows better capturing of dim branches.
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Figure 8. Examples of results
A. LSK works with a grid window with multiple branches; B. AET works with a grid 

window with dim and broken branches; C. CSP works with a grid window of big curve 

change. D. An example of tracing results overlaid in the original image. The dotted red line 

indicates the trace. The small gaps between dots represent the step size of exploration 

tracing algorithm (set to 3 by default).
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Figure 9. Performance versus number of grids
The x coordinate is number of grids starting from 2*2 = 4, 3*3 =9, …, 20*20 = 400. The 

trendline is fitted using second order polynominal.
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Table 1

Results on high-throughput neuronal images. GS: dendrite length based on gold standard; Length: Estimated 

length based on algorithm ENS_AVG. ACC: accuracy in %.

# GS Length ACC

1 11520 10752 93.3

2 17465 16061 92.0

3 20066 16991 84.7

4 25054 20168 80.5

5 10128 8035 79.3

6 12379 10436 84.3

7 12478 13222 94.0

8 6917 4609 66.6

9 23606 20607 87.3

10 28826 23218 80.5

11 5746 6006 95.5

12 10561 10227 96.8

13 29952 25136 83.9

14 14194 12547 88.4

15 3908 4119 94.6

16 9421 7875 83.6

17 24865 22083 88.8

18 18937 15277 80.7

19 12246 11105 90.7

20 22355 19568 87.5

21 8940 8924 99.8

22 12929 12313 95.2

23 12126 11338 93.5

24 16634 14626 87.9

25 23057 19523 84.7

26 30080 24307 80.8

27 11769 14315 78.4

28 14236 15381 92.0

29 9060 9098 99.6

30 6976 6208 89.0

31 10769 12782 81.3

32 5614 6734 80.1

33 5981 5884 98.4

34 8547 9486 89.0

35 26897 25178 93.6

36 15211 16451 91.8
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# GS Length ACC

37 8267 7337 88.7

38 15177 15668 96.8

39 26241 26787 97.9

40 12088 14677 78.6

41 3276 3367 97.2

42 21449 24229 87.0

43 28883 25699 89.0

44 19376 18964 97.9

45 12289 16425 66.3

46 22164 21968 99.1

47 27477 27997 98.1

48 24114 26032 92.0

49 17694 18699 94.3

50 18346 20091 90.5

AVG 88.8
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