Skip to main content
Log in

N3DFix: an Algorithm for Automatic Removal of Swelling Artifacts in Neuronal Reconstructions

  • Software Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

It is well established that not only electrophysiology but also morphology plays an important role in shaping the functional properties of neurons. In order to properly quantify morphological features it is first necessary to translate observational histological data into 3-dimensional geometric reconstructions of the neuronal structures. This reconstruction process, independently of being manual or (semi-)automatic, requires several preparation steps (e.g. histological processing) before data acquisition using specialized software. Unfortunately these processing steps likely produce artifacts which are then carried to the reconstruction, such as tissue shrinkage and formation of swellings. If not accounted for and corrected, these artifacts can change significantly the results from morphometric analysis and computer simulations. Here we present N3DFix, an open-source software which uses a correction algorithm to automatically find and fix swelling artifacts in neuronal reconstructions. N3DFix works as a post-processing tool and therefore can be used in either manual or (semi-)automatic reconstructions. The algorithm’s internal parameters have been defined using a “ground truth” dataset produced by a neuroanatomist, involving two complementary manual reconstruction procedures: in the first, neuronal topology was faithfully reconstructed, including all swelling artifacts; in the second procedure a meticulous correction of the artifacts was manually performed directly during neuronal tracing. The internal parameters of N3DFix were set to minimize the differences between manual amendments and the algorithm’s corrections. It is shown that the performance of N3DFix is comparable to careful manual correction of the swelling artifacts. To promote easy access and wide adoption, N3DFix is available in NEURON, Vaa3D and Py3DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguiar, P., Sousa, M., & Szucs, P. (2013). Versatile morphometric analysis and visualization of the three-dimensional structure of neurons. Neuroinformatics, 11(4), 393–403.

    Article  PubMed  Google Scholar 

  • Anwar, H., Riachi, I., Hill, S., Schürmann, F., & Markram, H. (2010). An approach to capturing neuron morphological diversity (pp. 211–231). Computational Modeling Methods for Neuroscientists. E. d. Schutter: The MIT Press.

    Google Scholar 

  • Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci, 27(35), 9247–9251.

    Article  CAS  PubMed  Google Scholar 

  • Blackman, A. V., Grabuschnig, S., Legenstein, R., & Sjostrom, P. J. (2014). A comparison of manual neuronal reconstruction from biocytin histology or 2-photon imaging: morphometry and computer modeling. Front Neuroanat, 8, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon, R. C., Turner, D. A., Pyapali, G. K., & Wheal, H. V. (1998). An on-line archive of reconstructed hippocampal neurons. J Neurosci Methods, 84(1–2), 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Carnevale, N. T., Tsai, K. Y., Claiborne, B. J., & Brown, T. H. (1994). The electrotonic transformation: a tool for relating neuronal form to function. Advances in neural information processing systems. G. Tesauro, D. S. Touretzky and T. K. Leen, MIT press, Cambridge. MA, 7, 69–76.

    Google Scholar 

  • Glaser, J. R., & Glaser, E. M. (1990). Neuron imaging with Neurolucida–a PC-based system for image combining microscopy. Comput Med Imaging Graph, 14(5), 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L., & Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol, 568(Pt 1), 69–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grudt, T. J., & Perl, E. R. (2002). Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol, 540(Pt 1), 189–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halavi, M., Hamilton, K. A., Parekh, R., & Ascoli, G. A. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Front Neurosci, 6, 49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Comput, 9(6), 1179–1209.

    Article  CAS  PubMed  Google Scholar 

  • Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. J Comput Neurosci, 17(1), 7–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs, G., Claiborne, B., & Harris, K. (2010). Reconstruction of neuronal morphology (pp. 187–210). Computational Modeling Methods for Neuroscientists. E. d. Schutter: The MIT Press.

    Google Scholar 

  • Jaeger, D. (2001). Accurate Reconstruction of Neuronal Morphology. In: E. d. Schutter, Computational Neuroscience: Realistic Modeling for Experimentalists. CRC Press: 159–178.

  • Jorgenson, L. A., Newsome, W. T., Anderson, D. J., Bargmann, C. I., Brown, E. N., Deisseroth, K., et al. (2015). The BRAIN initiative: developing technology to catalyse neuroscience discovery. Philos Trans R Soc Lond Ser B Biol Sci, 370(1668).

  • Krichmar, J. L., Nasuto, S. J., Scorcioni, R., Washington, S. D., & Ascoli, G. A. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res, 941(1–2), 11–28.

    Article  CAS  PubMed  Google Scholar 

  • Luz, L. L., Szucs, P., Pinho, R., & Safronov, B. V. (2010). Monosynaptic excitatory inputs to spinal lamina I anterolateral-tract-projecting neurons from neighbouring lamina I neurons. J Physiol, 588(Pt 22), 4489–4505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markram, H. (2012). The human brain project. Sci Am, 306(6), 50–55.

    Article  PubMed  Google Scholar 

  • Marx, M., Gunter, R. H., Hucko, W., Radnikow, G., & Feldmeyer, D. (2012). Improved biocytin labeling and neuronal 3D reconstruction. Nat Protoc, 7(2), 394–407.

    Article  CAS  PubMed  Google Scholar 

  • Migliore, M., Cook, E. P., Jaffe, D. B., Turner, D. A., & Johnston, D. (1995). Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol, 73(3), 1157–1168.

    CAS  PubMed  Google Scholar 

  • Mukherjee, S., Condron, B., & Acton, S. T. (2015). Tubularity flow field–a technique for automatic neuron segmentation. IEEE Trans Image Process, 24(1), 374–389.

    Article  PubMed  Google Scholar 

  • Myatt, D. R., Hadlington, T., Ascoli, G. A., & Nasuto, S. J. (2012). Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology. Front Neuroinform, 6, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotechnol, 28(4), 348–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Bria, A., Zhou, Z., Iannello, G., & Long, F. (2014). Extensible visualization and analysis for multidimensional images using Vaa3D. Nat Protoc, 9(1), 193–208.

    Article  CAS  PubMed  Google Scholar 

  • Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., et al. (2015). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87(2), 252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popko, J., Fernandes, A., Brites, D., & Lanier, L. M. (2009). Automated analysis of NeuronJ tracing data. Cytometry A, 75(4), 371–376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc, 3(5), 866–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torben-Nielsen, B. (2014). An efficient and extendable python library to analyze neuronal morphologies. Neuroinformatics, 12(4), 619–622.

    Article  PubMed  Google Scholar 

  • Wang, Y., Narayanaswamy, A., Tsai, C. L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9(2–3), 193–217.

    Article  PubMed  Google Scholar 

  • Zador, A. M., Agmon-Snir, H., & Segev, I. (1995). The morphoelectrotonic transform: a graphical approach to dendritic function. J Neurosci, 15(3 Pt 1), 1669–1682.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). (ECS) was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds (FEDER), under the partnership agreement PT2020; and by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI). (PSz) was partially supported by the KTIA_NAP_13-2-2014-0005 grant of the Hungarian Government, and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

The work presented here received support and was potentiated by the BigNeuron hackathons (Peng, Hawrylycz et al. 2015). The authors would like to thank Xiaoxiao Liu and Zhi Zhou for help in the integration of N3DFix plugin in Vaa3D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Aguiar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conde-Sousa, E., Szücs, P., Peng, H. et al. N3DFix: an Algorithm for Automatic Removal of Swelling Artifacts in Neuronal Reconstructions. Neuroinform 15, 5–12 (2017). https://doi.org/10.1007/s12021-016-9308-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-016-9308-7

Keywords

Navigation