Skip to main content

Advertisement

Log in

A Large Deformation Diffeomorphic Framework for Fast Brain Image Registration via Parallel Computing and Optimization

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

In this paper, we proposed an efficient approach for large deformation diffeomorphic metric mapping (LDDMM) for brain images by utilizing GPU-based parallel computing and a mixture automatic step size estimation method for gradient descent (MAS-GD). We systematically evaluated the proposed approach in terms of two matching cost functions, including the Sum of Squared Differences (SSD) and the Cross-Correlation (CC). The registration accuracy and computational efficiency on two datasets inducing respective 120 and 1,560 registration maps were evaluated and compared between CPU-based LDDMM-SSD and GPU-based LDDMM-SSD both utilizing backtracking line search for gradient descent (BLS-GD), GPU-based LDDMM (BLS-GD) and GPU-based LDDMM (MAS-GD) with each of the two matching cost functions being used. In addition, we compared our GPU-based LDDMM-CC (MAS-GD) with another widely-used state-of-the-art image registration algorithm, the symmetric diffeomorphic image registration with CC (SyN-CC). The GPU-based LDDMM-SSD was about 94 times faster than the CPU-based version (8.78 mins versus 828.35 mins) without sacrificing the Dice accuracy (0.8608 versus 0.8609). The computational time of LDDMM with MAS-GD for SSD and CC were shorter than that of LDDMM with BLS-GD (5.29 mins versus 8.78 mins for SSD and 6.69 mins versus 65.87 mins for CC), and the corresponding Dice scores were higher, especially for CC (0.8672 versus 0.8633). Compared with SyN-CC, the proposed algorithm, GPU-based LDDMM-CC (MAS-GD) had a higher registration accuracy (0.8672 versus 0.8612 and 0.7585 versus 0.7537 for the two datasets) and less computational time (6.80 mins versus 25.97 mins and 6.58 mins versus 26.23 mins for the two datasets).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armijo, L. (1966). Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics, 16(1), 1–3.

    Article  Google Scholar 

  • Ashburner, J., & Friston, K.J. (2011). Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. NeuroImage, 55(3-3), 954–967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41.

    Article  CAS  PubMed  Google Scholar 

  • Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C. (2011a). A reproducible evaluation of ants similarity metric performance in brain image registration. NeuroImage, 54(3), 2033–2044.

    Article  PubMed  Google Scholar 

  • Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C. (2011b). A reproducible evaluation of ants similarity metric performance in brain image registration. NeuroImage, 54(3), 2033–2044.

    Article  PubMed  Google Scholar 

  • Beg, M.F., Miller, M.I., Trouvé, A, Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157.

    Article  Google Scholar 

  • Bengio, Y., Simard, P., Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Bottou, L. (1991). Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes, 91, 8.

    Google Scholar 

  • Brennan, R.W., & Rogers, P. (1995). Stochastic optimization applied to a manufacturing system operation problem. In Simulation conference proceedings (pp. 857–864).

  • Ceritoglu, C., Tang, X., Chow, M., Hadjiabadi, D., Shah, D., Brown, T., Burhanullah, M.H., Trinh, H., Hsu, J.T., Ament, K.A., et al. (2013). Computational analysis of lddmm for brain mapping. Frontiers in Neuroscience, 7.

  • Cole-Rhodes, A.A., Johnson, K.L., LeMoigne, J., Zavorin, I. (2003). Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Transactions on Image Processing, 12(12), 1495–1511.

    Article  PubMed  Google Scholar 

  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.

    Article  Google Scholar 

  • Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., Group, B.D.C., et al. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313–327.

    Article  PubMed  Google Scholar 

  • Gennatas, E.D., Avants, B.B., Wolf, D.H., Satterthwaite, T.D., Ruparel, K., Ciric, R., Hakonarson, H., Gur, R.E., Gur, R.C. (2017). Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood. Journal of Neuroscience, 37(20), 5065–5073.

    Article  CAS  PubMed  Google Scholar 

  • George, A.P., & Powell, W.B. (2006). Adaptive stepsizes for recursive estimation with applications in approximate dynamic programming. Machine learning, 65(1), 167–198.

    Article  Google Scholar 

  • Glaunès, J., Qiu, A., Miller, M.I., Younes, L. (2008). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision, 80(3), 317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha, L, Krüger, J., Joshi, S, Silva, C.T. (2011). Multiscale unbiased diffeomorphic atlas construction on multi-gpus. In GPU computing gems emerald edition. Elsevier (pp. 771–791).

  • Hardie, R.C., Barnard, K.J., Armstrong, E.E. (1997). Joint map registration and high-resolution image estimation using a sequence of undersampled images. IEEE Transactions on Image Processing, 6(12), 1621–1633.

    Article  CAS  PubMed  Google Scholar 

  • Harold, J., Kushner, G., Yin, G. (1997). Stochastic approximation and recursive algorithm and applications. Application of Mathematics, 35.

  • Hernandez, M. (2014). Gauss–newton inspired preconditioned optimization in large deformation diffeomorphic metric mapping. Physics in Medicine & Biology, 59(20), 6085.

    Article  Google Scholar 

  • Joshi, S.C., & Miller, M.I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370.

    Article  CAS  PubMed  Google Scholar 

  • Klein, S., Staring, M., Pluim, J.P.W. (2007). Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. IEEE Transactions on Image Processing, 16(12), 2879.

    Article  PubMed  Google Scholar 

  • Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., et al. (2009a). Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration. NeuroImage, 46(3), 786–802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, S., Pluim, J.P.W., Staring, M., Viergever, M.A. (2009b). Adaptive stochastic gradient descent optimisation for image registration. International Journal of Computer Vision, 81(3), 227.

    Article  Google Scholar 

  • Kutten, K.S., Charon, N., Miller, M.I., Ratnanather, J.T., Matelsky, J., Baden, A.D., Lillaney, K., Deisseroth, K., Ye, L., Vogelstein, J.T. (2017). A large deformation diffeomorphic approach to registration of CLARITY images via mutual information (pp. 275–282). Cham: Springer International Publishing.

    Google Scholar 

  • Miller, M.I., Trouve, A., Younes, L. (2002). On the metrics and euler-lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4(1), 375.

    Article  CAS  PubMed  Google Scholar 

  • Muyan-Ozcelik, P, Owens, J.D., Xia, J., Samant, S.S. (2008). Fast deformable registration on the gpu: a cuda implementation of demons. In International conference on computational sciences and its applications (pp. 223–233).

  • Oliveira, F.P., & Tavares, J.M.R. (2014). Medical image registration: a review. Computer Methods in Biomechanics and Biomedical Engineering, 17(2), 73–93.

    Article  PubMed  Google Scholar 

  • Polzin, T, Niethammer, M, Heinrich, M.P., Handels, H., Modersitzki, J. (2016). Memory efficient lddmm for lung ct. In International conference on medical image computing and computer-assisted intervention (pp. 28–36).

  • Qiao, Y., Van, L.B., Lelieveldt, B.P., Staring, M. (2016). Fast automatic step size estimation for gradient descent optimization of image registration. IEEE Transactions on Medical Imaging, 35(2), 391.

    Article  PubMed  Google Scholar 

  • Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 400–407.

  • Rousseau, F., Habas, P.A., Studholme, C. (2011). A supervised patch-based approach for human brain labeling. IEEE Transactions on Medical Imaging, 30(10), 1852–1862.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamonin, D.P., Bron, E.E., Lelieveldt, B.P.F., Smits, M., Klein, S., Staring, M. (2013). Fast parallel image registration on cpu and gpu for diagnostic classification of alzheimer’s disease. Frontiers in Neuroinformatics, 7(50), 50.

    PubMed  Google Scholar 

  • Shams, R., Sadeghi, P., Kennedy, R.A., Hartley, R.I. (2010). A survey of medical image registration on multicore and the gpu. Signal Processing Magazine IEEE, 27(2), 50–60.

    Article  Google Scholar 

  • Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Poldrack, R.A., Bilder, R.M., Toga, A.W. (2008). Construction of a 3d probabilistic atlas of human cortical structures. NeuroImage, 39(3), 1064–1080.

    Article  PubMed  Google Scholar 

  • Spall, J.C. (2005). Introduction to stochastic search and optimization: estimation, simulation, and control Vol. 65. New York: Wiley.

    Google Scholar 

  • Staniforth, A., & Côté, J. (1991). Semi-lagrangian integration schemes for atmospheric models—a review. Monthly Weather Review, 119(9), 2206–2223.

    Article  Google Scholar 

  • Suri, R, & Leung, Y.T. (1987). Single run optimization of a Siman model for closed loop flexible assembly systems. In Proceedings of the 19th conference on winter simulation. ACM (pp. 738–748).

  • Thévenaz, P, & Unser, M. (2000). Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 9(12), 2083–99.

    Article  PubMed  Google Scholar 

  • Tward, D.J., Kolasny, A, Sicat, C.S., Brown, T, Miller, M.I. (2016). Tools for studying populations and timeseries of neuroanatomy enabled through gpu acceleration in the computational anatomy gateway. In Xsede16 Conference on diversity, big data, and science at scale (p. 15).

  • Vaillant, M, & Glaunès, J. (2005). Surface matching via currents. In Information processing in medical imaging. Springer (pp. 1–5).

  • Vysochanskij, D., & Petunin, Y.I. (1980). Justification of the 3σ rule for unimodal distributions. Theory of Probability and Mathematical Statistics, 21, 25–36.

    Google Scholar 

  • Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A. (2013). Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 611–623.

    Article  PubMed  Google Scholar 

  • Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta, J.C. (1998a). Automated image registration: I. General methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography, 22(1), 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Woods, R.P., Grafton, S.T., Watson, J.D., Sicotte, N.L., Mazziotta, J.C. (1998b). Automated image registration: II. intersubject validation of linear and nonlinear models. Journal of Computer Assisted Tomography, 22 (1), 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J, & Tang, X. (2018). Fast diffeomorphic image registration via gpu-based parallel computing: an investigation of the matching cost function. In Medical imaging 2018: image processing, international society for optics and photonics, (Vol. 10574 p. 105742S).

  • Yang, X., Kwitt, R., Styner, M., Niethammer, M. (2017). Quicksilver: fast predictive image registration–a deep learning approach. NeuroImage, 158, 378–396.

    Article  PubMed  Google Scholar 

  • Zhang, M, Liao, R, Dalca, A.V., Turk, E.A., Luo, J., Grant, P.E., Golland, P. (2017). Frequency diffeomorphisms for efficient image registration. In International conference on information processing in medical imaging (pp. 559–570).

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2017YFC0112404) and the National Natural Science Foundation of China (NSFC 81501546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 4 The mean and standard deviations of the Dice scores for each of the 14 brain regions of interest of the first dataset, obtained from LDDMM-SSD and SyN-SSD, as well as the p-values in comparing the two sets of results
Fig. 8
figure 8

The histograms of the voxelwise Jacobian determinants from all 120 mappings of the first dataset, obtained respectively from SyN-CC (left) and LDDMM-CC (right). Please note we have only shown Jacobian determinants whose absolute values are no larger than 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Tang, X. A Large Deformation Diffeomorphic Framework for Fast Brain Image Registration via Parallel Computing and Optimization. Neuroinform 18, 251–266 (2020). https://doi.org/10.1007/s12021-019-09438-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-019-09438-7

Keywords

Navigation