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Abstract

Accurate and automatic prediction of cognitive assessment from multiple neuroimaging 

biomarkers is crucial for early detection of Alzheimer’s disease. The major challenges arise from 

the nonlinear relationship between biomarkers and assessment scores and the inter-correlation 

among them, which have not yet been well addressed. In this paper, we propose multi-layer multi-

target regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations 

and nonlinear input-output relationships in a general compositional framework. Specifically, by 

kernelized dictionary learning, the MMR can effectively handle highly nonlinear relationship 

between biomarkers and assessment scores; by robust low-rank linear learning via matrix elastic 

nets, the MMR can explicitly encode inter-correlations among multiple assessment scores; 

moreover, the MMR is flexibly and allows to work with non-smooth l2,1-norm loss function, 

which enables calibration of multiple targets with disparate noise levels for more robust parameter 

estimation. The MMR can be efficiently solved by an alternating optimization algorithm via 

gradient descent with guaranteed convergence. The MMR has been evaluated by extensive 

experiments on the ADNI database with MRI data, and produced high accuracy surpassing 

previous regression models, which demonstrates its great effectiveness as a new multi-target 

regression model for clinical multivariate prediction.
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Introduction

Alzheimer’s disease (AD) is the most common cause of dementia and is characterized by 

progressive loss of memory. AD severely impacts human thinking and behavior. The 

influence of AD is both extensive and complex, making it difficulties to prevent or diagnose 

this disease (Association et al. 2016). Neuroimaging techniques provide a powerful tool for 

the early diagnosis and response monitoring of Alzheimer’s such that the diagnostic 

capabilities can be improved. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

study (Jack et al. 2008; Mueller et al. 2005) collects neuroimaging and cognitive 

measurement of normal aging, mild cognitive impairment as well as AD samples, which 

provides a wealth of resources for the study of Alzheimer’s diagnosis, treatment and 

prevention.

According to the statistics in Association et al. (2016), by 2016 Alzheimer’s affects a total of 

5.4 million American people. This disease is incurable and there is no accurate way to 

diagnose AD. Thus, the current consensus emphasizes the need to diagnose and explore 

cognitive performance of brain function. Several cognitive tests have been presented to 

assess individual’s cognitive level, such as Mini-Mental State Examination (MMSE) 

(Folstein et al. 1975) and Rey Auditory Verbal Learning Test (RAVLT) (Schmidt and et al. 

1996). In recent AD research, a wide range of work has employed regression models to 

uncover the relationship between neuroimaging data and cognitive test scores (Seshadri et al. 

2007; Moradi et al. 2016). The major challenges arise from the jointly modeling nonlinear 

relationship between biomarkers and assessment scores and the intrinsic correlation among 

assessment scores.

Since the biomarkers are features extracted from imaging data and therefore contain 

relatively low-level information, while the assessment scores are high-level measurement of 

disease progress, the relationship between biomarkers and scores tends be complex and 

highly nonlinear. However, most previous methods use linear regression models to predict 

the relationship between imaging biomarkers and cognitive assessment (Ferrarini et al. 2008; 

Moradi et al. 2016), which is not appropriate to illustrate the complex influence of brain 

structure impairment.

Since different cognitive assessment scores provide the measurement related to the same 

disease progress, these scores as regression targets are correlated. Finding out such inter-

target relations can be beneficial to analyzing the influence of neuroimaging biomarkers on 

memory assesment performance. In this paper, we address cognition assessment by 

formulating it as a multi-task learning problem with a newly proposed multi-target 

regression (a.k.a., multi-output regression) model. Although multi-target regression has been 

extensively explored, existing models have some shortcomings and would not achieve 

satisfactory performance on our specific application.

To explore inter-target correlations, existing multi-target regression models were focused 

mainly on linear regression models (Rothman et al. 2010; Sohn and Kim 2012; Rai et al. 

2012; Gong et al. 2014; Liu et al. 2014; Pan et al. 2015; Zhu et al. 2017) or specifically 

developed under particular assumptions with prior knowledge (Argyriou et al. 2008; 
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Agarwal et al. 2010; Zhang and Yeung 2013; Kumar and Daume 2012; Ciliberto et al. 2015), 

which facilitates the correlation modeling. By building upon linear regression models, 

sparsity or low rank is simply imposed on the regression matrix to capture inter-target 

correlations (Kolar et al. 2011; Liu et al. 2014; Molstad and Rothman 2015); however, these 

linear models suffer from the limited ability to handle nonlinear relationships between high-

dimensional inputs and multiple targets (Hara and Chellappa 2014), and moreover it is non-

trivial to extend these linear models for nonlinear regression due to the non-convexity of 

sparsity constraints or loss functions (Liu et al. 2014; Dinuzzo and Schölkopf 2012). By 

making some specific assumptions, e.g., regression task parameters share a common prior 

(Yu et al. 2005; Lee et al. 2007; Daume´ III 2009), or lie in on a low-dimensional manifold 

(Agarwal et al. 2010) or share a linear subspace (Kumar and Daume 2012), particular inter-

target correlations were explored in previous work (Yu et al. 2005; Lee et al. 2007; Daume´ 

III 2009; Agarwal et al. 2010; Kumar and Daume 2012); however, these assumptions can be 

too restrictive and would not necessarily hold or be shared by different applications in 

practice (Zhang and Yeung 2014), which makes them lack of generality.

To handle the complex nonlinear input-output relationships, kernel methods (Evgeniou et al. 

2005; Alvarez et al. 2012; Li et al. 2015) were extended from single task learning to multi-

task learning. In Evgeniou et al. (2005), the regression matrix of multiple tasks is simply 

reshaped into a vector to explore inter-target correlations, which however does not 

distinguish between inter and intra tasks and tends to be less effective to encode the 

correlations. Moreover, the method assumes that the task similarity between tasks is given 

and the regularization term is based on the similarity which however is mostly unknown and 

varies dramatically with different applications. In addition, since the similarity is 

nonnegative, the model can only model positive relationships between multiple tasks.

To achieve this goal, in this paper we propose a novel model, Multi-layer Multi-target 

Regression (MMR). Our model enables simultaneously modeling intrinsic inter-target 

correlations and complex input-output relationships in one single general framework. The 

MMR accomplishes a multi-layer learning architecture which is composed of the input, 

hidden and target (output) layers as illustrated in Fig. 1.

The proposed MMR leverages the strength of kernel methods for nonlinear feature learning 

and the structural advantage of multi-layer architectures to capture inter-target correlations, 

which could explicitly encode the correlations among different cognitive learning tasks. 

More importantly, it provides a new multi-layer learning paradigm that is endowed with high 

generality, flexibility and expressive ability for multi-target clinical data prediction.

The contributions of this work are summarized as follows:

– We formulate cognitive assessment as a multi-task learning problem, which is 

fulfilled by a newly proposed multi-layer multi-target regression (MMR) model.

– We introduce the compositional learning framework which enables jointly 

modeling nonlinear input-output relationship and intrinsic inter-target 

correlations.
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– We introduce the l2,1-norm loss function to achieve automatic calibration of 

multiple targets with disparate noise levels, which enables more robust 

parameter estimation.

Related Work

In this section, we briefly review related work in terms of both multi-target regression and 

the Alzheimer’s disease application.

Since AD is a chronic neuro-degenerative disease, it is important to reveal the correlation 

between changes in brain structure and cognitive dysfunction. Recent studies have employed 

different machine learning models to analyze the association between imaging markers and 

cognitive performance. In Ferrarini et al. (2008), the authors employed linear regression 

models to evaluate the correlation between structural brain atrophy and MMSE cognitive 

score, where well-defined periventricular structures like left temporal horn, left corona 

radiata, and the right caudate nuclei were found to have distinct impact on the performance 

in MMSE cognitive test.

Moradi et al. (2016) applied elastic net linear regression in the prediction of RAVLT test 

score via MRI data. They identified several neuroimaging features for the estimation of 

RAVLT, including medial temporal lobe structures angular gyrus, hippocampus and 

amygdala, which shed insights on understanding the influence of these important brain 

regions for episodic memory.

Falahati et al. (2016) conducted a longitudinal investigation among an non-demented and 

stroke-free people from the Rotterdam study. By means of linear and Cox regression models, 

the authors revealed the correlation between hippocampal subiculum and the onset of 

dementia, which indicated an important marker for dementia prediction.

Zhu et al. (2015) combined support vector regression (SVR) and support vector machine 

(SVM) to jointly predict the clinical scores as well as the disease status. They formulated the 

joint learning process in a multi-task learning framework such that different tasks will 

strengthen each other in AD diagnosis.

The successful applications of machine learning approaches in the prediction of cognitive 

impairment strengthened the study of underlying pathology in Alzheimer’s. In a cognitive 

assessment, there are usually several different tests involved. The output from different tests 

can be correlated. Rothman et al. (2010) put forward an approach to explore the output 

structure. They proposed a multivariate regression model with covariance estimation 

(MRCE), in which a procedure is developed for constructing a sparse estimator of a 

multivariate regression coefficient matrix that accounts for correlation of the response 

variables. However, the MRCE does not leverage the learned output structure to share 

similar input variables among related outputs (Sohn and Kim 2012). Moreover, it is a linear 

regression model with limited ability to handle nonlinear regression tasks.

Moreover, if we treat the estimation of each cognitive test score as one task, we can naturally 

formulate the situation of multiple cognitive test estimation as a multi-task learning problem. 
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Previous machine learning models provided different approaches on how to automatically 

capture the structure among tasks. In Zhang and Yeung (2014), Zhang and Yeung proposed a 

convex formulation for multi-task relationship learning (MTRL), which models the 

relationships between tasks in a nonparametric manner based on the assumption that all 

tasks are close to each other by measuring the Frobenius norms of their differences. The 

MTRL is developed based on prior assumptions of multivariate normal distributions on both 

multiple targets and regression parameters. However, those assumptions do not necessarily 

hold in practice or be shared by different applications.

The MTRL is further generalized in Rai et al. (2012) where multi-target regression with 

output and task structures (MROTS) is proposed to jointly explore the covariance structure 

of latent model parameters and the conditional covariance structure of multiple targets. 

MROTS outperforms both MTRL and MRCE, which however similar to the MRCE 

(Rothman et al. 2010) does not admit trivial extensions to nonlinear regression. Sohn and 

Kim (2012) introduce a matrix l1 norm based inverse-covariance regularization for joint 

estimation of structured sparsity and output structure for multi-target regression, where the 

output structure of multiple targets is represented as a graph.

Inter-target correlation has also been investigated in kernel scenarios. the output kernel 

learning (OKL) was developed for vector-valued functions to explore inter-target 

correlations for multiple task learning (Alvarez et al. 2012; Dinuzzo et al. 2011; Dinuzzo 

2013). Nevertheless, the OKL does not fully capture inter-target correlations since it simply 

learns a semi-definite similarity matrix of multiple targets.

Multi-target regression has also been studied under the framework of ensemble learning. A 

fitted rule ensembles (FIRE) algorithm is introduced in Aho et al. (2012) to improve multi-

target regression by adding simple linear functions to the ensemble. Based on ensemble 

learning, Tsoumakas et al. (2014) construct new target variables by random linear 

combination (RLC) of existing targets, which is heuristically derived from multi-label 

classification. However, those methods fail to take into account the correlation of multiple 

targets.

Recently, Zhou and Zhao (2016) propose flexible clustered multi-task (FCMTL) which is an 

improved version of clustered multi-task learning (CMTL). In order to explore inter-target 

correlation, also based on the cluster assumption, the cluster structure is learned in FCMTL 

by identifying representative tasks. However, the assumption of the existence of 

representative tasks would be too strong and not necessarily shared by different applications 

due to the diversity.

Multi-Layer Multi-Target Regression

Multi-Target regression is to learn a holistic mapping function h from the input space X ∈ 
ℝd to the multivariate target (output) space y ∈ ℝQ, where d is the dimensionality of the 

input space and Q is the number of targets. We will find a function h that is able to 

simultaneously handle the aforementioned multiple challenges within one single framework 

by a general compact formulation of compositional learning.
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A General Compositional Learning Framework

Given a training set of training data X = {x1,…, xi,…, xN } associated with targets Y = {y1,

…, yi,…, yN }, the MMR seeks a mapping function h: X → Y, which takes a generic 

formula as follows

y = h x = f g x = f o g x (1)

where g and f are two functions that are jointly learned to establish the overall mapping h 
from input image representations to target shapes. g serves to extract high-level features, i.e., 

the latent variables, z that span the latent space, where z ∈ ℝQ,

z = g x (2)

From the latent space, we propose explicitly encoding the inter-target correlations via f by:

y = f z (3)

Both g and f can be customized according to diverse applications and regulated by different 

constraints to favor specific properties, which ensures the generality of the MMR. It 

establishes a multi-layer learning architecture which is endowed with high generality, great 

flexibility and strong expressive ability to jointly handle highly complex input-output 

relationships and intrinsic correlations of multiple targets in one single framework.

The functions f and g can be found by the following general regularized learning framework:

min
f , g ∈ ℋK

1
𝒩 i

𝒩
ℒ f , g, xi, yi + λΩ g + βΩ f (4)

where ℒ is the general loss function which could be the least square error or the hinge loss; 

λ and β are the regularization parameters; Ω(g) is the regularization term g to control its 

complexity to prevent overfitting; Ω(f) is the regularization term on S to encode intrinsic 

inter-target correlations. The latent variables can be viewed as higher-level features that 

facilitate jointly modeling input-output relationships and inter-target correlation. In the 

following, we specify functions f and g to achieve the multi-layer multi-target regression 

(MMR).

Nonlinear Learning via Kernelized Dictionary

We propose building the nonlinear function g via Kernelized dictionary rather than based on 

the kernel extension of a linear regression model (Zhen et al. 2017). Specifically, the 

function g takes the following forms:
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z =
i = 1

N
αiK xi, x = AKx (5)

Where K xi, ⋅
i = 1
N  is the Kernelized dictionary, kx = [… ;k(xi, x); …] ∈ ℝN; α ∈ ℝQ is the 

coefficients associated with each atom in the dictionary and A ∈ ℝQ×N = [α1, …, αi, …, 
αN]. To achieve nonlinear learning, we usually employ the radius basis function as the 

kernel function, i.e., k(xi, xj ) = exp(||xi − xj ||2/σ 2), where σ is the band width.

It is notable that (5) is the multivariate extension of the conventional kernel dictionary (Feng 

et al. 2016), which has recently drawn great attention. The advantages of using kernelized 

dictionary for nonlinear learning rather than kernel extension (Zhen et al. 2017) lie in two 

major aspects. On one hand, the kernel k is not necessarily the Mercer kernel, which makes 

learning more applicable because the Mercer condition on the kernel may be difficult to 

satisfy. On the other hand, it allows to more flexibly design loss functions, not necessarily 

restricted to strictly smooth functions. This benefit will be shown in the calibration of 

multiple targets (Section 3).

If we choose the Frobenius norm loss, the objective function (4) turns out to be the form as 

follows

min
f , A

1
𝒩 Y − AK F

2 + λ A F
2 + βΩ f (6)

The multi-target regression model in (6) is decoupled into several single-target problems, 

which does not take into account inter-target correlations, resulting in suboptimal multi-

target regression with inferior performance. In what follows, we introduce our MMR, which 

is a multi-layer learning architecture to explicitly model the correlations by a robust low-

rank learning with matrix elastic nets (MEN).

Robust Low-Rank Learning via Matrix Elastic Nets

Rather than directly imposing sparsity regression coefficients in existing methods, we 

propose incorporating a structure matrix S to explicitly encode inter-target correlations via a 

rank minimization.

min
W , S

1
𝒩 Y − SZ F

2 + λ A F
2 + βRank S + γ S F

2 , (7)

where Z = [z1,…, zi,…, zN ] ∈ ℝQ×N, zi = Akxi ∈ ℝQ contains the latent variables in the 

latent space, S ∈ ℝQ×Q is the structure matrix that serves to explicitly model inter-target 

correlations, β is the regularization parameter to control the rank of S, that is, a larger β 
induces lower rank, and the Frobenius norm control the shrinkage of S with the associated 
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parameter γ. The rank minimization of the structure matrix S explores the low-rank structure 

existing between tasks to capture the intrinsic inter-target correlation. S is learned 

automatically from data without relying on any specific assumptions, which allows to 

adaptively cater different applications.

However, the objective function in (7) is NP-hard due to the noncontinuous and non-convex 

nature of the rank function. The nuclear norm ||S||* is commonly used and has been proven 

to be the convex envelop of the rank function over the domain ||S||2 ≤ 1, which provides the 

tightest lower bound among all convex lower bounds of the rank function Rank(S).

As a consequence, the combination of the nuclear norm with the Frobenius norm on S gives 

rise to the matrix elastic net (MEN) (Li et al. 2012) as a regularizer of (7):

min
W , S

1
𝒩 Y − SZ F

2 + λ A F
2 + β S * + γ S F

2 , (8)

where the nuclear norm ||S||* is also known as the trace norm.

The MEN is an analog to the elastic-net regularization (Zou and Hastie 2005) from 

compressive sensing and sparse representation (Zou and Hastie 2005). It has been shown 

that the elastic net often outperforms the lasso (Zou and Hastie 2005). In the MEN, the 

nuclear-norm constraint enforces the low-rank property of the solution S to encode inter-

target correlations, and the Frobenius-norm constraint induces a linear shrinkage on the 

matrix entries leading to stable solutions (Li et al. 2012). The MEN regularization 

generalizes the matrix lasso and provides improved performance than lasso (Tibshirani 

1996). To the best of our knowledge, this is the first work that introduces the MEN to multi-

target regression for robust low-rank learning, which offers a general framework to encode 

inter-target correlations.

Calibration of Multiple Targets

Multivariate targets (outputs) exhibit distinct noise levels which are usually unknown a priori 
in practice (Rakitsch et al. 2013; Gillberg et al. 2016). It is theoretically shown that 

regularization parameters should be chosen in proportion to the maximum standard 

deviations of the noise for each target to achieve optimal parameter estimation error bound 

(Lounici et al. 2011). It is crucial to take into account the disparate noise levels of 

multivariate targets to achieve robust parameter estimation for improved prediction 

performance.

We replace the Frobenius norm in (8) with the l2,1-norm as the loss function to calibrate 

multivariate targets (Liu et al. 2014), which accomplishes the final objective function as 

follows:

min
A, S

1
𝒩 Y − SAK 2, 1 + λtr A⊤A + βtr( S⊤S) + γtr S⊤S . (9)
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In (9), the induced latent variables Z = Ak can extract high-level representations for multiple 

semantic targets, which allows to disentangle the nonlinear relationship between low-level 

inputs and semantic-level targets. The latent variables are represented by notes of hidden 

layers in Fig 1. The latent space with high-level features will also facilitate the efficient 

linear low-rank learning of S to model inter-target correlations to achieve more accurate 

multi-target prediction. The MMR in (9) leverages the strength of kernel methods for 

nonlinear feature extraction and the structural advantage of multi-layer architectures for 

inter-target correlation modeling. In contrast to existing multi-target regression models, the 

obtained MMR in (9) accomplishes a new multi-layer learning architecture, which 2 min is 

endowed with great generality, flexibility and expressive ability for diverse challenging 

tasks. We derive a new alternating optimization algorithm to efficiently solve the objective in 

(9), which associated with the convergence proof is attached in the supplementary material 

due to the space limit.

Alternating Optimization

The obtained objective function (9) is non-trivial to solve simultaneously for A and S due to 

the non-convexity of the objective function. We derive a new alternating optimization 

algorithm to efficiently solve the objective function. Denote J (A, S) as the objective 

function in (9), and we seek A and S alternately by solving J (A, S) for one with the other 

fixed.

Fix S to Optimize A

We calculate the gradients of the objective function with respect to A as follows:

∂J
∂A = − 1

𝒩S⊤G Δ K + λA . (10)

Where

G ii = 1
2 Δ 2

(11)

and ∆ = Y − SAk. Denote 𝒢 A ∂J
∂A . A is updated by gradient descent as

At + 1 = At − ηt𝒢 At . (12)

where ηt is the learning rate which can adaptively chosen by line search algorithms (Armijo 

1966).
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Fix A to Optimize S

We propose a gradient based alterative optimization to solve for S, before which we provide 

the following proposition to calculate the derivative of J w.r.t. S.

Proposition 1 Assume that the singular value decomposition (SVD) of S is

S = U∑V⊤, (13)

where U and V are unitary matrices and Σ is the diagonal matrix with real numbers on the 
diagonal. Then the derivative of ||S||* w.r.t. S takes the form as follows:

∂ S *
∂S = UV⊤ (14)

The proof is provided in the Appendix section.

Proposition 1 associated with the rigorous proof provides a theoretical foundation, which 

can be directly used to solve a large while important family of optimization problems with 

trace norm minimization.

Based on the Proposition 1, we have the derivative of J w.r.t S as follows:

∂J
∂S = − 2 1

𝒩 Y − SAK AK ⊤ + βUV⊤ + 2γS (15)

where U and V are obtained by the SVD in (13).

Denote G(S) as the gradient w.r.t. S in (15). Therefore, S can be solved by an iterative 

optimization based on gradient descent.

St + 1 = St − ηt𝒢 St (16)

where ηt is the learning rate, which can be adaptively chosen by line search algorithms 

(Armijo 1966). In each iteration, St+1 is calculated with the current St associated with U, Σ 
and V. Since the objective function J (A, S) is convex with respect to S, it is guaranteed to 

find a global minimum of S.

Note that the size of S depends only on the number 2 of targets, which is usually much 

smaller than the dimensionality d of inputs. Therefore, the complexity of the singular value 

decomposition (SVD) of the structure matrix S involved in the calculation of the derivative 

of the nuclear norm is O (Q3). This guarantees the efficiency of both the iterative algorithm 

to update S and the alternating optimization algorithm (Algorithm 1).
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Algorithm   1 Alternating Optimization
Require:Data matrices X associated with corresponding
  targets Y ,   regularization parameters   λ,   β and and   γ .
Ensure:The regression coefficient matrix A and the  

structure matrix S .

1:Randomly initialize S ∈ ℝ𝒬 × 𝒬and set i   =   1;
2:repeat
3:Update A using  12 ;
4:Update S using  16 ;
5: i i +   1;
6:until Convergence .

Convergence Analysis

The efficiency of the proposed MMR is ensured by the guaranteed convergence of the 

newly-derived alternating optimization algorithm. The objective function J (A, S) in Section 

3 is bounded from below and monotonically decreases with each optimization step for A and 

S, and therefore it converges. We give the brief sketch of the convergence analysis.

Since J (A, S) is the summation of norms, we have J (A, S) ≥ 0 for any A and S. Then J (A, 
S) is bounded from below. Denote A(t) and S(t) as the A and S in the t -th iteration, 

respectively. For the t -th step, A(t) is computed by A(t) ← arg minA J (A, S(t−1)). And we 

also have J (A(t), S(t−1)) ≥ J (A(t), S(t)). In this way, we obtain the following inequality:

⋅ ⋅ ⋅ ≥ J(A t − 1 , S t − 1 ) ≥ J(A t , S t − 1 ) ≥ J(A t , S t ) ≥ ⋅ ⋅ ⋅ .

Therefore, J (A(t), S(t)) is monotonically decreasing as t → +∞, which indicates that the 

objective function J (A, S) converges according to the monotone convergence theorem.

Experiments and Results

In this section, we conduct extensive experiments to test the performance of the proposed 

multi-layer multi-target regression (MMR) model in predicting cognitive scores on public 

ADNI data. We provide comprehensive comparison with representative multi-output 

regression models to show the advantages of the MMR. The experimental results have 

demonstrated the effectiveness of the MMR for cognitive assessment of AD.

Data Description

The data used in this article comes from the ADNI database (adni.loni.usc.edu). Firstly, for 

each MRI T1-weighted image, we corrected the anterior commissure (AC) posterior 

commissure (PC) via MIPAV2; corrected the intensity inhomogeneity using N3 algorithm 

(Sled et al. 1998); stripped the skull (Wang et al. 2011) with manual editing, and removed 

the cerebellum (Wang et al. 2014). Afterwards, we divided the image into gray matter (GM), 

white matter (WM), as well as cerebrospinal fluid (CSF) by means of FAST (Zhang et al. 

2001) in the FSL package3, and then used HAMMER (Shen and Davatzikos 2002) to 

register the images to a common space. The GM volumes that were obtained from 93 ROIs 
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defined in Kabani (1998), normalized by the total intra-cranial volume, were characterized 

as features. We downloaded the cognitive scores from three independent cognitive 

assessments, including Fluency Test, Rey’s Auditory Verbal Learning Test (RAVLT) and 

Trail making test (TRAILS). We suggest interested readers to find the details of these 

cognitive assessments in the ADNI procedure manuals. All participants with no missing 

baseline MRI measurements and cognitive measures were included in this study. A total of 

804 sample subjects were considered, of which we have 225 health control (HC) samples, 

393 MCI samples and 186 AD samples. This study involved seven cognitive scores, which 

are: 1) RAVLT TOTAL, RAVLT TOT6 and RAVLT RECOG scores from RAVLT cognitive 

assessment; 2) FLU ANIM and FLU VEG scores from Fluency cognitive assessment; 3) 

Trails A and Trails B scores from Trail making test.

Experimental Settings

To evaluate the performance of our model, MMR (multi-layer multi-target regression), we 

compare with several representative regression models as used in Wang et al. (2012), which 

includes least square regression (LSR), multi-target ridge regression (MRR) and multi-

target low-rank regression model with trace norm regularization (MR-Trace).

To make contrast to our multi-layer multi-target regression (MMR), we give the formulation 

of the baseline methods. The LSR takes the following form of objective,

min
W

1
𝒩 i = 1

𝒩
yi − Wxi

2, (17)

where W ∈ ℝQ×d is the weight matrix;

MMR is the baseline kernel method which takes the following form

min
W

1
𝒩 i = 1

𝒩
yi − Wxi

2 + λ W F
2 , (18)

where W F
2 , is the regularization term to avoid overfitting and λ is the hyper-parameter for 

the regularization term;

The MR-Trace is a single-layer learning model with a trace norm regularization:

min
W

1
𝒩 i = 1

𝒩
yi − Wxi

2 + λ W *, (19)

where the trace norm ||W||* is the trace norm regularization term to impose sparsity 

constraint.
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The major methodological differences between the baseline and the proposed method is our 

multi-layer learning architecture. Specifically, our MMR incorporates a hidden layer of 

latent variables rather than directly projecting the input data to the multiple outputs as in the 

baseline methods. This actually enables us to simultaneously handle nonlinear input-output 

relationship (thorough the kernelized dictionary) and the interdependency of multiple 

outputs (by low-rank learning). The major methodological differences indeed explains the 

improvement of our method over baseline methods.

In the experiment, we use the root mean square error (RMSE) and the correlation coefficient 

(CorCoe) between the predicted value and ground truth as the evaluation measurements. We 

normalize the RMSE value with the Frobenius norm of the ground truth. To illustrate the 

stability of the comparing methods, we adopt 5-fold cross validation and report average 

performance in these 5 trials.

For MMR model, we choose the regularization parameters by cross validation. We tune 

other hyper-parameters, i.e., parameter for the regularization term in MMR, MR-Trace as 

well as λ of MMR, in the range of {10−5, 10−4, …, 105} and report the best result w.r.t. each 

method. We tune the hyper-parameters via 5-fold cross validation and report the best 

parameter w.r.t. RMSE for each method.

Comparison on Memory Impairment Prediction

We summarize the comparison results of cognitive score prediction in Tables 1 and 2, where 

we mark the best results in bold. In Table 1, we perform the t-test to compare the MMR 

result in each data with other methods to show if the advantage is significant w.r.t. the p-

value. We set the significance level as 0.10. In each data, we mark the methods with 

significant difference with the “*” sign.

From these results we can notice that MMR performs equal or better than all the comparing 

methods, which indicates the advantage of adopting nonlinear regression in our model. We 

can find that in Fluency and RAVLT, MMR outperforms other methods with statistically 

significant advantage. In the TRAILS data, even though MMR gets slight higher RMSE 

value than MR-Trace, the difference is not statistically significant. It confirms that MMR is 

more suitable to describe the complicated relationship between imaging features and 

cognitive scores. In addition, the prediction results of MMR show the effectiveness of 

finding low-rank structure among multiple learning tasks. Since the number of tasks in the 

data is small (two tasks in Fluency while three tasks in RAVLT and TRAILS), the advantage 

of MMR may not be shown significantly. We can notice that MMR performs the best in the 

RAVLT data, as the MMR model is able to explore and utilize the interrelations among 

multiple learning tasks and improve the overall performance. In addition, we find that the 

range of the target variable in TRAILS data is much larger (the range in TRAILS data is 300 

while the range for the other two data is smaller than 100). Since our model could better fit 

the task relationship among the training data, a larger testing data range may introduce 

higher testing error if the training data is slightly overfitted. The experimental results have 

validated the effectiveness of the MMR for simultaneously handling nonlinear relationship 

between neuroimaging biomarkers and cognitive scores and the correlation among the 
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scores. The high performance of the proposed MMR and its huge advantages over previous 

representative regression models indicate its great potential to conduct even more 

challenging multivariate prediction tasks in clinical practice.

Stability of the MMR Method

In this subsection, we show the stability of the MMR method when we set the number of 

nodes in the hidden layer as different values. From the results in Fig. 2 we can find that the 

MMR results are quite stable w.r.t. different number of nodes. This is important in real 

applications since MMR does not require much effort in tuning the hyper-parameters.

Conclusion

In this paper, we have presented a new multi-target regression model, called multi-layer 

multi-target regression (MMR), for cognitive assessment of Alzheimer’s disease. The MMR 

is able to simultaneously handle the nonlinear relationship between neuraoimaging 

biomarkers and cognitive assessment scores and the inter-correlation among the scores, 

which can largely improve the prediction performance. The MMR has been evaluated by 

extensive experiments on the public ADNI database, and produced high prediction 

performance surpassing most of the previous representative regression models. The results 

have shown the great effectiveness of the MMR in cognitive assessment prediction, which 

indicates its great potential for multi-target prediction in clinical prediction.
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Appendix

Proof By the definition of the nuclear norm, we can re-write it in terms of traces as follows

S * = tr( S⊤S) = tr( U∑V⊤ ⊤ U∑V⊤ )

= tr( V∑⊤U⊤U∑V⊤ = tr ( V∑⊤ ∑V⊤)

= tr( V∑⊤ ∑V⊤)

= tr( V∑V⊤V∑V⊤

= tr(V∑V⊤)

= tr ∑

(20)
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Therefore, the nuclear norm of S can be also defined as the sum of the singular value 

decomposition of S. From (13), we have

∂S = ∂U∑V⊤ + U ∂∑V⊤ + U∑ ∂V⊤, (21)

which gives rise to

U ∂∑V⊤ = ∂S − ∂U∑V⊤ − U∑ ∂V⊤ . (22)

Multiplying U⊤ on both sides of (22), we have

U⊤U ∂∑V⊤V = U⊤∂SV − U⊤∂U∑V⊤V − U⊤U∑ ∂V⊤V (23)

Since U is also an orthogonal matrix, we achieve

∂∑ = U⊤ ∂SV − U⊤ ∂U∑ − ∑ ∂V⊤V . (24)

Note that we have the fact that

0 = ∂I = ∂ U⊤ U = ∂U⊤ U + U⊤ ∂U, (25)

where I is an identity matrix, and therefore U⊤∂U is an antisymmetric matrix. We have

tr U⊤ ∂U∑ = tr U⊤ ∂U∑ ⊤ = tr ∑⊤ ∂U⊤ U

= − tr ∑U⊤ ∂U = − tr U⊤∂U∑
(26)

which indicates that tr(U⊤∂UΣ) = 0. Similarly, we also have tr(Σ∂V⊤V) = 0. Therefore, we 

achieve

tr ∂∑ = tr U⊤ ∂SV (27)

By taking the derivative of ||S||* w.r.t. S, we obtain

∂ S *
∂S = tr ∂∑

∂S =
tr U⊤ ∂SV

∂S UV⊤ (28)

which closes the proof.
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Fig. 1. 
The learning architecture of the multi-layer multi-target regression (MMR) model
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Fig. 2. 
RMSE results with different number of hidden nodes in the MMR model
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