Skip to main content
Log in

Patch-Based Label Fusion with Structured Discriminant Embedding for Hippocampus Segmentation

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Automatic and accurate segmentation of hippocampal structures in medical images is of great importance in neuroscience studies. In multi-atlas based segmentation methods, to alleviate the misalignment when registering atlases to the target image, patch-based methods have been widely studied to improve the performance of label fusion. However, weights assigned to the fused labels are usually computed based on predefined features (e.g. image intensities), thus being not necessarily optimal. Due to the lack of discriminating features, the original feature space defined by image intensities may limit the description accuracy. To solve this problem, we propose a patch-based label fusion with structured discriminant embedding method to automatically segment the hippocampal structure from the target image in a voxel-wise manner. Specifically, multi-scale intensity features and texture features are first extracted from the image patch for feature representation. Margin fisher analysis (MFA) is then applied to the neighboring samples in the atlases for the target voxel, in order to learn a subspace in which the distance between intra-class samples is minimized and the distance between inter-class samples is simultaneously maximized. Finally, the k-nearest neighbor (kNN) classifier is employed in the learned subspace to determine the final label for the target voxel. In the experiments, we evaluate our proposed method by conducting hippocampus segmentation using the ADNI dataset. Both the qualitative and quantitative results show that our method outperforms the conventional multi-atlas based segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Carmichael, O. T., Aizenstein, H. A., Davis, S. W., Becker, J. T., Thompson, P. M., Meltzer, C. C., & Liu, Y. (2005). Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. NeuroImage, 27(4), 979–990.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Jie, B., Liu, M., Chen, S., Shen, D., & Zhang, D. (2015). Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment. Brain Imaging & Behavior, 1–12.

  • Chen, Z., Wang, Z., Zhang, D., Liang, P., Shi, Y., Shen, D., & Wu, G. (2017). Robust multi-atlas label propagation by deep sparse representation. Pattern Recognition, 63, 511–517.

    Article  Google Scholar 

  • Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins, D. L. (2011). Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage, 54, 940–954.

    Article  PubMed  Google Scholar 

  • Dong, P., Wang, L., Lin, W., Shen, D., & Wu, G. (2017). Scalable joint segmentation and registration framework for infant brain images. Neurocomputing, 229, 54–62.

  • He, X., Lum, A., Sharma, M., Brahm, G., Mercado, A., & Li, S. (2017). Automated segmentation and area estimation of neural foramina with boundary regression model. Pattern Recognition, 63, 625–641.

    Article  Google Scholar 

  • Jafari-Khouzani, K., Elisevich, K. V., Patel, S., & Soltanian-Zadeh, H. (2011). Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques. Neuroinformatics, 9(4), 335–346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, S., Gao, Y., Lian, J., & Shen, D. (2013). Sparse patch-based label propagation for accurate prostate localization in CT images. IEEE Transactions on Medical Imaging, 32, 419–434.

    Article  PubMed  Google Scholar 

  • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.

    Article  Google Scholar 

  • Rekik, I., Li, G., Wu, G., Lin, W., & Shen, D. (2015). Prediction of infant MRI appearance and anatomical structure evolution using sparse patch-based metamorphosis learning framework. In International Workshop on Patch-based Techniques in Medical Imaging (pp. 197–204). Springer, Cham.

  • Rincón, M., Díaz-López, E., Selnes, P., Vegge, K., Altmann, M., Fladby, T., et al. (2017). Improved automatic segmentation of white matter hyperintensities in mri based on multilevel lesion features. Neuroinformatics, 1–15.

  • Shen, D. (2007). Image registration by local histogram matching. Pattern Recognition, 40, 1161–1172.

    Article  Google Scholar 

  • Shi, F., Wang, L., Dai, Y., Gilmore, J. H., Lin, W., & Shen, D. (2012). LABEL: Pediatric brain extraction using learning-based meta-algorithm. NeuroImage, 62, 1975–1986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundar, H., Litt, H., & Shen, D. (2009). Estimating myocardial motion by 4D image warping. Pattern Recognition, 42, 2514–2526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong, T., Wolz, R., Coupé, P., Hajnal, J. V., & Rueckert, D. (2013). Initiative, A. D. N. & others segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. NeuroImage, 76, 11–23.

    Article  PubMed  Google Scholar 

  • Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29, 1310–1320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Suh, J. W., Das, S. R., Pluta, J. B., Craige, C., & Yushkevich, P. A. (2013). Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 611–623.

    Article  PubMed  Google Scholar 

  • Wang, Y., Ma, G., An, L., Shi, F., Zhang, P., Wu, X., Zhou, J., & Shen, D. (2016a). Semi-Supervised Tripled Dictionary Learning for Standard-dose PET Image Prediction using Low-dose PET and Multimodal MRI. IEEE Transactions on Biomedical Engineering, 1–1.

  • Wang, Y., Zhang, P., An, L., Ma, G., Kang, J., Shi, F., Wu, X., Zhou, J., Lalush, D. S., Lin, W., et al. (2016b). Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation. Physics in Medicine and Biology, 61, 791.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., Wang, Q., Lian, J., & Shen, D. (2013). Estimating the 4D respiratory lung motion by spatiotemporal registration and super-resolution image reconstruction. Medical Physics, 40(3), 532–539.

    Google Scholar 

  • Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., & Shen, D. (2015a). A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med Image Anal, 18(6), 881.

    Article  Google Scholar 

  • Wu, G., Kim, M., Wang, Q., Munsell, B. C., & Shen, D. (2015b). Scalable high-performance image registration framework by unsupervised deep feature representations learning. Deep Learning for Medical Image Analysis, 63(7), 1505–1516.

    Google Scholar 

  • Wu, G., Kim, M., Sanroma, G., Qian, W., Munsell, B. C., & Shen, D. (2015c). Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. NeuroImage, 106, 34–46.

    Article  PubMed  Google Scholar 

  • Zarei, M., Beckmann, C. F., Binnewijzend, M. A., Schoonheim, M. M., Oghabian, M. A., Sanz-Arigita, E. J., Scheltens, P., Matthews, P. M., & Barkhof, F. (2013). Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease. NeuroImage, 66, 28–35.

    Article  PubMed  Google Scholar 

  • Zhou, L., Wang, L., & Ogunbona, P. (2014). Discriminative sparse inverse covariance matrix: Application in brain functional network classification. Computer Vision and Pattern Recognition, 3097–3104.

  • Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2016). Learning discriminative bayesian networks from high-dimensional continuous neuroimaging data. IEEE Transactions on Pattern Analysis & Machine Intelligence, 38(11), 2269–2283.

    Article  Google Scholar 

  • Zhu, H., Cheng, H., Yang, X., & Fan, Y. (2017). Metric learning for multi-atlas based segmentation of hippocampus. Neuroinformatics, 15(1), 41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zu, C., Wang, Z., Zhang, D., Liang, P., Shi, Y., Shen, D., & Wu, G. (2017). Robust multi-atlas label propagation by deep sparse representation. Pattern Recogn, 63, 511–517.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSFC project 61701324, Sience&Technology Department of Sichuan Province 2016JZ0014, Open Fund Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University) (No. MJUKF201715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Appendix

Appendix

Given a sampled voxel z, the texture information from the image H we extract in this paper includes:

  1. 1.

    Outputs of FODs:

$$ \left\{H\left(\boldsymbol{z}+\boldsymbol{u}\right)-H\left(\boldsymbol{z}-\boldsymbol{u}\right),\boldsymbol{u}=\left(r\cos \theta \sin \phi, r\sin \theta \sin \phi, r\cos \phi \right)\right\} $$
  1. 2.

    Outputs of SODs:

$$ \left\{H\left(\boldsymbol{z}+\boldsymbol{u}\right)+H\left(\boldsymbol{z}-\boldsymbol{u}\right)-2H\left(\boldsymbol{z}\right),\boldsymbol{u}=\left(r\cos \theta \sin \phi, r\sin \theta \sin \phi, r\cos \phi \right)\right\} $$
  1. 3.

    Outputs of 3D Hyper plan filters:

$$ \left\{{\Psi_1}^{\ast}\left(H\left({C}_{3,3,1}\left(\boldsymbol{z}+\boldsymbol{u}\right)\right)-H\left({C}_{3,3,1}\left(\boldsymbol{z}-\boldsymbol{u}\right)\right)\right),\boldsymbol{u}=\left(0,0,1\right),{\Psi}_1=\left[\begin{array}{ccc}1& 1& 1\\ {}1& 1& 1\\ {}1& 1& 1\end{array}\right]\right\} $$
  1. 4.

    Outputs of 3D Sobel filters:

$$ \left\{{\Psi_2}^{\ast}\left(H\left({C}_{3,3,1}\left(\boldsymbol{z}+\boldsymbol{u}\right)\right)-H\left({C}_{3,3,1}\left(\boldsymbol{z}-\boldsymbol{u}\right)\right)\right),\boldsymbol{u}=\left(0,0,1\right),{\Psi}_2=\left[\begin{array}{ccc}1& 2& 1\\ {}2& 3& 2\\ {}1& 2& 1\end{array}\right]\right\} $$
  1. 5.

    Outputs of Laplacian filters:

$$ \sum \limits_{{\boldsymbol{z}}_1\in {O}_p\left(\boldsymbol{z}\right)}\left(H\left({\boldsymbol{z}}_1\right)-H\left(\boldsymbol{z}\right)\right),{O}_p\left(\boldsymbol{z}\right)\subseteq {C}_{3,3,3}\left(\boldsymbol{z}\right) $$
  1. 6.

    Outputs of range difference filters:

$$ {\max}_{{\boldsymbol{z}}_1\in {O}_p\left(\boldsymbol{z}\right)}\left(H\left({\boldsymbol{z}}_1\right)\right)-\underset{{\boldsymbol{z}}_1\in {O}_p\left(\boldsymbol{z}\right)}{\min}\left(H\left({\boldsymbol{z}}_1\right)\right),{O}_p\left(\boldsymbol{z}\right)\subseteq {C}_{3,3,3}\left(\boldsymbol{z}\right) $$

where Ca, b, c(z) represents a cube centered at z with size of a × b × c, u is the offset vector, r is the length of u, θ and ϕ are two rotation angles of u, Op(z) denotes the voxels in the p-neighborhood of z, denotes the convolution operation. FODs and SODs detect intensity change along a line segment. Here, we set r ∈ {1, 2, 3}, θ ∈ {0, π/4, π/2, 3π/4}, and ϕ ∈ {0, π/4, π/2}. 3D Hyperplane filters and 3D Sobel filters are the extensions of FODs and SODs in the plane. Filters along two other directions are also implemented. Laplacian filters are isotropic and detect second-order intensity changes. Range difference filters compute the difference between maximal and minimal values in the neighborhood for each voxel. In this paper, we determine the size of a neighborhood p ∈ {7, 19, 27}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, G., Wu, X. et al. Patch-Based Label Fusion with Structured Discriminant Embedding for Hippocampus Segmentation. Neuroinform 16, 411–423 (2018). https://doi.org/10.1007/s12021-018-9364-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9364-2

Keywords

Navigation