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Abstract
Tracing neurites constitutes the core of neuronal morphology reconstruction, a key step toward neuronal circuit mapping. Modern
optical-imaging techniques allow observation of nearly complete mouse neuron morphologies across brain regions or even the
whole brain. However, high-level automation reconstruction of neurons, i.e., the reconstruction with a few of manual edits requires
discrimination of weak foreground points from the inhomogeneous background. We constructed an identification model, where
empirical observations made from neuronal images were summarized into rules for designing feature vectors that to classify
foreground and background, and a support vector machine (SVM) was used to learn these feature vectors. We embedded this
constructed SVM classifier into a previously developed tool, SparseTracer, to obtain SparseTracer-Learned Feature Vector (ST-
LFV). ST-LFV can trace sparsely distributed neurites with weak signals (contrast-to-noise ratio < 1.5) against an inhomogeneous
background in datasets imaged by widely used light-microscopy techniques like confocal microscopy and two-photon microscopy.
Moreover, 12 sub-blocks were extracted from different brain regions. The average recall and precision rates were 99% and 97%,
respectively. These results indicated that ST-LFV is well suited for weak signal identification with varying image characteristics.We
also applied ST-LFV to trace long-range neurites from images where neurites are sparsely distributed but their image intensities are
weak in some cases.When tracing this long-range neurites, manual edit was required once to obtain results equivalent to the ground
truth, compared with 20 times of manual edits required by SparseTracer. This improvement in the level of automatic reconstruction
indicates that ST-LFV has the potential to rapidly reconstruct sparsely distributed neurons at the large scale.
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Introduction

Structural and functional mapping of neuronal circuits is one
of the central tasks in neuroanatomical studies (Mitra 2014;
Osten and Margrie 2013). Mapping the neuronal circuit large-
ly depends on reconstructing the morphologies of neurons
(Parekh and Ascoli 2013; Donohue and Ascoli 2011;
Meijering 2010; Svoboda 2011), which are usually considered
as the basic structural unit in the circuit (Marx 2012). Neurites
form the core of neuronal morphologies (Parekh and Ascoli
2015; Peng et al. 2015), hence, tracing neurites plays an im-
portant role in neuronal morphology reconstruction.

In recent years, a series of breakthroughs in molecular label-
ing (Feng et al. 2000; Jefferis and Livet 2012; Luo andCallaway
2008; Ugolini 2010) and optical imaging techniques (Chung
and Deisseroth 2013; Gong et al. 2013; Gong et al. 2016;
Osten and Margrie 2013; Ragan et al. 2012; Silvestri et al.
2012) have enabled the rapid collection of brain-wide neuronal
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images at submicron resolutions. These techniques have been
used to map the neuronal circuit of mice (Osten and Margrie
2013; Fürth et al. 2018). However, automatic tracing methods
are error-prone and may fail in neuronal structures with weak
signal intensity against an inhomogeneous background. These
structures hamper the accuracy of overall neuronal reconstruc-
tion. In addition, tracing the circuit from tens of thousands of
images is laborious (Marx 2012; Zingg et al. 2014).

Generally, the above challenges originate from the optical
imaging strategy and complicated nature of neuronal mor-
phologies. First, whole brain imaging is usually implemented
at a relatively low spatial sampling rate to achieve a balance
between the sampling rate and the imaging speed. Second,
neurites with small radii (several hundred nanometers) contain
few fluorescent molecules. These facts contribute to the pres-
ence of neurites with low signal intensity after fluorescent
imaging. Third, long-term imaging procedures and structural
differences in different brain regions result in an inhomoge-
neous background, which increase the difficulty in identifying
weak signals.

Some key characteristics of neuronal images are illustrated
in Fig. 1. Two sub-blocks were extracted from a whole-brain
imaging dataset (Fig. 1a-c), and one sub-block (Fig. 1c) con-
tains a neurite with a contrast-to-noise ratio (Song et al. 2004)
as low as 2.09 (see Supplementary note). Furthermore, when
computing the foreground and background profiles of a por-
tion of two sub-blocks (Fig. 1d, e), the background intensity of
sub-block b is even higher than the foreground intensity of
sub-block c (Fig. 1f), indicating the existence of an inhomo-
geneous background.

Many methods exhibit great neurite tracing performance
and demonstrate a good ability to identify neurites with weak
signals, such as, the model-fitting (Zhao et al. 2011;
Santamaria-Pang et al. 2015), open-snake (Wang et al. 2011;
Cai et al. 2006; Luo et al. 2015; Xu and Prince 1998), graph-
based (Peng et al. 2010; Turetken et al. 2011; Basu et al. 2013;
Chothani et al. 2011; Yang et al. 2013), principal curve (Bas

and Erdogmus 2011), voxel scooping (Rodriguez et al. 2009),
multi-scale tracking (Choromanska et al. 2012; Frangi et al.
1988), and density filters (Radojevic and Meijering 2017)
techniques. However, most of these methods require fine
and frequent parameter tuning to trace neurites with weak
signals. This may lead to difficulties in separating weak sig-
nals from an inhomogeneous background. Recent machine
learning methods (Li et al. 2017; Chen et al. 2015; Megjhani
et al. 2015; Gu et al. 2017; Hernandez-Herrera et al. 2016;
Becker et al. 2013) can provide more accurate tracing results
than traditional approaches. However, the largest reported vol-
ume size is limited to hundreds of megabytes and the corre-
sponding computational cost ranges from several tens of mi-
nutes to several hours (Hernandez-Herrera et al. 2016; Li et al.
2017). This indicates that these methods may not be able to
trace neurites rapidly in large-scale images without the help of
GPU computing or distributed computing, which is attributed
to two primary reasons. First, machine learning methods con-
sider many image features and result in a complicated frame-
work, thereby requiring intensive computations. Second,
some methods separate the procedures of identifying fore-
ground voxels and tracing the voxels into neurite skeletons
(Li et al. 2017; Chen et al. 2015; Megjhani et al. 2015; Gu
et al. 2017; Hernandez-Herrera et al. 2016; Becker et al.
2013). These techniques attempt to identify as many fore-
ground voxels as possible, which generates the detailed shape
of a neurite. Thus, larger images incur heavier computational
costs.

In this study, we propose a method for identifying weak
signals and embed this method into the neurite tracing pipe-
line. Our strategy closely links the identification and tracing
procedures and requires only a few foreground voxels in the
tracing process for identification. We observed many neuronal
images and determined identification rules: the local back-
ground is smooth, the neurite has a strong anisotropic shape,
and the difference in image intensities between the neurite and
its local background makes them separable. These rules are

Fig. 1 Some key characteristics of neuronal images at the brain-wide
scale. a A thumbnail view of a mouse brain dataset in which two sub-
blocks are highlighted with squares; b a sub-block with a single neurite,
part of which is labeled with a square; c similar to (b); d maximum

projections of the labeled view in (b) through a depth of 10 μm, with a
scale bar of 2 μm; e similar to (d); f the upper two curves represent the
foreground (red) and the background (blue) of the neurite in (d), and the
bottom two curves correspond to the neurite in (e)
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applicable to several neuronal images but may not hold in all
cases. Applying preprocessing techniques to the image may
extend the application range of the rules. These rules can be
summarized as a feature vector that distinguishes between
foreground and background voxels. By training the feature
vectors on foreground and background voxels, we obtained
a classifier (Suykens and Vandewalle 1999; Cortes and
Vapnik 1995) that was combined with our previous
SparseTracer tool (Li et al. 2016) to give SparseTracer-
Learned Feature Vector (ST-LFV). We have verified that ST-
LFV accurately identifies weak signals from sparsely distrib-
uted neurites in light microscopic images and overcomes the
identification difficulties caused by inhomogeneous back-
grounds across different mouse brain regions. The observed
rules used in ST-LFV can be applied to BigNeuron,
DIADEM, and MOST datasets collected with various light
microscopy techniques. In addition, the results demonstrated
that ST-LFV significantly enhances the performance of
SparseTracer in the large-scale tracing of sparsely distributed
neurites.

Methods

The components of the proposed ST-LFVare outlined in this
section. First, we describe the method used to extract the fea-
ture vectors, which display the differences between the fore-
ground and background voxels. Second, we introduce a sup-
port vector machine (SVM) to the feature vector space to
construct a classifier that can detect weak signals (Suykens
and Vandewalle 1999; Cortes and Vapnik 1995). Third, we
integrate this constructed classifier into our previous
SparseTracer (Li et al. 2016) for better neurite tracing perfor-
mance. We also discuss the parameter selection procedure for
ST-LFVand validate the proposed mechanism.

Feature Extraction for Identifying Weak Signals

The extraction of representative image features is based on
several assumptions about the images. Our assumptions are
that the shape of a neurite can be described by a series of
touching cylinders; that the background is locally smooth;
and that, in a small local region, the foreground and back-
ground can be identified using a threshold value. For a given
voxel, we extract its features using the image intensities of
neighboring regions. This extraction includes three steps: i)
set a series of threshold values for labeling the connected
components of a given point; ii) generate the connected com-
ponents using the threshold values; iii) use the generated com-
ponents to construct the feature vector of this point. In the
following, we describe how to extract features and explain
why the extracted features are consistent with our
assumptions.

Step i) Set a series of descending threshold values for la-
beling the neighboring regions of a point. For a given point p*,
its corresponding threshold values are calculated by

thr mð Þ ¼ 1−mc1ð Þs p*
� �

if c1s p*
� �

≥c2
s p*
� �

−mc2 otherwise

�
ð1Þ

where p* is 3D coordinates of point. For simplicity, we also
denote the point by p*. When the coordinate elements of p*
are integers, p* is regarded as a voxel. s(p*) is the weighted
average image intensity of p* and its neighboring voxels; c1
and c2 are two predetermined constants, c1 = 0.025 and c2 =
1.5; m is an integer ranging from 0 to 8; and thr(m) is a
threshold value that decreases as m increases. s(p*) is calcu-
lated by
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where T is the voxel set that includes the voxel [p*] and its 6-
voxel neighborhood; [] represents the operation of rounding
the coordinates of a point to its nearest values; p has the same
definition as p*. s(p) is the intensity value of voxel p; ‖‖22
represents the 2-norm.

Note that the threshold value thr(m) is codetermined by 1-
mc1 and the given voxel. To simplify the form of this expres-
sion, we regard the threshold value as a function of 1-mc1,
where m = 0, 1, …, 8, and call 1-mc1 the invariable ratio.
For small values of s(p*), thr(m) in the first term of Eq. (1)
decreases slowly as m increases. To prevent this, we set a
lower bound (c2 = 1.5) to overcome the decreased amplitude
of the threshold values (second term in Eq. (1)).

Step ii) Extract the connected components of a given point
with the threshold values. For the given point p* and a thresh-
old value thr(m), we use the region growing method to gen-
erate a connected component in which the voxels connect with
each other and have image intensities greater than thr(m). The
generated region is included in the pre-determined neighbor-
hood N(p*) (19 × 19 × 19 voxels) of the given point p*. The
steps for generating the connected component are described
below.

(ii-a) Set the initial seed as the point p* and label it with an
arrow in Fig. 2a, and search for its neighboring voxels according
to

G1 mð Þ ¼ p∈N1⊂N p*
� �js pð Þ > thr mð Þ� 	 ð3Þ

where N1 is the 26-voxel neighborhood of point p* with 3D
coordinates x-, y-, and z-. The voxel [p*] and the searched voxels
with image intensities greater than thr(m) are labeled. These
labeled voxels form G1(m). [p*] rounds each element of p* to
the nearest integer.
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(ii-b) In the unlabeled region of N(p*), search for the 26-
voxel neighborhoods of every voxel in the set G1(m), denoted
byN2. According toN2 and the threshold thr(m), use Eq. (3) to
generate G2(m) and then label the resulting set of voxels.

(ii-c) Repeat step ii-b until no new voxel sets can be gen-
erated in N(p*). The labeled sets G1(m), G2(m), … form the
connected components of p* with respect to the threshold
thr(m), denoted by G(thr(m)).

Figures 2b, c illustrate how to obtain the connected regions
of a foreground point and a background voxel under three
threshold values, respectively. The size of the connected re-
gion of a given point depends on the threshold value thr(m),
which is codetermined by the ratio 1-mc1 and the weighted
average of the imaging intensities (Eqs. (1) & (2)). Thus, iden-
tical ratios, i.e., 1.0, 0.9, 0.8, do not indicate the same thresh-
old values in the extraction of the connected regions.

Step iii) Calculate the feature vector of a given point. For the
given point p*, we can obtain nine connected regionswith respect
to the threshold value thr(m),m= 0, 1, ..., 8.We define the volume
filling rate as the ratio of the connected component volume (num-
ber of voxels) and the neighborhood region volume, given by

rm ¼ Ω G thr mð Þð Þð Þ
Ω N p*ð Þð Þ ;m ¼ 0; 1; :::; 8 ð4Þ

where Ω(·) is the total number of voxels in a region and rm
represents the volume filling rate and is the mth element of the
feature vector x of the given point p*.

We explainwhy the extracted features of a point are consistent
with our assumptions. If a point belongs to the background, the
volume filling rate in the feature vector will rapidly increase to
1.0 because of the smoothness of the local background. For the
feature vector of a foreground point, the volume filling rate will
increase much more slowly, and may not even reach 1.0, as the
cylindrical shape of a neurite takes up a small amount of space in
its neighborhood and the intensities of the foreground and back-
ground voxels will be different. The differences between fore-
ground and background feature vectors are illustrated in Fig. 2d.

SVM Classifier Used to Identify Weak Signals

This section first describes the automatic extraction of training
sets from neuronal images, and then explains how to build the
SVM classifier after obtaining the training set.

In a supervised learning framework, a training set is necessary.
Here, the training set contains the feature vectors of the fore-
ground and background points. The automatic generation of
training sets requires some foreground and background points
to be obtained computationally, which may be practical for the

Fig. 2 Illustration of feature vector extraction. a An image dataset
including the labeled foreground voxels (light red) and background
voxels (light blue). The foreground voxel (orange) is labeled with an
arrow and its corresponding regions are shown in (b). b Calculating the
regions of the selected foreground voxel (yellow) respective to different
ratios. The neighborhood and the regions of this voxel are labeled by the
yellow cubic and purple points, respectively. c Same as (b) for the

selected background voxel (blue). d The foreground (yellow line) and
background (blue line) feature vectors calculated from the given voxels
in (b) and (c), respectively; e feature vectors of all labeled foreground
(left) and background (right) voxels in (a); f generating an SVM classifier
with feature vectors from (e). The positive (yellow circles) and negative
(blue triangles) results correspond to the foreground and background
feature vectors in (e), respectively
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following reasons. Existing tracing methods can identify weak
signals at a certain level, which can provide foreground points.
We used our SparseTracer tool (Li et al. 2016) to trace neurites
and extract foreground points from the traced results. The traced
results are composed of a series of points inwhich adjacent points
are connected, providing the skeleton of a neurite. These skeleton
points can be recognized as foreground points (Chen et al. 2015).
If fewer than 500 skeleton points are selected, we calculate the
feature vectors of all skeleton points. Otherwise, we acquired the
signal intensities of these points in ascending order, and then
chose those skeleton points having mid-level signal intensities.
Finally, we calculated the feature vectors corresponding to the
selected skeleton points. These feature vectors constitute the pos-
itive training set, denoted by Strain (left of Fig. 2e).

To obtain negative training samples, we randomly (from a
uniform distribution) selected points from neuronal images
that have the same number of positive training samples. We
calculated their feature vectors (i.e. the negative training sam-
ples), denoted by Btrain (right of Fig. 2e). The selected points
may include a few foreground voxels, indicating that the neg-
ative training set contains some positive training samples.
However, this selection is reasonable because, in most cases,
the foreground voxels occupy less than 0.1% of the total num-
ber of voxels in neuronal images, according to our calcula-
tions (not shown). Thus, the number of foreground vector
features included in the negative training set is negligible. In
addition, SVM can tolerate a certain degree of error in con-
structing the training set. We identified whether a feature vec-
tor in the negative training set Btrain is an outlier (the fore-
ground feature vector) bymeasuring two degrees of similarity:
one is the inner product between this feature vector and the
mean values of Btrain, and the other is the inner product be-
tween this feature vector and the mean values of Strain. If the
former is larger than the latter, the vector is regarded as an
outlier and is deleted from Btrain. The vectors remaining in the
dataset comprise the negative training samples.

To simplify the description, we used {yk, xk}, k = 1, 2,…, K
to denote the positive and negative training sets. Here, yk = 1
or − 1, xk is a feature vector, and K is equal to the number of
training feature vectors in both Strain and Btrain. If yk = 1, xk is
positive and equal to an element in Strain. Otherwise, xk is
equal to an element in Btrain. After obtaining the training set,
we introduced a linear SVM (Suykens and Vandewalle 1999;
Cortes and Vapnik 1995) to build a supervised classifier. This
classifier distinguishes between foreground and background
voxels, and can be written as

min
w;b;e

F w; b; eð Þ ¼ 1

2
wTwþ γ

1

2
∑K

k¼1e
2
k

subject toyk wTxk þ b

 � ¼ 1−ek ; k ¼ 1; 2; :::;K

ð5Þ

where yk ; xkf gKk¼1 are the training samples described above,
and xk refers to the k

th feature vector. Variable ek represents the

error term. γ is used to control the tradeoff between the train-
ing error and generalization ability. The optimization problem
in Eq. (5) is then converted into an unconstrained optimization
problem (Rockafellar 1973; Hestenes 1969):

min
w;b;e;α

L w; b; e;αð Þ

¼ F w; b; eð Þ−∑K
k¼1αk yk wTxk þ b


 �
−1þ ek

� 	 ð6Þ

where αk is the Lagrange multiplier. Using the Kuhn–Tucker
conditions, we could obtain the optimal solution (Suykens and
Vandewalle 1999), and the corresponding supervised classifi-
er can be denoted by

R xð Þ ¼ sgn ∑K
k¼1αk

*ykx
T
k xþ b*

� �

¼ sgn ∑K
k¼1w

*Txþ b*
� � ð7Þ

where x represents the input feature vector, αk
*and the coef-

ficients w*, b* are obtained by solving the optimization prob-
lem (6). sgn() represents the sign function. If w*Tx + b* > 0,
the input belongs to the positively labeled set; otherwise, it
belongs to the negatively labeled set. Applying the classifier to
the training samples shows that most of the positive and neg-
ative values are close to 1 and − 1, respectively (Fig. 2f),
which illustrates the large differences in the feature vectors
of the foreground and background points (Fig. 2e).

Using the Identification Model for Neurite Tracing

Neurite tracing is the process of obtaining the skeleton of a
neurite. A key component of neurite tracing is the accurate
identification of foreground points. When tracing a neurite,
if the current tracing point is identified as a background point,
the tracing will be terminated. We applied the identification
model described above to our SparseTracer tool to obtain bet-
ter neurite tracing results. The pipeline is described as follows
(Fig. 3).

Step 1) Use SparseTracer to trace the neurite. When the
point pn+ 1 is identified as a background point, tracing stops
and an initial skeleton is generated, represented byP = {p1,
p2, ..., pi, ..., pn}, where pi is the i

th point on the skeleton.
Step 2) Extract the feature vectors of foreground and back-

ground points separately. These form the positive and negative
training sets, respectively. Note that the foreground points are
the skeleton points of traced neurites generated with
SparseTracer.

Step 3) Obtain the SVM classifier with the training set.
Step 4)Apply the obtained classifier to the identification of

points pn and pn + 1. If one of these two points is identified as a
foreground point, continue tracing with SparseTracer, and go
to step 5). Otherwise, go to Step 6).

Step 5) In the tracing process, if the last two tracing points
are identified as a background point with SparseTracer, the
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SVM classifier will automatically activate. If both these two
points are identified as the background points, terminate this
tracing and go to Step 6); otherwise, continue tracing with
SparseTracer and SVM classifier.

Step 6) If point p1 is not a branching point, carry out the
same tracing and identifying procedure in Step 4) and Step 5)
for the points p2 and p1, until the termination condition is
satisfied, namely, the last two tracing points are identified as
the background points with the SVM classifier. Otherwise,
finish this neurite tracing.

The above steps describe how our identification model and
SparseTracer collaborate to achieve better neurite tracing.
Note that our identification model learns from the character-
istics of an image stack, and is only applied in this image
stack. If the neurites in a given image stack cannot be traced
completely after one iteration, we design a strategy in which,
once our constructed classifier detects some foreground points
with weak signal intensities, the positive training set can be
updated and used to build a new classifier in the next tracing
iteration. This strategy helps to provide nearly complete
neurite reconstructions for a given image stack.

Parameter Settings in the Identification Model

To construct the identification model for detecting weak sig-
nals, certain key parameters must be pre-determined, includ-
ing the size of the training set, the ratios used in feature vector
extraction, and the size of the neighborhood.

Size of the Training Set The positive training set depends on the
tracing results. If the total number of foreground points in the
traced neurites is less than a pre-determined threshold (500 in
this study), we selected all foreground points and calculated
their feature vectors to form the positive training set. In this
case, though the size of the positive training set is small (dozens
of points), the SVM classifier still behaves well. This is why we

do not use upsampling to increase the size of the training set.
When the traced neurites include many points, numerous pos-
itive feature vectors can be generated. In this case, the upper
limit for the number of feature vectors in the positive training
set is 500. This threshold is based on a tradeoff between com-
putational cost and classification performance, as the inclusion
of more training samples may not improve identification per-
formance. This selection ensures that the time required to iden-
tify weak signals is approximately the same as that required for
neurite tracing. In addition, balanced training sets are ideal for
supervised SVM classifiers, and so the negative training set is
of similar size as the positive training set (Tang et al. 2009).

Ratios Used in Feature Vector Extraction The feature vector of
a point depends on certain ratio settings, as described in Eq.
(1). In our analysis, the ratios range from 0.8–1, and the dif-
ference between two adjacent ratios is c1 = 0.025. The choice
of a small c1 is based on one of our assumptions, namely, the
local background is smooth. Consequently, a slight decrease
in the ratio (i.e., a small c1) can fill the entire neighborhood of
a background point through region growing, and the corre-
sponding elements of its feature vector will be equal to 1.
Therefore, a small value of c1 can capture the smoothness of
the background. A rapidly decreasing ratio (i.e., a large c1)
would indicate lower threshold values. With these lower
thresholds, the region of a weak signal point would quickly
fill its entire neighborhood, and thus the features of the
neurite’s morphology would not be captured. The parameter
c2 covers situations in which the background intensity is very
low and c1 is not sufficient to achieve an appropriate granu-
larity in ratios for feature vector extraction. Similar to c1, the
selection of c2 aims to maintain the ability to detect weak
neurite signals while identifying local background smooth-
ness. Overall, the selection of these two parameters is intended
to capture the feature differences between weak signal voxels
and background regions.

Fig. 3 Pipeline of neurite tracing with ST-LFV. Step 1: Acquire the initial
skeleton (green curve) of the neurite using SparseTracer. The site where
SparseTracer fails is labeled with a circle; Step 2: Extract the feature
vectors from the labeled voxels. These labeled voxels include
foreground voxels (red) on the initial skeleton in Step 1 and background

voxels (blue), and their corresponding feature vectors are located in the
upper and lower panels, respectively; Step 3: Construct a SVM classifier
with feature vectors in S2; Step 4: Use the classifier to identify weak
signals and continue tracing. The final reconstruction (green) is thus
obtained
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Size of the Neighborhood in Feature Vector Extraction In
feature vector extraction, the neighborhood of a point contains
19 × 19 × 19 voxels. This is based on the following consider-
ations: if the size of a neighborhood is small, the local mor-
phology of a neurite extracted with a relatively low threshold
may, in some situations, span the entire neighborhood,
preventing the capture of its local morphology. However, a
large neighborhood gives rise to the need for highly complex
computations to obtain the region, which is a key step in
feature vector extraction. Considering the diameter of a
neurite (less than 5 μm) (De Paola et al. 2006; Stettler et al.
2006; Loopuijt et al. 2007) and the voxel size (0.5 × 0.5 ×
0.5 μm3~ 2 × 2 × 2 μm3), we set the neighborhood range to
be 19 × 19 × 19 voxels. This setting satisfies the condition that
the local morphology of a neurite occupies a small portion of
the neighborhood. All of the parameters discussed in this sub-
section remain unchanged throughout our analysis.

Multi-Fold Cross-Validation of SVM Classifier

To validate the effectiveness of the constructed SVM classifier
in our identification model, we used multi-fold cross-valida-
tion (Kohavi 1995). The procedure of cross-validation is as
follows: in the image stack, we used our method to generate a
data set containing 500 foreground feature vectors and 500
background feature vectors. The data set was randomly
partitioned into 10 equally sized subsets in which both the
foreground and positive feature vectors have the same num-
ber. Of the 10 subsets, a single subset was retained as testing
data and the remaining 9 subsets were used for training data.
This process was then repeated 10 times, and correspondingly,
10 testing errors were generated. We averaged these testing
errors to evaluate the SVM classifier (See Table S1).

Evaluation of Automated Neurite Tracing Methods

The precision and recall rates are often used to quantify the
difference between the automatic and manual reconstruction
given by a series of traced skeleton points. Here, each skeleton
point has three-dimensional coordinates, and also can be
regarded as a voxel if its coordinate elements are integers.
These evaluation measurements were used in our previous
studies (Quan et al. 2016; Li et al. 2016). The precision and
recall are computed according to the numbers of true positive
points. A true positive point is defined as follows: For any
given point on the automatic reconstruction, find its nearest
point on the manual reconstruction. If the distance between
the given point and the found point is less than a pre-
determined threshold (6 μm in this study), the given point is
considered to be a true positive point. The pre-determined
distance threshold judges whether a point in one skeleton is
equated to a point in another skeleton or not. The parameter is
set based on the consideration of the morphological

characteristics of thick dendrites and total length of a neuron.
According to our previous work (Quan et al. 2016), the eval-
uation results change slightly when this parameter ranges from
6μm to 10μm. The precision is then defined as the ratio of the
number of true positive points to the total number of points in
the automated reconstruction. The recall is defined as the ratio
of the number of true positive points to the total number of
points in the manual reconstruction.

Results

To evaluate the performance of the proposed ST-LFV, the
fMOST (Gong et al. 2013), DIADEM (Brown et al. 2011),
and BigNeuron (Peng et al. 2015) datasets were used. The
fMOST dataset includes typical sub-blocks from different
mouse brain regions collected with the fMOST imaging sys-
tem (Gong et al. 2013) using a voxel size of 0.3 × 0.3 × 1 μm3.
These voxels were automatically merged with sizes in the
range from 0.5 × 0.5 × 0.5 μm3 to 2 × 2 × 2 μm3. This range
is suitable for our tool GTree using which our analysis was
performed here. The DIADEM (www.diademchallenge.org)
and BigNeuron (http://alleninstitute.org/bigneuron/data/)
datasets are freely available; information about these datasets
can be found on the respective websites. We performed
experiments on a computer workstation (Intel® Xeon® CPU
3.46 GHz computing platform, Quadro K4000 3G GPU,
192 GB RAM, Windows 7). Our analysis involved two
algorithms: an automatic tracing algorithm, SparseTracer,
and the combination of SparseTracer and the learned feature
vectors in ST-LFV. The proposed algorithms (SparseTracer
and ST-LFV) are integrated into our software GTree (https://
github.com/GTreeSoftware/GTree/releases). GTree is
implemented using widely used open source standards and
programming practices (C++ with ITK and VXL libraries,
graphical user interfaces written with QT version 5.5.1 and
VTK version 8.0) and uses a GNU GENERAL PUBLIC
LICENSE (https://github.com/GTreeSoftware/GTree/blob/
master/License.md). When we used SparseTracer to analyze
each image stack, we carefully selected the parameters to
ensure the optimal tracing results. When using ST-LFV, the
default settings for the tracing parameters were used, as they
can provide an initial training set in most situations; the
identification parameters are fixed and discussed in detail in
the Methods section.

We first demonstrated the ability of ST-LFV to trace
neurites in inhomogeneous neuronal images. Two image
stacks were selected from a whole brain imaging dataset and
the relevant image characteristics were identified (Fig. 4a-f).
We evaluated the image quality of selected sub-blocks (Fig.
4b, e) using the contrast-to-noise ratio (CNR) (Song et al.
2004). The CNRs of the target areas (Fig. S1) range from
1.53–2.68, indicating that some regions have small differences
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between their foreground and background intensities.
However, by modifying the signal range in the visualization
mode, we were able to discriminate the foreground from the
background, and thus manual tracing could achieve the
ground-truth results (red curves in Fig. 4a, d). We further
calculated the image intensities of the skeleton points on man-
ually traced neurites (red curves in Fig. 4a, d) from the original
image and its estimated background image (Quan et al. 2013).
In most cases, the background intensities (blue curve in
Fig. 4c) estimated from Fig. 4a are 2–3 times larger than the
foreground intensities (red curve in Fig. 4f) calculated from
Fig. 4d. This indicates that the background intensities vary
sharply in brain-wide imaging datasets. In this case, we com-
pared the tracing results drawn using SparseTracer with those
from ST-LFV (Fig. 4g, h). SparseTracer can trace the neurite
well (Fig. 4d, h) with a suitable threshold. However, the same
threshold is not applicable in other cases (Fig. 4a, g). In con-
trast, ST-LFV can attain trace results that are almost equal to
the ground truth. We concluded that ST-LFV can overcome
the influence of the inhomogeneous background to trace
neurites successfully.

We used an experimental dataset to verify the ability of ST-
LFV to identify weak signals. The experimental dataset in-
cluded a neurite with weak signals at several sites (Fig. 5a).
We selected two sites and extracted their corresponding sub-
blocks (Fig. 5b, c). These two sub-blocks had CNRs of 1.47
and 1.21, respectively. We manually traced the neurites in
these two sub-blocks and computed the foreground and back-
ground values of the skeleton points in the traced neurites
(Fig. 5d, e). These results (Fig. 5b-e) show that the neurites

have weak signal intensities at some sites. SparseTracer can-
not handle this case, tracing only parts of the neurite (left and
middle panels in Fig. 5f), despite repeated efforts to select
suitable thresholds. Compared with SparseTracer, ST-LFV
yields good tracing results (red curve, right panel in Fig. 5f)
that are broadly equivalent to the ground truth (green curve in
Fig. 5f). ‘High threshold’ and ‘low threshold’ in Fig. 5f have
the same meaning as in Figs. 4g, h, and are explained in the
legend of Fig. 4.

Furthermore, we showed that ST-LFV is superior to
SparseTracer for tracing neurites using 12 experimental image
stacks containing sub-blocks of 600 × 600 × 600 voxels.
These datasets are clearly distributed among different brain
regions in which the background intensities change obviously
(Fig. S2). Two typical datasets and their corresponding tracing
results are presented in Fig. 6a, b. The sites of these two
datasets are labeled with yellow arrows in Fig. 6c. The sites
of the other ten datasets are also shown in Fig. 6c. When using
SparseTracer to analyze these datasets, we selected the tracing
threshold value that maximized the average tracing accuracy
and used this setting for all datasets. This sometimes caused
SparseTracer to produce more tracing results than manual re-
construction (white circles in middle panel, Fig. 6a). Unlike
SparseTracer, ST-LFV generates the corresponding identifica-
tion models for each dataset to identify untraced foreground
points.We usedmulti-fold cross-validation (see section 2.5) to
validate the constructed SVM classifier in the identification
model (Table S1). The highest error rate was 2.1% (dataset 2);
the other datasets had error rates of less than 0.5%. The cross-
validation results indicate the robustness of the SVM

Fig. 4 Performance on datasets with inhomogeneous backgrounds drawn
from SparseTracer (ST) and ST-LFV. a One dataset with a manually
traced neurite (red). Part of this traced neurite is labeled with a square.
b Maximum projections of labeled regions in (a) through a depth of
10 μm, with a scale bar of 10 μm; c foreground (red) and background
(blue) intensities of the traced neurite in (a). The intensities of the neurite
in (b) are close to its background, labeled with a dashed square. d One
dataset with a weak background and one similar to (a); e and f have

similar descriptions as (b) and (c), respectively; g tracing results drawn
from STwith a high threshold (purple) and a low threshold (yellow), and
drawn from ST-LFV (green). The location of the weak neurite in (b) is
labeled with circles. Over-traced results (arrow) drawn from ST with a
low threshold; h similar to (g). Here, ‘high threshold’ refers to the default
threshold set in the algorithm, which can provide robust tracing results in
most cases; ‘low threshold’ refers to a well-chosen threshold that
produces better tracing results in a specific case
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classifiers to image stacks from different brain regions.
Furthermore, we quantified the tracing results from
SparseTracer and ST-LFV (Fig. 6d, e). The average precision
and recall rates were 93% and 86% for SparseTracer and 99%
and 97% for ST-LFV, respectively. These results indicate that
ST-LFV can achieve almost complete neurite reconstruction
using our identification model.

We also compared the reconstruction performances derived
by using our previous method SparseTracer, our method ST-
LFV, Open-Snake (Wang et al. 2011) and UltraTracer (Peng
et al. 2017) on various datasets. The datasets are from
BigNeuron project, DIADEM challenge and MOST data.
According to the reconstruction and quantified results
(Fig. 7 & Table S2), all the tested methods behaved well on
datasets with simple neuron structure and clean background
(Fig. 7a, b). Open-snake and UltraTracer showed their own
advantages on some specific neurite structures (Fig. 7c, d),
such as, neurons consisting of short, thick neurite segments
(Fig. 7d). With regard to tracing axonal neurites with weak
image intensity, SparseTracer, Open-snake and UltraTracer
were challenged (Fig. 7e) and some of them even failed to
cope with this case (Fig. 7f). Note that in the use of
SpareseTracer, the tracing seeds were manually provided ex-
cept for Fig. 7e. This is because the image (Fig. 7e) includes
many separate neurites and manually selecting tracing seeds is
relatively time consuming. These results provide some

evidences that identifying the weak foreground in neuronal
images is still a challenging problem for the state-of-the-art
method. In this demonstration, ST-LFV can identify almost all
axonal neurites.

Next, we demonstrated that our identification model is not
limited to images without a smooth background. Synthetic
datasets were used for this purpose. Each dataset consisted
of 517 × 515 × 517 voxels and contained several neurites.
The signal intensity of the first three images in Fig. 8a is
255, but with different noise levels (Gaussian white noise with
zero mean and standard deviation of 20, 60, or 100). The last
image corresponds to signal and noise intensities of 150 and
100, respectively. These four images have CNRs (Welvaert
and Rosseel 2013) of 12.75, 4.25, 2.55, and 1.5, respectively.
An anisotropic Rudin-Osher-Fatemi (ROF) denoising method
(Goldstein and Osher 2009; Rudin et al. 1992) was applied to
smooth the image stack (Fig. 8b). We then validated the iden-
tification model drawn from the corresponding smoothed im-
age stacks. When building the model, the positive training sets
were calculated from the initial traced results (red curves in
left-top panel, Fig. 8a). The negative training sets were formed
of randomly chosen voxels. We manually checked the avail-
ability of the testing sets, i.e., that the positive and negative
feature vectors corresponded to foreground and background
voxels, respectively. The voxels from these four smoothed
image stacks (Fig. 8b) had the same coordinates, and each

Fig. 5 Performance on a dataset with weak neurites drawn from
SparseTracer (ST) and ST-LFV. a Neurite and its initial tracing skeleton
(green) drawn from ST. Two typical weak signal regions (dashed squares
b and c) contain portions of this neurite; b and c are enlarged views of the
labeled regions in (a). Both include maximum intensity projections
through a depth of 10 μm, with a scale bar of 5 μm. d and e

Foreground and background intensities of the neurites in (b) and (c),
respectively; f tracing results drawn from ST with a high threshold
(purple) and a low threshold (yellow), and from ST-LFV (red). The
manual tracing results are labeled with green curves. The locations of
the weak neurite in (b) and (c) are labeled with circles
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smoothed image stack generated a testing set (Fig. 8c). In the
testing sets, even with the high noise level, the positive and
negative feature vectors were still separable (right panel in
Fig. 8c). The results indicate that our feature vectors differen-
tiate the foreground and background sufficiently well to han-
dle images with nonsmooth backgrounds using an appropriate
denoising method. We evaluated the error rate of the SVM
classifiers on four testing sets (Fig. 8d). The highest error rate
is 3% for the data with the highest noise level (fourth image in
Fig. 8b). From these results, we could conclude that our iden-
tification model can be applied to image stacks with a
nonsmooth background.

We investigated whether our assumptions were applicable to
DIADEMdatasets. Two datasets were used for this purpose. The
dataset shown in Fig. 9a (Neocortical Layer 6 Axons dataset)
was imaged by a two-photon microscope. The other in Fig. 9b
(OP dataset) was imaged by 2-channel confocal microscopy.We
extracted the foreground points and background points and cal-
culated the corresponding feature vectors. The calculated feature
vectors (Fig. 9c-f) illustrate the large feature differences between
the extracted foreground and extracted background points.
These differences result in a classifier for detecting weak signals
with a low training error (1.3% for Fig. 9g and 0% for Fig. 9h,
respectively). Note that, in generating the training set, the

Fig. 6 Comparisons of neurite tracing results drawn from SparseTracer
(ST) and ST-LFV. a One typical dataset with its corresponding tracing
results drawn manually (green), drawn with ST (red), and drawn with ST-
LFV (yellow). Over-tracing results from ST are labeled with circles. b
Another dataset with a weak background in which ST fails to trace part of
a neurite (labeled with an arrow); c distribution of the dataset locations in

the mouse brain. The locations of datasets (a) and (b) are labeled with
yellow arrows; d and e are automatic tracing results from the datasets in
(c) and are measured with a precision rate (d) and a recall rate (e), respec-
tively. The red numbers 2 and 4 on the lateral axis represent the datasets
shown in (a) and (b)
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extracted background points included a few points located in
regions adjacent to or at the boundaries of neurites (Fig. 9a).
This may reduce the power of the classifier. We quantified this
negative influence by applying cross-validation and the corre-
sponding error rate is 0.75%. For the clean image background in
Fig. 9b, the corresponding error rate is 0.05%.

We also demonstrated that our assumptions hold for
B i gN e u r o n d a t a u s i n g tw o t y p i c a l d a t a s e t s

(checked6_mouse_tufts and checked_mouse_korea)with a noisy
background (Fig. 10a, b). Despite the presence of such noise, the
foreground and background feature vectors are different and can
be easily classified into two groups (Fig. 10c-f). These feature
vectors were used to derive classifiers with training error rates of
0.4% (Fig. 10g) and 1.2% (Fig. 10h). The training errors can be
attributed to the interference of the noisy background. We further
validated the identification model using cross-validation. The

Fig. 7 Comparisons of the reconstruction derived from manual,
SparseTracer, ST-LFV, Open-Snake and UltraTracer. The first column
of panels (a)-(f) show the original image stacks provided by DIADEM
Challenge (dataset d, voxel size: 1 × 1 × 1 μm3), BigNeuron project
(dataset b, voxel size: 0.18 × 0.18 × 0.5 μm3; datasets a and c, voxel size:

1 × 1 × 1 μm3) and MOST datasets (datasets e and f, voxel size: 0.3 ×
0.3 × 1 μm3), respectively. The remaining columns of the panels are the
reconstructions generated by manual, SparseTracer, ST-LFV, Open-
Snake and UltraTracer, respectively
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estimated error rates are 0.05% and 0.1%, respectively. The low
error rates indicate large differences between the features of the
foreground and background points. These results indicate that our
assumptions are consistent with the features of the BigNeuron
datasets, and that the generated model is valid.

Furthermore, we checked that the constructed classifiers
(Fig. 10g, h) produce better tracing results. We compared the
tracing results from SparseTracer with those given by ST-LFV
(Fig. 11a-d), and found that SparseTracer was unable to trace
some neurites with weak signals (arrows in Fig. 11a, c). ST-
LFV produced tracing results that included almost all of the
neurites that could not be traced by SparseTracer. These re-
sults verify that the classifiers (Fig. 10g, h) are applicable even
when there are several training errors.

The superior tracing performance of ST-LFV resulted in a
vast improvement in the automation level of the SparseTracer

software, enabling the rapid tracing of neurites in large-scale
datasets. We selected a dataset that included several long axons,
with a total size of 1.99 × 1.93 × 1.32 mm3 (voxel size, 0.3 ×
0.3 × 1 μm3, 105 GB). We adopted the divide-and-conquer
strategy used in our previous work (Li et al. 2016) for the
analysis of large datasets. We also added a manual editing
module to SparseTracer, to obtain the initial tracing direction
and sites for continuous tracing when the weak signal strength
fails the detection. This manual editing module allows
SparseTracer to produce the same tracing results as ST-LFV
(Fig. 12b, c). However, the number of manual editing sessions
required for SparseTracer (20 times) is far greater than that for
ST-LFV (1 time). This demonstrates the advantage of ST-LFV
for large-scale tracing. We quantified this advantage by com-
paring the total time required while using ST-LFV with that
while using SparseTracer. Tracing neurites with SparseTracer

Fig. 8 Feature vector extraction from filtered synthetic datasets. a Four
image stacks with Gaussian noise. The red curves in (a) depict the initial
tracing results. b Images in (a) filtered with an anisotropic denoising
method; c foreground (upper panel) and background (bottom panel)
feature vectors form the testing set and extracted from their corresponding

filtered image stacks in (b); d differentiating the positive (yellow
circles) and negative (blue triangles) feature vectors in the testing sets
with the SVM classifiers. The classifiers are drawn from their
corresponding image stacks
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requires intensive manual edits, and a skillful annotator may
require 20 min. The same annotator would require only 5 min
to finish the same task using ST-LFV. In addition, we measured
the time required to build the identification model and com-
pared it with that for neurite tracing. Fifteen sub-blocks from
the dataset in Fig. 12 were used for this purpose, and the cor-
responding information is presented in Table S3. According to
the tracing pipeline (Method section 2.3), foreground identifi-
cation is closely linked with neurite tracing and the model only
identifies a small part of the failed traced voxels. Therefore, the
time required to build and customize the identification model is
less than that for tracing neurites. In this comparison, the image
reading time was ignored as it would be negligible for the data
storage system (a RAID is connected to the workstation direct-
ly) used in this study. From the above comparisons, we can
conclude that ST-LFV significantly improves the tracing per-
formance of SparseTracer and is a valuable resource for large-
scale neurite tracing.

Discussion

ST-LFV involves more rules deduced from images by human
beings than other methods (Li et al. 2017; Chen et al. 2015).

These rules are based on several assumptions that are com-
monly applicable to neuronal images collected with optical
microscopes, and provide a basis for constructing a feature
vector that displays the differences between foreground and
background voxels. The robustness of our model was verified
by multi-fold cross validation (see results in Table S1). We
also demonstrated that, under our assumptions, the feature
vector of a weak signal voxel is essentially different from that
of a background voxel (Fig. S3). In our method, a complicated
procedure for extracting valid features and identifying weak
signals is avoided by using more rules, thus eliminating the
need for intensive computation. This is the primary reason
why ST-LFV is suitable for large-scale tracing of neurites.

In ST-LFV, unlike other methods (Li et al. 2017; Chen et al.
2015), the identification model is embedded in the tracing
procedure. When the tracing termination conditions are trig-
gered, the identification model operates to allow tracing to
continue after the model has identified the current tracing
point as a foreground voxel. The identification model is linked
to the tracing procedure and enhances the ability of ST-LFV to
trace neurites with weak signals. Other methods separate the
identification and tracing procedures, first using a machine
learning method to identify as many foreground voxels as
possible and then performing the tracing procedure, i.e.,

Fig. 9 Feature vector extraction fromDIADEM datasets. a and b are two
datasets, one from the Neocortical Layer 6 Axons dataset and the other
from the Olfactory Projection Fibers dataset. The foreground (red) and
background (blue) voxels are used for feature extraction. c and d
Foreground (yellow) and background (blue) feature vectors calculated
from two labeled voxels in (a) and (b), respectively; e and f are feature

vectors of all labeled foreground (upper) and background (bottom) voxels
in (a) and (b), respectively; g and h show the SVM classifiers generated
with feature vectors from (e) and (f), respectively. The positive (yellow
circles) and negative (blue triangles) results correspond to foreground and
background feature vectors, respectively
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extracting the skeleton based on the identified foreground
voxels. These methods aim to identify all foreground voxels,
and are therefore relatively computationally expensive, which

is an obstacle to the large-scale tracing of neurites. ST-LFV
only activates the identification model when the tracing termi-
nation conditions have been triggered, and thus only identifies

Fig. 10 Feature vector extraction from BigNeuron datasets. a and b are
two datasets, one from the checked6_mouse_tufts dataset and the other
from the checked_mouse_korea dataset. The foreground (red) and
background (blue) voxels are used for feature extraction. c and d
Foreground (yellow) and background (blue) feature vectors calculated

from two labeled voxels in (a) and (b), respectively; e and f are feature
vectors of all labeled foreground (upper) and background (bottom) voxels
in (a) and (b), respectively; g and h SVM classifiers generated with
feature vectors from (e) and (f), respectively

Fig. 11 Tracing performance on two BigNeuron datasets drawn using
SparseTracer (ST) and ST-LFV. a Tracing results drawn using ST (red).
Some neurites cannot be detected by ST, and these are labeled with
arrows. The ground truth (green) is also provided. b ST-LFV provides

tracing results (purple) that are almost equivalent to the ground truth
(green). The neurites that cannot be detected with ST can be traced
successfully (see the labeled arrow). c and d Similar to (a) and (b),
respectively
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a few foreground voxels when tracing a neurite. This contrib-
utes to the ability of ST-LFV to rapidly trace neurites in large-
scale images.

Foreground identification is an indispensable step in neurite
tracing. The identification model in ST-LFV is used to distin-
guish foreground voxels from the background. Generally, our
identification model could be employed alongside many widely
used tracing methods, such as, the model fitting method (Zhao
et al. 2011), principal curves method (Bas and Erdogmus 2011),
etc. The termination condition of these methods will be activat-
ed when the local structure information becomes inadequate.
Combined with our model, these methods could potentially
identify weaker foreground signals and continue tracing.

As in many machine learning methods (Suykens and
Vandewalle 1999; Cortes and Vapnik 1995), obtaining a train-
ing set is a key part of ST-LFV. In our method, the training set
contains positive (foreground) and negative (background) fea-
ture vectors, is automatically generated, and does not require
manual labeling. A positive feature vector in the training set is
determined by its corresponding foreground point (see the
Methods section). The point is automatically generated by
the tracing procedure, such as, SparseTracer (Li et al. 2016)
or other methods (Bas and Erdogmus 2011; Rodriguez et al.
2009). A negative feature vector is determined by a corre-
sponding point drawn at random (according to a uniform dis-
tribution) from the image. This random selection ensures that
the chosen point has a very low probability of being in the
foreground. The probability is low because the distribution of
neurites is sparse and the number of foreground voxels is far
smaller than the total number of voxels. According to the
above analysis, the automatic generation of a training set from
a sparse image is feasible.

In SparseTracer, we used a constrained principal curve to
trace neurites with weak signals (Li et al. 2016; Quan et al.
2016). In general, it is difficult to obtain a forward tracing
direction from this type of neurite because of inadequate local

structure information. In this case, the constrained principal
curve introduces directional information for the traced points,
and this direction becomes the forward tracing direction. This
feature allows SparseTracer to detect weaker signals than oth-
er methods (Rodriguez et al. 2009;Wang et al. 2011; Xiao and
Peng 2013). When analyzing images that include weak sig-
nals, SparseTracer demonstrates highly accurate tracing per-
formance (>85% recall at >90% precision). However, like
most other methods, SparseTracer uses a set of thresholds to
determine whether the tracing should be terminated. This ter-
mination condition may not be suitable when detecting weak
signals from an inhomogeneous background (see Figs. 4g, h).
This type of weak signal detection is a common task in the
process of tracing large-scale neurites. Considering this situa-
tion, we proposed an identification model that can be com-
bined with SparseTracer, i.e., ST-LFV, to enable the large-
scale tracing of neurites.

The identification model in ST-LFV is based on rules that
are suitable for various types of neuronal images. However,
directly using the identification model may be inappropriate
for images whose characteristics do not satisfy our assump-
tions. Consider the following two examples. 1) The neurites or
somas are densely distributed in the images. In this case, there
will be a relatively high number of foreground voxels in the
randomly chosen voxels used to construct the negative train-
ing set, which will reduce the performance of the identifica-
tion model. This problem can be addressed by cleaning the
negative training set. For instance, the foreground region
could be labeled using neurite tracing and soma shape recon-
struction methods (Quan et al. 2013; Quan et al. 2014;
Luengo-Sanchez et al. 2015; Varando et al. 2018), and then
feature vectors whose corresponding voxels were in the la-
beled regions could be removed from the negative training
set. 2) For images without a smooth background, the back-
ground features may deviate from the assumption used to
construct the identificationmethod. In this case, an anisotropic

Fig. 12 Tracing neurites at a large
scale. a Large-scale dataset
(approximately 105 GB) and the
tracing results (ground truth)
drawn by a human annotator
(green); b tracing results (red)
drawn by SparseTracer (ST),
equivalent to the ground truth. A
total of 20 manual edits
(interferences) are required, and
their corresponding locations are
labeled with white dots. c For ST-
LFV, only one manual edit is
required (labeled with an arrow)
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ROF denoising method (Goldstein and Osher 2009) or bias
correction method (Sing et al. 2015) are good approaches to
ensure that the smoothed background satisfies our assump-
tion. The selection of the approach shall be based on different
image characteristics. In a nutshell, pre-processing methods
can extend the application range of our identification model.
However, there are some cases that may result in failure to
identify weak signals. In case 1), some tracing methods may
fail to trace neurites that are highly disconnected, i.e., neurites
that can be modeled as a series of sufficiently separable clus-
ters of foreground points rather than as a series of connected
cylinders. In this case, neurite tracing failures may result in the
unsuccessful application of the identification model. In case
2), there may be images with low z-resolution depths where
the neural signal is not sparsely distributed. The identification
will then fail because the extraction of background feature
vectors will be restricted by the dense foreground voxels.

We demonstrated that ST-LFV can detect weak foreground
voxels in tracing sparsely distributed neurites. ST-LFValso has
potential advantages in tracing neurites from the large-scale
images in which neurites are sparsely distributed. However, it
is worth noticing that the identification model in ST-LFVacti-
vates only when a starting point and tracing direction are pro-
vided. For a partially traced neurite, ST-LFV may generate a
complete reconstruction. But it fails in tracing some neurites
that are not detected by tracing methods, due to lack of starting
traced point and tracing direction. In addition, like other tracing
methods (Peng et al. 2010; Peng et al. 2017; Quan et al. 2016;
Wang et al. 2011;Wearne et al. 2005), ST-LFV still experiences
many difficulties in tracing neurons on a brain-wide scale,
which can be attributed to the following causes. First, brain-
wide neurite tracing involves identifying individual neurons in
the presence of the packed neurites. This problem still chal-
lenges the current tracing methods. Second, due to the tree
structure of a neuron, the tracing errors can accumulate contin-
uously. Tracing a long-projection neuron makes this situation
worse and the tracing errors even extend to the whole brain.
This means that for the brain-wide reconstruction, a tracing
error will cause an unacceptable tracing result in some cases.
Finally, the image stacks with size of terabytes or even tens of
terabytes are required to be copedwith the brain-wide tracing of
neurons, which requires the integration of big data technique
and neurite tracing methods. Thus, many challenges still exist
in the brain-wide tracing of individual neurons. Aiming to over-
come these challenges, appropriate methods should be devel-
oped and integrated into a software tool.

Conclusion

We have proposed a method for identifying weak neurite sig-
nals from the background that is inhomogeneous but locally
smooth. We verified that the extracted features, which

differentiate the foreground and background, are widely ap-
plicable to various types of light-microscopic images contain-
ing sparsely distributed neurites. The identification method
was shown to improve the accuracy of neurite tracing on con-
dition that our rules are consistent with the image characteris-
tics. We further demonstrated that this identification method is
suitable for the large-scale tracing of neurites that are sparsely
distributed, which may aid in the reconstruction of neurons
across different brain regions.
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