Skip to main content

Advertisement

Log in

An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Analysis and interpretation of functional magnetic resonance imaging (fMRI) has been used to characterise many neuronal diseases, such as schizophrenia, bipolar disorder and Alzheimer’s disease. Functional connectivity networks (FCNs) are widely used because they greatly reduce the amount of data that needs to be interpreted and they provide a common network structure that can be directly compared. However, FCNs contain a range of data uncertainties stemming from inherent limitations, e.g. during acquisition, as well as the loss of voxel-level data, and the use of thresholding in data abstraction. Additionally, human uncertainties arise during interpretation due to the complexity in understanding the data. While existing FCN visual analytics tools have begun to mitigate the human ambiguities, reducing the impact of data limitations is an open problem. In this paper, we propose a novel visual analytics framework with three linked, purpose-designed components to evoke deeper interpretation of the fMRI data: (i) an enhanced FCN abstraction; (ii) a temporal signal viewer; and (iii) the anatomical context. Each component has been specifically designed with novel visual cues and interaction to expose the impact of uncertainties on the data. We augment this with two methods designed for comparing subjects, by using a small multiples and a marker approach. We demonstrate the enhancements enabled by our framework on three case studies of common research scenarios, using clinical schizophrenia data, which highlight the value in interpreting fMRI FCN data with an awareness of the uncertainties. Finally, we discuss our framework in the context of fMRI visual analytics and the extensibility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Angulo, D. A., Schneider, C., Oliver, J. H., Charpak, N., & Hernandez, J. T. (2016). A Multi-facetted Visual Analytics Tool for Exploratory Analysis of Human Brain and Function Datasets. Frontiers in neuroinformatics, 10.

  • Arbabshirani, M., Castro, E., & Calhoun, V (2014). Accurate classification of schizophrenia patients based on novel resting-state fmri features. In EMBC, 6691–6694.

  • Bach, B., Henry-Riche, N., Dwyer, T., Madhyastha, T., Fekete, J. D., & Grabowski, T. (2015). Small MultiPiles: Piling time to explore temporal patterns in dynamic networks. Computer Graphics Forum, 34(3), 31–40.

    Article  Google Scholar 

  • Bach, B., Shi, C., Heulot, N., Madhyastha, T., Grabowski, T., & Dragicevic, P. (2016). Time curves: Folding time to visualize patterns of temporal evolution in data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 559–568.

    Article  PubMed  Google Scholar 

  • Böttger, J., Schäfer, A., & Lohmann, G. (2014). Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Transactions on Visualization and Computer Graphics, 20(3), 471–480.

    Article  PubMed  Google Scholar 

  • Carp, J. (2012). On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments. Frontiers in Neuroscience, 6, 149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui, W., Wang, X., & Riche, N. H. (2014). Let It Flow : a Static Method for Exploring Dynamic Graphs. 121–128, doi:https://doi.org/10.1109/PacificVis.2014.48.

  • de Ridder, M., Klein, K., & Kim, J (2015). CereVA-Visual Analysis of Functional Brain Connectivity. In IVAPP, 131–138.

  • Eklund, A., Nichols, T., & Knutsson, H. (2016). Can parametric statistical methods be trusted for fMRI based group studies? PNAS, 113(28), 7900–7905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippi, M. (2016). fMRI Techniques and Protocols: Springer.

  • Filippi, M., & Filippi (2009). fMRI techniques and protocols: Springer.

  • FMRIB Analysis Group, O. U. (2016). FSL. http://fsl.fmrib.ox.ac.uk/.

  • Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176(2), 83–94.

    Article  PubMed  Google Scholar 

  • Fujiwara, T., Chou, J.-K., McCullough, A. M., Ranganath, C., & Ma, K.-L (2017). A visual analytics system for brain functional connectivity comparison across individuals, groups, and time points. In Pacific Visualization Symposium (PacificVis), IEEE, 2017 (pp. 250-259): IEEE.

  • Giraldo-Chica, M., & Woodward, N. D. (2016). Review of thalamocortical resting-state fmri studies in schizophrenia. Schizophrenia Research, 6.

  • Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwartz, Y., Sochat, V. V., Ghosh, S. S., et al. (2016). NeuroVault. Org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain. Neuroimage, 124, 1242–1244.

    Article  PubMed  Google Scholar 

  • Irimia, A., Chambers, M. C., Torgerson, C. M., & Van Horn, J. D. (2012). Circular representation of human cortical networks for subject and population-level connectomic visualization. Neuroimage, 60(2), 1340–1351. https://doi.org/10.1016/j.neuroimage.2012.01.107.

    Article  PubMed  Google Scholar 

  • Jezzard, P., Matthews, P., & Smith, S. (2001). Functional MRI: an introduction to methods: Oxford University Press.

  • Jie, B., Liu, M., Jiang, X., & Zhang, D. (2016) Sub-network Based Kernels for Brain Network Classification. In Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, (622–629): ACM.

  • Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. AJNR. American Journal of Neuroradiology, 34(10), 1866–1872. https://doi.org/10.3174/ajnr.A3263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, M., Zhou, Y., Jiang, T., Liu, Z., Tian, L., Liu, H., et al. (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport, 17(2), 209-213.

  • Liu, Y., Wang, K., Chunshui, Y. U., He, Y., Zhou, Y., Liang, M., et al. (2008). Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: A review of resting-state fMRI studies. Neuropsychologia, 46(6), 1648-1656.

  • Liu, F., Xie, B., Wang, Y., Guo, W., Fouche, J.-P., Long, Z., et al. (2015). Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain Topography, 28(2), 221-237.

  • Margulies, D. S., Böttger, J., Watanabe, A., & Gorgolewski, K. J. (2013). Visualizing the human connectome. NeuroImage, 80, 445–461. https://doi.org/10.1016/j.neuroimage.2013.04.111.

    Article  CAS  PubMed  Google Scholar 

  • National Institute of Health (2016). AFNI. https://afni.nimh.nih.gov/.

  • Peeters, R., & Sunaert, S. (2007). Clinical BOLD fMRI: artifacts, tips and tricks. In Clinical Functional MRI (pp. 227-249): Springer.

  • Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson, G. D., et al. (2016). Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity. Neuroimage, 134, 645-657.

  • Ristovski, G., Preusser, T., Hahn, H. K., & Linsen, L. (2014). Uncertainty in medical visualization: Towards a taxonomy. Compters and Graphics, 39, 60–73.

    Article  Google Scholar 

  • Sarraf, S., & Tofighi, G. (2016). Classification of alzheimer's disease using fmri data and deep learning convolutional neural networks. arXiv Preprint arXiv, 1603, 08631.

    Google Scholar 

  • Sheline, Y. I., & Raichle, M. E. (2013). Resting state functional connectivity in preclinical Alzheimer’s disease. Biological Psychiatry, 74(5), 340–347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sporns, O. (2010). Networks of the Brain: MIT Press.

  • Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroschience, 17, 652–660.

    Article  CAS  Google Scholar 

  • Stevens, M. T. R., Darcy, R. C., Stroink, G., Clarke, D. B., & Beyea, S. D. (2013). Thresholds in fmri studies: Reliable for single subjects? Journal of Neuroscience Methods, 219(2), 312–323.

    Article  PubMed  Google Scholar 

  • Swenson, R. (2006). Chapter 11: The Cerebral Cortex. In Review of Clinical and Functional Neuroscience (Vol. 1): Dartmouth Medical School.

  • Wang, S., Zhang, Y., Lv, L., Wu, R., Fan, X., Zhao, J., et al. (2017). Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis. Schizophrenia Research.

  • Woodward, N. D., Karbasforoushan, M. S., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. American Journal of Psychiatry, 169(10).

  • Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394–400.

    Article  PubMed  Google Scholar 

  • Zeng, H., Ramos, C. G., Nair, V. A., Hu, Y., Liao, J., La, C., et al. (2015). Regional homogeneity (ReHo) changes in new onset versus chronic benign epilepsy of childhood with centrotemporal spikes (BECTS): A resting state fMRI study. Epilepsy Research, 116, 79-85.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael de Ridder.

Ethics declarations

Conflict of Interest

None declared.

Additional information

Information Sharing Statement

A software implementation of the framework has been made open source and available at https://github.com/mderidder-usyd/CereVA. The available implementation was uncoupled from the ethics protected image data used in the case studies. Two example simulation patients have been created instead.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Ridder, M., Klein, K., Yang, J. et al. An Uncertainty Visual Analytics Framework for fMRI Functional Connectivity. Neuroinform 17, 211–223 (2019). https://doi.org/10.1007/s12021-018-9395-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9395-8

Keywords

Navigation