Skip to main content
Log in

Decreased Cerebral Blood Flow in Mesial Thalamus and Precuneus/PCC during Midazolam Induced Sedation Assessed with ASL

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

While some previous work suggests that midazolam-induced light sedation results from the functional disconnection within resting state network, little is known about the underlying alterations of cerebral blood flow (CBF) associated with its effects. A randomized, double-blind, within-subject, cross-over design was adopted, while 12 healthy young volunteers were scanned with arterial spin-labeling (ASL) perfusion MRI both before and after an injection of either saline or midazolam. The contrast of MRI signal before and after midazolam administration revealed the CBF decrease in the bilateral mesial thalamus and precuneus/posterior cingulate cortex (PCC). These effects were confirmed after controlling for any effect of injection as well as head motions. These findings provide new evidences that midazolam-induced light sedation is related to the disruption of cortical functional integration, and have new implications to the neural basis of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkire, M. T., Haier, R. J., Shah, N. K., & Anderson, C. T. (1997). Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology, 86, 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322, 876–880.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arend, I., Rafal, R., & Ward, R. (2008). Spatial and temporal deficits are regionally dissociable in patients with pulvinar lesions. Brain, 131(8), 2140–2152.

    Article  PubMed  Google Scholar 

  • Birn, R. M., Smith, M. A., Jones, T. B., & Bandettini, P. A. (2008). The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage, 40, 644–654.

    Article  PubMed  Google Scholar 

  • Boveroux, P., Vanhaudenhuyse, A., Bruno, M. A., Noirhomme, Q., Lauwick, S., Luxen, A., et al. (2010). Breakdown of within- and betweennetwork resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology, 113, 1038–1053.

  • Chernik, D. A., Gillings, D., Laine, H., Hendler, J., Silver, J. M., Davidson, A. B., et al. (1990). Validity and reliability of the observer’s assessment of alertness/sedation scale: Study with intravenous midazolam. Journal of Clinical Psychopharmacology, 10, 244–251.

  • Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P., et al. (1999). Brain mechanisms of propofol-induced loss of consciousness in humans: A positron emission tomographic study. The Journal of Neuroscience, 19, 5506–5513.

    Article  PubMed  CAS  Google Scholar 

  • Franks, N. P. (2008). General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nature Reviews. Neuroscience, 9, 370–386.

    Article  PubMed  CAS  Google Scholar 

  • Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionpää, V., Alahuhta, S., Reiss, A. L., & Menon, V. (2008). Persistent default-mode network connectivity during light sedation. Human Brain Mapping, 29, 839–847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guldenmund, P., Demertzi, A., Boveroux, P., Boly, M., Vanhaudenhuyse, A., Bruno, M. A., Gosseries, O., Noirhomme, Q., Brichant, J. F., Bonhomme, V., Laureys, S., & Soddu, A. (2013). Thalamus, brainstem and salience network connectivity changes during propofolinduced sedation and unconsciousness. Brain Connectivity, 3, 273–285.

    Article  PubMed  Google Scholar 

  • Johnston, A. J., Steiner, L. A., Chatfield, D. A., Coleman, M. R., Coles, J. P., et al. (2003). Effects of propofol on cerebral oxygenation and metabolism after head injury. British Journal of Anaesthesia, 91, 781–786.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, D., Ilg, R., Riedl, V., Schorer, A., Grimberg, S., Neufang, S., et al. (2013). Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness. Anesthesiology, 119, 1031–1042.

    Article  PubMed  Google Scholar 

  • Kaisti, K. K., Metsähonkala, L., Teräs, M., Oikonen, V., Aalto, S., Jääskeläinen, S., Hinkka, S., & Scheinin, H. (2002). Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology, 96(6), 1358–1370.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. G., & Duong, T. Q. (2002). Mapping cortical columnar structures using fMRI. Physiology & Behavior, 77, 641–644.

    Article  CAS  Google Scholar 

  • Kiviniemi, V. J., Haanpää, H., Kantola, J. H., Jauhiainen, J., Vainionpää, V., Alahuhta, S., & Tervonen, O. (2005). Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magnetic Resonance Imaging, 23, 531–537.

    Article  PubMed  CAS  Google Scholar 

  • Långsjö, J. W., Maksimow, A., Salmi, E., Kaisti, K., Aalto, S., Oikonen, V., Hinkka, S., Aantaa, R., Sipilä, H., Viljanen, T., Parkkola, R., & Scheinin, H. (2005). S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology, 103(2), 258–268.

    Article  PubMed  Google Scholar 

  • Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in coma, vegetative state, and related disorders. Lancet Neurology, 3, 537–546.

    Article  PubMed  Google Scholar 

  • Liang, P., Manelis, A., Liu, X., Aizenstein, H. J., Gyulai, F., Quinlan, J. J., & Reder, L. M. (2012). Using arterial spin labeling perfusion MRI to explore how midazolam produces anterograde amnesia. Neuroscience Letters, 522, 113–117.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liang, P., Zhang, H., Xu, Y., Jia, W., Zang, Y., & Li, K. (2015). Disruption of cortical integration during midazolam-induced light sedation. Human Brain Mapping, 36(11), 4247–4261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, T. T., & Brown, G. G. (2007). Measurement of cerebral perfusion with arterial spin labeling: Part 1. Methods. Journal of the International Neuropsychological Society, 13, 517–525.

    Article  PubMed  Google Scholar 

  • MacDonald, A. A., Naci, L., MacDonald, P. A., & Owen, A. M. (2015). Anesthesia and neuroimaging: Investigating the neural correlates of unconsciousness. Trends in Cognitive Science, 19, 100–107.

    Article  Google Scholar 

  • Nyhus, E., & Curran, T. (2012). Midazolam-induced amnesia reduces memory for details and affects the ERP correlates of recollection and familiarity. Journal of Cognitive Neuroscience, 24, 416–427.

    Article  PubMed  Google Scholar 

  • Park, H., Quinlan, J., Thornton, E., & Reder, L. M. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. Proceedings of the National Academy of Sciences of the United States of America, 101, 17879–17883.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reder, L. M., Oates, J. M., Thornton, E. R., Quinlan, J. J., Kaufer, A., & Sauer, J. (2006). Drug induced amnesia hurts recognition, but only for memories that can be unitized. Psychology Science, 17, 562–567.

    Article  Google Scholar 

  • Schlunzen, L., Vafaee, M. S., Cold, G. E., Rasmussen, M., Nielsen, J. F., & Gjedde, A. (2004). Effects of subanaesthetic and anaesthetic doses of sevoflurane on regional cerebral blood flow in healthy volunteers. A positron emission tomographic study. Acta Anaesthesiologica Scandinavica, 48, 1268–1276.

    Article  PubMed  CAS  Google Scholar 

  • Shmueli, K., van Gelderen, P., de Zwart, J. A., Horovitz, S. G., Fukunaga, M., Jansma, J. M., & Duyn, J. H. (2007). Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. NeuroImage, 38, 306–320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veselis, R. A., Reinsel, R. A., Beattie, B. J., et al. (1997). Midazolam changes cerebral blood flow in discrete brain regions. An H215O positron emission tomography study. Anesthesiology, 87, 1106–1117.

    Article  PubMed  CAS  Google Scholar 

  • Veselis, R. A., Feshchenko, V. A., Reinsel, R. A., Dnistrian, A. M., Beattie, B., & Akhurst, T. J. (2004). Thiopental and propofol affect different regions of the brain at similar pharmacologic effects. Anesthesia and Analgesia, 99, 399–408.

    PubMed  CAS  Google Scholar 

  • Veselis, R. A., Feshchenko, V. A., Reinsel, R. A., Beattie, B., & Akhurst, T. J. (2005). Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations. Anesthesiology, 102(1), 26–34.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2003). Arterial spin labeling perfusion fMRI with very low task frequency. Magnetic Resonance in Medicine, 49, 796–802.

    Article  PubMed  Google Scholar 

  • Wang, J., Aguirre, G. K., Kimberg, D. Y., Roc, A. C., Li, L., & Detre, J. A. (2004). Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 tesla. Magnetic Resonance Imaging, 22, 1–7.

    Article  PubMed  Google Scholar 

  • Wang, J., Zhang, Y., Wolf, R. L., Roc, A. C., Alsop, D. C., & Detre, J. A. (2005). Amplitude modulated continuous arterial spin labeling perfusion MR with single coil at 3T-feasibility. Radiology, 235, 218–228.

    Article  PubMed  Google Scholar 

  • Wang, Z., Aguirre, G. K., Rao, H., Wang, J., Fernández-Seara, M. A., Childress, A. R., & Detre, J. A. (2008). Empirical ASL data analysis using an ASL data processing toolbox: ASLtbx. Magnetic Resonance Imaging, 26, 261–269.

    Article  PubMed  Google Scholar 

  • Xie, G., et al. (2011). Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: A positron emission tomography study. British Journal of Anaesthesia, 106(4), 548–557.

    Article  PubMed  CAS  Google Scholar 

  • Young, A. B., & Chu, D. (1990). Distribution of GABAA and GABAB receptors in mammalian brain: Potential targets for drug development. Drug Development Research, 21, 161–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 61473196) and Beijing Talents foundation (2016000021223TD07). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We’d like to thank Dr. Xiaoxuan He in assisting the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peipeng Liang.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, P., Xu, Y., Lan, F. et al. Decreased Cerebral Blood Flow in Mesial Thalamus and Precuneus/PCC during Midazolam Induced Sedation Assessed with ASL. Neuroinform 16, 403–410 (2018). https://doi.org/10.1007/s12021-018-9368-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9368-y

Keywords

Navigation