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Abstract

Applications such as brain computer interfaces require recordings of relevant neuronal population activity with high
precision, for example, with electrocorticography (ECoG) grids. In order to achieve this, both the placement of the electrode
grid on the cortex and the electrode properties, such as the electrode size and material, need to be optimized. For this purpose,
it is essential to have a reliable tool that is able to simulate the extracellular potential, i.e., to solve the so-called ECoG forward
problem, and to incorporate the properties of the electrodes explicitly in the model. In this study, this need is addressed by
introducing the first open-source pipeline, FEMfuns (finite element method for useful neuroscience simulations), that allows
neuroscientists to solve the forward problem in a variety of different geometrical domains, including different types of source
models and electrode properties, such as resistive and capacitive materials. FEMfuns is based on the finite element method
(FEM) implemented in FEniCS and includes the geometry tessellation, several electrode-electrolyte implementations and
adaptive refinement options. The Python code of the pipeline is available under the GNU General Public License version
3 at https://github.com/meronvermaas/FEMfuns. We tested our pipeline with several geometries and source configurations
such as a dipolar source in a multi-layer sphere model and a five-compartment realistically-shaped head model. Furthermore,
we describe the main scripts in the pipeline, illustrating its flexible and versatile use. Provided with a sufficiently fine
tessellation, the numerical solution of the forward problem approximates the analytical solution. Furthermore, we show
dispersive material and interface effects in line with previous literature. Our results indicate substantial capacitive and
dispersive effects due to the electrode-electrolyte interface when using stimulating electrodes. The results demonstrate that
the pipeline presented in this paper is an accurate and flexible tool to simulate signals generated on electrode grids by
the spatiotemporal electrical activity patterns produced by sources and thereby allows the user to optimize grids for brain
computer interfaces including exploration of alternative electrode materials/properties.

Keywords Computational modeling - Finite element method - Electrical double layer - Dispersive tissue - Complete
electrode model

Introduction the sources corresponds to solving the forward- and inverse
problem.

Stimulating and recording the brain by means of electrodes The forward problem assumes a known source and solves

provides a versatile method to deepen our understanding
of neural networks and their role in cognitive processes.
Reconstructing the spatio-temporal distribution of neural
current sources underlying electrophysiological data, such
as electroencephalography (EEG) and electrocorticography
(ECoG), assists in studying neural processes. Estimating
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for the electric potential in the brain. The inverse problem
consists of estimating the source configuration underlying
the recorded potential. The inverse problem requires solving
the forward problem first and consequently the accuracy of
the estimated sources will depend on the accuracy of the
solution of the forward problem.

The Finite Element Method (FEM) is a suitable
numerical method to solve the forward problem; it can
incorporate the complex geometry of the head and allows
for anisotropic conductivities, for example, to account for
the laminar structure of cortex (Goto et al. 2010). FEM has
been used to quantify various volume conduction effects,
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such as the influence of skull anisotropy (Marin et al.
1998), tissue inhomogeneities and anisotropies (Butson
et al. 2007), and dispersive tissue properties (Grant and
Lowery 2010).

A realistic description of the geometry and correct values
of the electrical parameters of the biological tissues are
essential to ensure an accurate forward model. The electrical
conductivity and relative permittivity of biological tissues
vary with frequency (i.e., they are dispersive, Gabriel et al.
1996; Miceli et al. 2017). However, volume conductor
models used in bio-electricity generally consider only
resistive currents, which is consistent with the so-called
quasi-static approximation of Maxwell’s equations (Plonsey
and Heppner 1967; Nunez and Srinivasan 2006), and
capacitive, inductive and propagation effects are assumed to
be negligible (Miceli et al. 2017). Whether the extracellular
medium can be regarded as purely ohmic remains a topic of
discussion (Gomes et al. 2016; Bédard and Destexhe 2017;
Miceli et al. 2017; Logothetis et al. 2007).

A limited number of studies have addressed the effect of
the presence of electrodes on the forward solution (Joucla
and Yvert 2009; Butson and Mclntyre 2005; Cantrell et al.
2007; Grant and Lowery 2010). The electric properties of
electrodes are typically non-linear because of the properties
of the current density distribution along its surface (Neuman
1998). In particular, when an electrode is immersed in an
electrolyte, the charge carrier between the two materials
changes from electronic in the metal to ionic in the
electrolyte. As a result an electrical double layer forms on
the external surface of the electrode where, in recording
electrodes, a mix of faradaic (ohmic) and non-faradaic
(capacitive) currents occurs depending on the magnitude of
the potential difference across the interface (Richardot and
McAdams 2002).

These ohmic and capacitive currents across the electrode
have been implemented in FEM studies in a variety of
set-ups, e.g., imposing faradaic currents (Joucla and Yvert
2009), non-faradaic currents (Butson and Mclntyre 2005)
or a parallel combination of the two (Cantrell et al. 2007,
Grant and Lowery 2010). Models of recording electrodes,
such as EEG, generally assume a simple point electrode
model, while only a handful studies considers EEG forward
models including the effect of electrode size and shunting
(Ollikainen et al. 2000; Pursiainen et al. 2017).

In this study, we describe the workflow and capabilities
of a volume conduction modeling pipeline FEMfuns
(FEM for useful neuroscience simulations). The goal of
this pipeline is to provide a Python-based framework
centered around a general FEM toolbox, i.e., FEniCS
(Alnzs et al. 2015; Logg and Wells 2010), to make
forward models available, easily exploitable and adjustable
for the neuroscience community. The volume conductor
in FEMfuns can be described by resistive, capacitive
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and dispersive material properties. Furthermore, electrode
interface effects can be flexibly added and the accuracy of
the forward solution is described.

Methods

In this work we conducted three different studies with
the goal of demonstrating the capabilities of our FEM-
funs pipeline. In all the studies Lagrangian FEM (Vorwerk
et al. 2018) was applied to simulate the electric poten-
tial generated in a volume conductor by a known source.
Both an internal dipolar source and an externally induced
stimulating electrode are implemented. This can be useful
considering the fact that the sensitivity of detecting bioelec-
tric signals and the distribution in electrical stimulation are
interchangeable (Malmivuo and Plonsey 1995), due to the
reciprocity theorem (Helmholtz 1853; Rush and Driscoll
1969; Hu 2001).

Forward Model

The electric potential ¢ generated in the brain can
be computed through the quasistatic approximation of
Maxwell’s equations (Plonsey and Heppner 1967). In our
work, we considered two representations of the volume
conductor, namely a purely resistive model and one
that includes capacitive tissue properties. In the resistive
version with primary current density J, (current produced
by neuronal activity, e.g. a dipole, or from stimulating
electrodes), ohmic currents are described in medium £2 with
conductivity o through the following equation:

—V.-(oVe)=V-J,, inQ. (1

When taking into account the capacitive tissue properties,
the quasi-static approximation of Maxwell’s equations does
not hold anymore and the following frequency-dependent
Poisson equation (Plonsey and Heppner 1967) has to be
considered instead:

=V ([o(w) + jweoe,(@)IVe) =V - Jp,  inQ, 2

where j is the imaginary unit, ® = 2mf is the angular
frequency of the source, g is the permittivity in vacuum
(8.85 x 10712F/m) and &, is the relative permittivity. In
case of a stimulating pulse or periodic currents generated
by synchronous oscillations of neuronal circuits, a fast
Fourier transform (FFT) is performed on the time series of
the source. Then, the FEM is solved for each frequency
separately and the signal in the tissue is reconstituted using
the inverse FFT. This FEM-Fourier approach is comparable
to several previous FEM studies (Butson and Mclntyre
2005; Grant and Lowery 2010; Tracey and Williams 2011).
It is essential to ensure the correct relationship between
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the real and imaginary part of an immittance, which is
given by the Kramers-Kronig transforms (Van Gemert
1972; Bechhoefer 2011; Miceli et al. 2017; Bédard and
Destexhe 2018). Both the medium (Van Gemert 1972;
Gabriel et al. 1996) and the electrode interface impedance
(Van Meirhaeghe et al. 1976; Macdonald and Urquidi-
Macdonald 1990; Richardot and McAdams 2002) values we
use satisfy the Kramers-Kronig relationship.

In both the resistive (1) and capacitive (2) scenario, a
homogeneous Neumann boundary condition (BC) is applied
on the exterior boundary 9€2,

oV -n=0, onof2, 3)

where n is the unit outer normal vector on 02.

The Finite Element Method for Solving the Forward
Problem

Lagrangian FEM was used to solve the Poisson (1) (Logg
et al. 2012; Larson and Bengzon 2013; Langtangen and
Mardal 2016). The first step consists of deriving the so-
called weak formulation of the elliptic partial differential
equation (1) (Langtangen and Mardal 2016):

a(u,v) = L(v),Vu,vin V € H(Q), (4)
Wherea(u,v)zf oVu-Vuvdx 5)
Q
and L(v):f fudx, (6)
Q

where H! is the first-order Sobolev space. The weak form
can be heuristically derived by multiplication with a test
function v € V and subsequent partial integration. Reor-
ganization of some terms and applying the homogeneous
Neumann BC leads to (5) and (6).

In the second step, (4) is discretized yielding the
following linear system:

Au = b, 7

with A;j = [o0Ve - V;dx and b; = [, fe; dx, and
{pi}; a set of basis functions.

Next, the linear system (7) is solved and the finite
dimensional solutionu =} ; u j¢; is found.

In order to solve (2) with FEM, we had to deal with
complex numbers (i.e., admittivity y), whose direct use
was not yet implemented in FEniCS. In particular, we
assembled complex numbers in a representation using real-
valued coupled-PDEs. Starting from the strong formulation
in the complex function space, i.e.,

V- ((r + i) Vor +j0j)) = fr +jf; nQ, (@8

we split trial functions, test functions and the admittivity
tensor into a real and imaginary part, u = u, + juj,

v = v, + jvj and y = y, + jy;, respectively, therefore
considering the mixed space W = V x V. This results in
a matrix doubled in linear size, composed of four blocks of
the matrix created for the real version.

The weak form can again be derived by multiplying with
the test function followed by partial integration, which for
the left hand side gives a real part:

a,(u,v) = /(ervr -Vu,) — (y,Vvj - Vuj)
Q
—(yjVur - Vuj) — (yjVv; - Vu,) dx

and an imaginary part:

aj(u,v) = /(_)’ivvj “Vuj;) + (y-Vv; - Vuy)
Q
+(ijvr -Vu,) + (y, Vo - v”j) dx

Without an imaginary source, the right hand side weak form
contains real part L,(v) = fQ frvr dx and imaginary part

Lj(v) = [q frvj dx.
Electrode-Electrolyte Interface

There are several ways to approximate the impedance that
results from the electrode-electrolyte interface (Cantrell
et al. 2007; Joucla and Yvert 2009). When recording or
stimulating with an electrode, ideally no electrochemical
reactions occur and hence all currents are capacitive. This
regime can be modeled with a capacitance and an infinite
transfer resistance at the (non-faradaic) interface of a
stimulating or recording electrode. Richardot and McAdams
(2002) empirically find that a standard capacitor does
not describe the non-faradaic impedance accurately. This
requires a pseudocapacitive constant phase angle impedance
Zcpa:

Zepa = K(jo) 7P, ©9)

where K = 1.57Qm%s P and B = 091 are physical
constants (Cantrell et al. 2007; Richardot and McAdams
2002).

Joucla and Yvert (2009) estimated the -electrode-
electrolyte interface impedance by fitting their FEM
solutions to experimental data. In their model, the interface
currents are described with faradaic reactions using a thin-
layer approximation with a real valued surface admittance
yi (S/m?) expressed by the so-called Robin BC applied at
the k-th electrode:

g
—agzyk«p—gomemlk),onr’;, k=0,1,... (10

where @metal, 18 the electrical potential of the k-th electrode,
Ik is its boundary.
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Cantrell et al. and Grant and Lowery considered a
constant phase angle impedance (9) and a charge transfer
resistance set up in parallel. The double layer (Helmholtz
1879) is assumed to be 1 nm thick and the overpotential-
independent charge transfer resistance can be described with
the gas constant R, temperature 7, number of electrons
per molecule n, Faraday’s constant F and the exchange
current /y. The appropriate values for these parameters are
discussed in detail in Cantrell et al. (2007). The charge
transfer resistance Rc7r (Ohm) is defined in terms of these
variables:

RT
Rer = . (11)
nFly

In our approach, we used Robin boundary conditions
(10) to describe the interface, with its surface admittance yx
described by the pseudocapacitance (9) and charge transfer
resistance (11) set up in parallel. Depending on the chosen
Yk, the interface processes can be described as faradaic,
non-faradaic or a combination of the two.

In the case of recording electrodes, (10) needs to be
used self-consistently, since for each electrode the value of
@metal 1S unknown. We use the Lagrange multiplier method
(Hansbo et al. 2005; Hansbo 2006; Amdouni et al. 2012) to
impose ¢metal as the surface integral over the electrode in
Eq. 10:

1

@metal = = / @ ds. (12)
SJs

Interface Weak Form

The weak form of the Robin BCs (10) is found multiplying
trial function u by the test function v and integrating over
the boundary:

I
/39 o n vds Ek ./1"’;? V(o (Pmetalk) s (13)

To allow for complex numbers, similarly to the capacitive
Poisson (2), the test and trial functions are split in real
and imaginary parts. The surface admittance yy is split into
interface conductivity g and interface susceptivity b, i.e.
vk = g + ib. Now the Robin BC can be written as:

/k Yk — Pmetar )V ds = /k (& + jb)((ur + ju;)
l_‘R l—R

—@metal,) (Vr + jui) ds  (14)

Expanding this equation yield to the real part and
imaginary parts:

Real: /k (gurvy — gujv; — bujvy — bu,v;) ds
I‘R

+ /k (DPmetal, Vi — &Pmetal, Vr) ds (15)

Tk
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Imaginary: fk (guivy + gurv; + bu,v, — bu;v;)ds
l—‘R

- /k (&¥metal; Vi + D@Pmetal, vy )ds (16)
Tk

The variational formulation a(u,v) = L(v) needs all
integrals depending on the trial function u on the left hand
side (a(u, v)) and the remaining integrals on the right hand
side (L(v)). Thus, the real and imaginary integrals from the
Robin BC are split into two parts, with subscripts i and r
indicating the imaginary and real parts, respectively:

ar(u, v) =Z/Fk (guty vy — QUi v; —buivy —buyvi)ds, (17)
k R
a;(u, v) =Xk:/lig(guivr+gurvi+burvr—buivi)ds, (18)
L) = [ s, r b, )3, (19
k R
Lito) = 3 [, s + b )65 20)
k R

Geometrical Models

In this study, three different geometries were used.

A four-layered sphere model (M1, Fig. 1a) representing
the human head containing brain, cerebrospinal fluid (CSF),
skull and scalp. The radii of the spheres are 9.0 cm, 8.5
cm, 8.0 cm and 7.9 cm, respectively (De Munck et al. 1993;
Bauer et al. 2015; Naess et al. 2017). The mesh consists of
about 12 million tetrahedra with a smallest inradius of 26
pm and a largest of 0.5 cm. The script to generate the mesh
used in this paper has been described in Naess et al. (2017).

The second geometric model (M2, Fig. 1b) corresponds
to a multi-electrode array (MEA) set-up used in Joucla and
Yvert (2009). The volume consists of a cylinder (diameter:
19mm, height: Smm) filled with Ringer’s solution and
a rectangular slab of neuronal tissue with dimensions
similar to an embryonic mouse hindbrain-spinal cord. The
MEA was positioned at the bottom of the tissue, with
60 conical recording electrodes (base diameter: 80 wm,
height: 80 wm). The stimulating electrode was modeled as
a rectangular surface (width: 60 um, length: 250 um) on
the same MEA (Fig. 1b, inset in upper panel). An external
cylindrical ground electrode (diameter: 2 mm, height: 4.3
mm) was represented by a cavity in the Ringer’s solution
subdomain (Fig. 1b, purple cylinder positioned in the lower
right region). We used the mesh that was generated by
Joucla and Yvert using FEMLAB 3.1a (COMSOL AB,
Stockholm, Sweden). It consists of 63,214 tetrahedra.

The third geometry is a realistic head model (M3,
Fig. 1c) segmented in scalp, skull, CSF, grey and white
matter (Ernie, provided in SimNIBS, Thielscher et al. 2015).
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Fig.1 Geometrical models
M1-M3. a Four-sphere head
model (Naess et al. 2017), where
the layers represent the different
conductivities of the brain, CSF,
skull and scalp compartments. b
Bottom view of an experimental
MEA set-up (Joucla and Yvert
2009) with a 200 pm thick
square slab of brain in the
middle. The remainder of the
cylinder is filled with Ringer’s
solution (in blue). In the bottom
right corner of the cylinder, the
external cylindrical ground
electrode (in purple) is
positioned. On the tissue surface
(in yellow) 60 distributed
conical recording electrodes (in
grey) and one square stimulating

electrode (in red) are placed. 18 cm
Other square electrodes were
not used for stimulation. The top
panel displays a magnified
region containing 8 recording
and the stimulating electrode. ¢
Realistic head model (Thielscher
et al. 2015), segmented in scalp
(red), skull (yellow), CSF
(green), grey (light blue) and
white matter (blue)

G

For the grey and white matter, anisotropic conductivities
estimated in SimNIBS (Thielscher et al. 2015) were
used during the FEM calculations. The mesh contains
approximately 4.2 x 10° tetrahedra, where the inradius of
each tetrahedra is below 1 mm.

Simulation Set-Ups

The FEM simulations are performed using the open-source
program FEniCS (Alnzs et al. 2015; Logg and Wells 2010).
All simulations were done with Lagrange finite elements
using the PETSc Krylov Solver with either the Conjugate
Gradient method or generalized minimal residual method
(GMREYS) to solve the linear systems. Note however that a
variety of other solvers is available.

Study 1: The linear system was numerically solved in
the four-sphere head model (M1) using an average zero
reference and compared to the analytical solution (Naess
et al. 2017). The dielectric parameters o and &, of the
four layers were calculated using the four-term Cole-Cole

recording electrodes —»> & « = =

ing electrode —

‘ '
) i
o '
§ '
Ve
e

«——————————————— brain tissue

<«——— Ringer solution

'— ground electrode

19 mm

expression (Gabriel et al. 1996) at 10 MHz (Table 1).
This frequency serves as an example and other frequencies
yield comparable results. Furthermore, since there is no
agreement on the correct dispersive dielectric parameters

Table 1 TIsotropic conductivities and mean conductivities of the
anisotropic white and grey matter (left column) (Opitz et al. 2011)

Name o (S/m) o (S/m) 10MHz & 10MHz
Grey 0.276 .29 320
White 0.126 .16 176
CSF 1.654 2 109
Skull 0.010 .04 36.8
Scalp 0.465 2 362

Dielectric properties for tissues at I0MHz calculated using the four-
term Cole-Cole expression (Gabriel et al. 1996). This frequency serves
as an example and other frequencies yield comparable results. The
frequency of biopotentials and stimulating electrodes is generally
below 10 kHz

@ Springer
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(Gabriel et al. 1996; Miceli et al. 2017; Wagner et al. 2014),
the values in this paper serve as an example. We solved
the capacitive Poisson (2) with the homogeneous Neumann
BC (3) on the outer surface. Dipoles were positioned at
depths from 1 mm to 5 mm under the grey matter surface
and oriented radially, tangentially or at a 45-degree angle.
Dipoles were approximated with a positive and negative
monopole of magnitude 100 A, at 1 mm distance from
each other. Relative Differences (RD = % ZlNz | 'i;;"f;jll),
where ¢; is the numerical solution at location i, v; the
analytical solution and N the number of locations, were
calculated on the surface between brain tissue and CSF
at 32,400 evenly distributed locations to compare the
analytical and numerical solutions. These locations on the
brain surface represent ECoG point-electrodes.

Study 2: The capacitive Poisson (2) was solved in M2,
taking into account four combinations of capacitive disper-
sive material effects: a) capacitive tissue and a capacitive
electrode interface surface admittance, b) capacitive tis-
sue and a pseudocapacitance electrode interface surface
admittance, c) dispersive tissue and a capacitive electrode
interface surface admittance, d) dispersive tissue and a pseu-
docapacitance electrode interface surface admittance. A 200
us rectangular pulse was applied by the stimulating elec-
trodes and decomposed in 50,001 frequencies (between O
and 1/(2 dt) Hz, where dt is 10 us). In the dispersive case,
the conductivity and permittivity values of the tissue and
Ringer’s solution were calculated for each frequency using
the four-term Cole-Cole equation (Eq (8), Gabriel et al.
1996). For the capacitive case, the conductivity and permit-
tivity values were calculated using the four-term Cole-Cole
equation at the average frequency of the pulse FFT. The
ground and stimulating electrode surface admittance was
implemented as a Robin BC (10). The pseudocapacitive
case consisted of an equivalent impedance of a pseudoca-
pacitance ((9)) and a charge transfer resistance ((11)) set up
in parallel (Cantrell et al. 2007). The capacitive electrode
case used the capacitance and resistance of the parallel pseu-
docapacitive circuit at the average frequency of the pulse
FFT. Note that the capacitive reactance of the electrode
remains dependent on frequency.

Study 3: As a proof of principle, Eq. (1) with BC (3)
was solved in a realistic head model (M3). Tissue properties
(Table 1 first column) were resistive and anisotropic. The
dipole was tangentially and radially oriented with regard to
the average normal of one of the electrodes at a distance of
1 mm.

Implementation
The workflow of the simulation pipeline FEMfuns for the

potential is visualized in a schematic overview (Fig. 2) and
has the following steps:

@ Springer

1. Create the mesh (top yellow boxes in Fig. 2)

(a) Define the different materials into separate subdo-
mains and mark interfacial regions as boundaries
(b) Convert geometry to FEniCS format

2. Choose simulation parameters for the (Parameters
module in Fig. 2):

(a) Type and location of source (e.g. electrode,
monopole, dipole)

(b) Capacitive/resistive/dispersive tissue (Table 1)

(c) Electrode-tissue interface (10)

3. Create FEM simulation class instance
(FEM_simulation in Fig. 2)

4. Run simulation (main in Fig. 2)

Visualize

6. Compare to analytical solutions (when possible)

d

Since only simple geometries can be created within
FEniCS, other tools like gmsh (Geuzaine and Remacle
2008) or integrated realistic head models (Thielscher
et al. 2015) should be considered for the generation
of a tetrahedral mesh. The steps performed outside
Python/FEniCS environment are indicated in yellow in
Fig. 2. In this study we used both gmsh (Geuzaine and
Remacle 2008) and SimNIBS (Thielscher et al. 2015).
After creating the mesh, parameters regarding the materials,
sources and electrodes need to be set (Fig. 2, in red
are the Python classes and their use and in green the
main output is shown). A subsection of the mesh can
be cut out, creating a new smaller mesh. This is useful
when solving for the potential in a whole head is not
necessary (e.g. when using microelectrodes close to the
source). The FEM_simulation class contains functions
(indicated in pink, in blue is its main output) which set-
up and solve the linear system. Dipole locations can be
calculated (source_locations) based on distance and
orientation with respect to an electrode, as well as inter-
dipole distances. A procedure for mesh refinement in a
region of interest is implemented, for example to study
convergence, where a minimum cell inradius can be set. The
stiffness matrix A;; is computed in FEniCS with the main
function. Based on the parameters that are chosen, resistive,
dispersive or capacitive properties are used in the FEM
calculation when calling main. In the frequency dependent
analysis, a square pulse, alpha function or sine wave can
be used as the activity waveform (e.g., make_pulse).
Alternatively, a custom combination of frequencies can be
given as input as well.

The Python code to obtain potentials from stimulating
or recording electrodes, with three examples comparable
to study 1-3, is available under the GNU General Public
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Fig.2 Sketch of the FEniCS

pipeline (workflow goes from
top to bottom). Red background

MRI segmented surfaces
and electrode surfaces

indicates Python classes,

green background the (main)
output of the respective class.
Purple background indicates

Delaunay tetrahedralization

functions in a class, blue the
(main) output of the function
and yellow indicates steps
outside Python/FEniCS

License version 3 at https://github.com/meronvermaas/
FEMfuns.

Results
Study 1: Validation

In study 1 we validated the accuracy of the numerical
simulation in a four-sphere model with resistive and
capacitive material properties (2) by comparing it with
the analytical solution. Numerical and analytical potentials
were compared on the outer surface of the sphere
representing the cortical surface, which is comparable to
an ECoG grid location. These observation points are close
to the dipolar source (human cortical thickness is at most
5 mm), with the distances between the dipole and the
surface ranging from 1 mm to 5 mm. The analytical
solution adopted in this comparison consists of a series

expansion (Naess et al. 2017) with 1000 terms. Only the
conductivity in the analytical solution was changed into the
admittivity, containing a real (conductance) and imaginary
(susceptance) part. We computed the relative difference
(RD) in the frequency domain at 10 MHz and visualized
the results in Fig. 3. The RD values are typically small
(below 0.04), whereas dipoles very close to the brain surface
display the largest RDs. This is visible for the radial dipole
in particular.

Study 2: Dispersive Electrode and Tissue
Implementation

The effect of capacitive and dispersive materials under
voltage-controlled stimulation was investigated in this study
and the results are visualized in Fig. 4. The applied
square pulse is shown in blue. The line in red shows the
voltage waveform at a vertex on the inside of the interface
when the dielectric properties of the tissue are dispersive
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Fig.3 Relative difference (RD) of ECoG potentials calculated with the
four-sphere model for a radial, tangential, and 45-degree dipole. Both
capacitive and resisitive electrical properties of the tissue are taken into
account via Eq. (2). The depth of the dipole below the cortical surface
is varied (x-axis), error values are calculated at the surface of the grey
matter

(conductivity o (w) and relative permittivity €, (w)) and the
electrode interface is pseudocapacitive (a parallel pseudo-
capacitance and charge transfer resistance). Dispersive
tissue and a parallel RC electrode interface are shown
in green, capacitive tissue and pseudocapacitive electrode
interface in purple and capacitive tissue and RC electrode
interface in light blue.

From Fig. 4 we notice that the voltage waveform at a
vertex on the inside of the interface is deformed due to
capacitive effects. The deformation of the potential at the
vertex on the inside of the interface can mainly be explained
by the time constant of the circuit representing the electrode
interface. The two curves with a pseudocapacitive interface
are overlapping (green and light blue curves), as well as
the curves with an RC electrode interface (red and purple
curves). Thus, in this geometry, the effect of the dispersive
compared to capacitive tissue properties is negligible. Note
the oscillations due to the Gibbs phenomenon which are
minimized by increasing the padding around the pulse
and the sampling frequency (Gibbs 1898). These results
indicate substantial capacitive and dispersive effects due to
the electrode-electrolyte interface when using stimulating
electrodes.

Study 3: Realistic Head Model

As a proof of concept, in the last example we solved (1)
in a realistic head model with anisotropic resistive material
properties. A radial dipole was positioned at 1 mm below the
surface of one of the electrodes and the resulting potential
distribution is shown in Fig. 5. In Fig. 5a the potential
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distribution resulting from a tangential dipole is displayed
on the cortical surface. The transition from the positive to
the negative potential can be observed clearly on the cortical
surface. Figure 5b illustrates the potential distribution of a
radial dipole on the cortical surface. The different polarity
of the gyrus and the sulcus due to the relative angle of the
surface with the dipole can be observed.

Discussion

The purpose of this paper is to describe and introduce
a Python-based framework centered around FEniCS
for FEM forward calculations in electrophysiological
recordings. We developed FEM scripts which allow
neuroscientists to compute both resistive and frequency
dependent capacitive material properties. Using three
geometries, we show examples of the use of the FEMfuns
pipeline. The main novelty that is presented here is
the possibility to easily include electrode and capacitive
material effects.

In study 1, we looked at dipole positions at several depths
in a four-sphere head model and visualized the error at the
surface directly on top of the brain, where ECoG grids are
positioned (results in Fig. 3). The accuracy of the capacitive
Poisson (2) was calculated, which expands on the original
approach where the resistive Poisson (1) is solved on top of
the scalp (Naess et al. 2017). With a tetrahedron inradius of
26 um at the region of interest, accurate numerical estimates
were achieved with relative error values below 0.04. The
RDs for dipoles very close to the brain surface are the
highest. The two monopoles that were used to approximate
a dipole need to be sufficiently close to each other. If the
distance between the dipole and the recording location is
much larger than the distance between the monopoles, the
dipole will be more accurately approximated. Overall, these
results demonstrate that dispersion effects can be accurately
modeled.

Electrode effects have been studied extensively in stimu-
lation studies (Robinson 1968; Butson and Mclntyre 2005;
Cantrell et al. 2007; Grant and Lowery 2010). Because of
the reciprocity theorem, stimulating electrodes are useful
models for recording electrodes as well. Non-linear behav-
ior of the electrode-electrolyte interface is expected at high
frequencies and at low frequencies provided that the applied
signal amplitude is high (Richardot and McAdams 2002).
Recording electrodes are unlikely to show major non-linear
effects because the charge transfer resistance, Eq. (11),
dominates the interface impedance.

In study 2, dispersion effects of the electrode interface
(Cantrell et al. 2007) and the tissue properties (Gabriel
et al. 1996) were examined in the stimulating electrode
configuration (Fig. 4). The shape of the simulated voltage
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Fig. 4 Waveform potential at a stimulating electrode vertex. Fre-
quency decomposition of a stimulating square pulse allows to infer
the effect of dispersive material (Gabriel et al. 1996). The dielectric
properties of the electrode-electrolyte interface are calculated with a
parallel pseudocapacitive component and resistance (Cantrell et al.

waveforms is comparable with dispersion effects reported in
the literature (Butson and Mclntyre 2005; Grant and Lowery
2010). As the driving potential amplitude and frequency
increase, the dispersion effect becomes more noticeable
(Cantrell et al. 2007). The interface impedance acts as a
high-pass filter in study 2 (i.e., the interface time constant
is short compared to the time period of the input waveform)
(Irwin and Nelms 2010). Thus, the charging and discharging
of the capacitance is faster than the change of the input
waveform.

In our example, due to the small surface area of the
recording electrodes, the interface impedance is high (e.g.,
400 k2 at 100 Hz and 6 k2 at 10000 Hz, using the

Fig. 5 Grey matter region of potentials calculated in a realistic head
model, with a tangential dipole left and radial dipole right. The dipole
is placed 1 mm below the grey matter surface and the colormap is
normalized

2007) or a capacitive component and resistance at the average fre-
quency of the FFT. The original pulse and pulses at a vertex at the
interface of the stimulating electrode are plotted and the combinations
of electrode interface and tissue properties are indicated in the legend

pseudocapacitive interface impedance). This resulted in
negligible interface (capacitive or dispersive) effects of
the recording electrodes and it is in line with previous
literature which shows minimal effect of the recording
electrode (Moulin et al. 2008; Joucla and Yvert 2009;
Nelson and Pouget 2010). However, if larger electrodes are
used, interface effects due to the recording electrode can be
observed (Ollikainen et al. 2000; Pursiainen et al. 2017).

As a proof of principle (study 3), the forward solution
was computed in a realistic head model with radial
and tangential dipoles. The four-sphere model simulations
demonstrated that numerical errors are negligible if
tessellation is sufficiently fine. With no analytical solution
available in the realistic head-model, convergence can
be checked using adaptive refinement while monitoring
percent change between the solutions.

Other open-source pipelines for solving the EEG and/or
the magnetoencephalography (MEG) forward problems
with FEM, or simulating electric stimulations are available
(Hagen et al. 2018; Neymotin et al. 2019). Fieldtrip
(Oostenveld et al. 2011), for example, is a MATLAB
software toolbox for MEG, EEG, iEEG and NIRS
analysis, that includes functions aiming at solving the
EEG forward problem with FEM. Fieldtrip internally calls
the C++ open source library called SIMBIO (Vorwerk
et al. 2018, https://www.mrt.uni-jena.de/simbio/). To the
best of our knowledge, in Fieldtrip it is not possible to
simulate electrical stimulation and neither is it possible
to easily change the properties of the electrodes. Another
open-access tool dealing with solving partial differential
equations in neuroscience is duneuro (Niiling et al. 2019).
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Duneuro is an open-source C++ software library based on
the DUNE library and its main features include solving
the EEG (Engwer et al. 2017) and MEG (Piastra et al.
2018) forward problem and providing simulations for brain
stimulation. There are Python and MATLAB wrappers
which extend the usability of the software to a broader
audience. In the present implementation of duneuro, neither
the capacitive model nor the electric properties of the
electrodes are incorporated in the workflow. A further
example of open-source tools dealing with simulations in
neuroscience is SimNIBS (Windhoff et al. 2013), whose
aim is to provide an easy-to-use pipeline for conducting
brain simulations with FEM in realistically shaped head
models. SIimNIBS is limited to brain simulations and it is
not flexible for adjusting the type of electrode or adding
capacitive material properties.

The main limitations of the pipeline concern mesh
generation, which currently needs to be done in external
software such as FSL (Jenkinson et al. 2012) or gmsh.
Segmentation of the different head materials was not
addressed in the current study. Furthermore, currently only
tetrahedral mesh elements can be used in FEniCS. While
they can fit the complex geometry of the brain better, it
requires several non-trivial steps to convert the hexahedral
voxels of an anatomical MRI.

A further limitation concerns the time needed for running
the simulations. Depending on the geometry, tissue type
and electrode implementation, the linear system that needs
to be solved can become very large. In this study, the
calculation time was around 1.5 hours per simulation for
the four-sphere model (M1), 6 s per simulation in the FEM-
Fourier example (M2), and under 2 minutes in the realistic
head model with anisotropic tissue properties (M3) running
on a Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
processor. Furthermore, to achieve the desired convergence
rate and accuracy, the solver, preconditioner, number of
iterations and/or convergence tolerance need to be adjusted.
For example, when using capacitive tissue, the Conjugate
Gradient method will not converge, while GMRES will.

A further advantage of the FEMfuns pipeline, is that
it is easy to control factors affecting the convergence.
Furthermore, a variety of families (e.g., Discontinuous
Lagrange, Nedelec, Raviart-Thomas) and degrees (linear,
quadratic or higher) of elements are supported in FEniCS.
This means that the pipeline can also be used in combination
with neuron simulation software to provide extracellular
potentials.

The results of this study have shown the first open-
source, easy-to-use and flexible pipeline, allowing for the
simulation of multiple material compartments in volume
conductor models with as many compartments as needed
(e.g., an arbitrary amount of electrode volumes can be used).
Resistive, capacitive and dispersive tissue properties can
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be used and different types of electrode are implemented.
Furthermore, the Python code can be easily adjusted and
extended to meet the users needs.

Information Sharing Statement

The FEMfuns code for using the new methods is publicly
available at https://github.com/meronvermaas/FEMfuns and
is licensed under the General Public License (GPL) v3.
Documentation is provided at github, for support please
contact the first author.
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