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Abstract
Finding links between genes and structural connectivity is of the utmost importance for unravelling the underlying
mechanism of the brain connectome. In this study we identify links between the gene expression and the axonal projection
density in the mouse brain, by applying a modified version of the Linked ICA method to volumetric data from the
Allen Institute for Brain Science for identifying independent sources of information that link both modalities at the voxel
level. We performed separate analyses on sets of projections from the visual cortex, the caudoputamen and the midbrain
reticular nucleus, and we determined those brain areas, injections and genes that were most involved in independent
components that link both gene expression and projection density data, while we validated their biological context through
enrichment analysis. We identified representative and literature-validated cortico-midbrain and cortico-striatal projections,
whose gene subsets were enriched with annotations for neuronal and synaptic function and related developmental and
metabolic processes. The results were highly reproducible when including all available projections, as well as consistent with
factorisations obtained using the Dictionary Learning and Sparse Coding technique. Hence, Linked ICA yielded reproducible
independent components that were preserved under increasing data variance. Taken together, we have developed and
validated a novel paradigm for linking gene expression and structural projection patterns in the mouse mesoconnectome,
which can power future studies aiming to relate genes to brain function.

Keywords Linked ICA · Axonal projection density · Gene expression · Bayesian machine learning · Matrix factorisation ·
Dictionary learning and sparse coding · Mouse brain mesoconnectome · Spatial transcriptomics · Connectomics ·
Computational framework · Tract-tracing · In situ hybridization · Volumetric brain representation

Introduction

Bridging the gap between genes and brain structural connec-
tivity is of the utmost importance to make further progress
in neuroscience. One important reason for doing so is
to unravel the internal wiring diagram of the brain often
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referred to as the connectome, given its generation by
specific spatiotemporal patterns of gene expression during
development and its fine-tuning by neural activity beyond
that period (Kang et al. 2011; Henry and Hohmann 2012).
Hence, gene expression has been suggested to explain
aspects of the connectome that can not be fully explained
by its spatial constraints, such as heritability, optimizing
network-cost efficiency and the overdispersion of projec-
tions (Smit et al. 2008; Glahn et al. 2010; Fornito et al. 2011;
van den Heuvel et al. 2013; Gǎmǎnuţ et al. 2018; Wang
2020b). Additionally, finding correlations between gene
expression patterns and changes in endophenotypes such as
cortical thickness has been used to understand aspects of
neurodegerative diseases, such as autism, Huntington’s dis-
ease, schizophrenia and Alzheimer’s disease (Rittman et al.
2016; Romme et al. 2017; Lein et al. 2017b; McColgan et al.
2018; Grothe et al. 2018; Romero-Garcia et al. 2019).

In Sperry (1963), it was first suggested that there are corre-
lations between connected neurons and their transcriptional
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profiles, which was termed the chemoaffinity hypothesis.
Since then, classical candidate-variant and GWAS studies
have been used to search for relations between genetic vari-
ants and interindividual phenotypical variance related to a
brain network of interest (Lein et al. 2017a; Luo et al. 2018).
As a subsequent step, the emergence of brain-wide gene
expression atlases paved the way for new types of hypothe-
ses testing. In particular, the new studies centered around
investigating associations between the spatial organization
of gene expression and properties related to brain struc-
ture or function (Lein et al. 2007; Hawrylycz et al. 2009;
Keil et al. 2018). In tandem with this new era of spatial
transcriptomics, Roy et al. and Zhu et al. investigated its
proteomic counterpart. Specifically, they found postsynap-
tic protein profiles of excitatory synapses to be markers of
synaptic diversity patterns across brain regions that account
for different brain networks (Roy et al. 2018; Zhu et al.
2018).

The first studies to establish structural links between
gene expression and connectivity were done for the
Caenorhabditis elegans (C. elegans) species, by applying
computational models to predict synaptic connections
between neurons using their gene expression profiles
(Kaufman et al. 2006; Baruch et al. 2008). Afterwards,
multiple studies focused on the rodent brain and applied
statistical and computational analyses finding relationships
between gene expression and structural connectivity at the
mesoscale level (French and Pavlidis 2011a, b; Wolf et al.
2011; Rubinov et al. 2015; Fulcher and Fornito 2016). The
common denominator between these studies was the finding
of significant correlations across brain areas between
network properties of the mesoconnectome, such as the
number and strength of ingoing and outgoing connections,
and correlated gene expression (CGE) patterns.

Fakhry et al. (2015) applied the partial Mantel test to find
relationships between gene expression and the projection
target specificity of different source brain areas. This was
the first analysis to be done on a volumetric level instead
of using a graph representation of the connectome-based
network properties, thus retaining a level of information that
was closer to the original experimental data than before.

However, the partial Mantel test faces a number of
limitations. First, it computes the correlation between
multiple distance matrices, with the pairwise distance being
taken across a shared dimension (Castellano and Balletto
2002). In Fakhry et al. (2015), the shared dimension was at
the level of brain areas and the original matrices used for
estimating the distance matrices were the projection density,
injection density and gene expression datasets, respectively.

Given that genes do not correspond to the shared dimen-
sion, the effects of genes on connectivity patterns can only
be accounted in a consequent analysis. Second, a conse-
quent gene ranking strategy does not highlight modules

of gene co-expression, modules of heavily interconnected
areas and interactions between the two types of modules,
whose importance in brain structures and function have
been highlighted in multiple studies and can serve as a
dimensionality reduction strategy (Langfelder and Horvath
2008; Grange et al. 2014; Li et al. 2017; Kobak et al. 2019).

In this study we simultaneously identify links between
the gene expression and the axonal projection density in the
mouse brain, using volumetric data from the Allen Institute
for Brain Science and applying a modified version of the
Linked ICA method (Groves et al. 2011) to identify inde-
pendent sources of information that link both modalities at
the voxel level. This approach overcomes the limitations
of post-hoc correlation strategies by providing multiple
implicit linkages between groups of gene expression and
projection density patterns, whose functional context can
be validated by comparison with literature and ontology
enrichment analysis.

Methods

The aim of this study is the identification of links between
volumetric gene expression and axonal projection density
data, that were made publicly available by the Allen Institute
(Lein et al. 2007; Oh et al. 2014). To uncover such linkage
we use a modified version of the Linked ICA method
(Groves et al. 2011) to mine for independent components
linking the data modalities at the voxel level.

Data

Gene Expression

We retrieved volumetric gene expression data using the
Mouse Connectivity Cache (MCC) API provided by the
Allen Institute for Brain Science (2). The data are part
of the Allen Mouse Brain Atlas (AMBA), in which the
expression patterns of ∼20.000 genes have been quantified
and registered to a 3D space that represents the entire mouse
brain at 200 μm3 resolution.

The experimental setup for quantifying the raw gene
expression data is described in Lein et al. (2007), where
a combination of the in situ hybridization (ISH) and
fluorescence microscopy techniques was used together with
an image processing pipeline. Based on these techniques
(Amann and Fuchs 2008), they dissected tissues of 56-days-
old (P56) C57BL/6J (wild-type) male mice and generated
25 μm thick sections with a 200 μm interspacing. These
sections were sampled either along the posterior-anterior
axis or along the right-left axis, hence labelled as coronal or
sagittal sections, respectively. Within each dissected brain
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slice, they quantified the expression of ∼20.000 genes
for sagittal sections and 3318 genes for coronal sections
by attaching fluorescent RNA probes with complementary
sequences to the RNAs of interest and then visualizing the
labeling with fluorescence microscopy (Lein et al. 2007).

These coronal and sagittal sections were registered and
aligned to a 3D anatomical template based on the Common
Coordinate Framework (CCF) version 3.0 of the Allen
Institute, which was created by averaging the structural
volumes of 1,675 mouse brains (Wang et al. 2020a). The
result was 3D volumetric gene expression data of 200
μm resolution that was stored in the PIR orientation,
where the x-axis corresponds to the Posterior-Anterior axis,
y-axis corresponds to the Inferior-Superior axis and z-
axis corresponds to the Right-Left axis. We retrieved the
expression data from 3318 genes that originated from the
coronal slices, given that their in plane resolution was higher
than that of the sagittal slices (Lein et al. 2007). From the
retrieval options of the MCC API, we chose the expression
energy measure of representing the data, which for a given
gene in a given voxel can be defined as the summed intensity
of expressing pixels divided by the number of all pixels
belonging to that voxel.

Projection Density

We retrieved volumetric projection density data from the
Allen Institute for Brain Science (see Table 2), also with the
use of the MCC API. The data are part of the Allen Mouse
Brain Connectivity Atlas (AMBCA), in which the axonal
projection patterns of 157 brain areas have been quantified
and registered to a 3D space that represents the entire mouse
brain in multiple scales of resolution.

The experimental setup for quantifying the axonal pro-
jection patterns can be found in (Oh et al. 2014), where
they processed coronal brain sections of P56 wild-type
male mice with a combination of the anterograde tract trac-
ing technique, two-photon microscopy and an image pro-
cessing pipeline. Specifically, they injected a recombinant
adeno-associated virus (rAAV) expressing enhanced green
fluorescent protein (EGFP) in the source cortical brain area,
which was transported in an anterograde fashion from the
injected source areas through the axons to terminate in the
target brain areas (Chamberlin et al. 1998; Harris et al.
2012).

This process was visualized with two-photon microscopy
and the produced brain volumes were registered and aligned
to the CCF v3.0 similarly to the procedure for the gene
expression data (see “Gene Expression”). The result was
3D volumes of 498 wild-type tract-tracing experiments that
could be retrieved in 10, 25, 50 and 100 μm3 scales of
resolution (Oh et al. 2014).

Regarding data representation options of the MCC API,
we chose the projection density measure which for a given
tracing experiment in a given voxel can be defined as the
sum of detected fluorescent pixels divided by the sum of all
pixels that belong to that voxel (see Table 2).

Data Preprocessing

Following the data retrieval, we preprocessed the data to
an appropriate form for the Linked ICA algorithm. One
issue in preprocessing was that the lowest level of resolution
for downloading the projection density data was 100 μm3,
which was higher than the 200 μm3 resolution of the gene
expression data. In order to bridge the gap between the
modalities, we selected the 100 μm3 resolution for the
projection data and we downsampled them to 200 μm3

using continuous interpolation (see Supplementary Material
1.13 for the implementation details). This resulted in a 4D
array for each modality of 67 voxels in Posterior-Anterior
axis × 41 voxels along the Inferior-Superior axis × 58
voxels in Right-Left axis × 498 tract tracing injections (Oh
et al. 2014) or 3318 genes (Lein et al. 2007).

Further preprocessing steps were necessary, including fil-
tering out the background voxels outside the brain space
and reshaping the 4D arrays into 2D in order for the
data to fit into our Linked ICA implementation (see
“Linking data modalities”). First, we removed the back-
ground voxels by applying a voxel mask that filtered out
voxels with the background value of -1. Moreover, we iter-
ated over all genes and injections and we reordered the 3
spatial dimensions into 1 dimension using row-major order-
ing, one gene at a time. The resulting 2D gene expression
and projection density arrays consisted of 63113 voxels ×
3318 genes and 63113 voxels × 498 wild-type injections,
respectively.

We had to account for the high variance of projection
densities, resulting from heterogeneous and hemisphere-
asymmetric injections that span the entire cortex and vary
in injection volume. Hence, we created projection subsets
from the three most densely sampled brain areas, which
were the visual cortex (vis), the caudoputamen (cp) and
the midbrain reticular nucleus (mrn, see Table 1). The vis
injection group comprised 47 injections in different areas of
the visual cortex, specifically 33 injections in the primary
visual area, 4 in the lateral area, 3 in the anteromedial area, 2
in the postrhinal and laterointermediate areas, respectively,
and one each in the posteromedial, posterolateral and
anterolateral areas, respectively. The cp and mrn injection
groups comprised 19 and 16 injections in the caudoputamen
and midbrain reticular nucleus areas, respectively. The three
subsets were used in the analysis alongside the entire
dataset, as explained in “Evaluation”.
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Table 1 Injection counts for brain regions with more than 5 injections

Injection frequency

VISp 33

CP 19

MRN 16

ENTl 10

DG 9

PAG 9

MOs 9

MD 8

ENTm 8

CA3 8

MOp 8

PIR 7

LHA 7

SI 7

SSp-bfd 6

IRN 6

CA1 6

AHN 6

PRNc 6

GRN 6

Abbreviations are listed in supplementary file 1

Linking datamodalities

Linked Independent Component Analysis (Linked ICA) is a
bayesian multimodal variation of the classical ICA method
(Hyvarinen 1991; Bell and Sejnowski 1995), developed for
analysing neuroimaging data (Groves et al. 2011). Linked
ICA can be understood as an extension of tensor ICA
(Beckmann and Smith 2005), where the input data matrices
(modalities) share one dimension which is used to link the
ICA factorisations of the data modalities. This approach
has been shown to outperform other multimodal approaches
such as joint or concat ICA (Calhoun et al. 2006), because
it is able to estimate individual modality noise models
and number of degrees of freedom, in addition to the
estimation of the relative contribution of each modality to
each independent source, which allow identifying sources
of variation relating to unique data modalities as well
as sources shared across modalities (Groves et al. 2011).
In terms of implementation, linked ICA uses Variational
Bayes. Full details regarding its algorithmic implementation
can be found in Groves et al. (2011). Linked ICA has
been previously applied to multiple neuroimaging data
modalities, such as functional, structural and diffusion MRI,
for which the subject dimension has served as the shared
element across all modalities (Kincses et al. 2013; Douaud

et al. 2014; Itahashi et al. 2015; Wolfers et al. 2017; Llera
et al. 2019; Wu et al. 2019; Maglanoc et al. 2020).

In the datasets we consider, all gene expression and
projection density patterns have been aggregated from mul-
tiple mice (see “Gene Expression”-“Projection Density”).
Despite the lack of a shared subject dimension, all data is in
fact registered to a common template, namely to CCF v3.0
(Wang et al. 2020a), whose voxels can be used for linkage
across modalities. Consequently, we adjusted the original
Linked ICA formulation to satisfy the requirements of our
datasets and to define a generative model that simultane-
ously factorises both data modalities matrices Y k ∈ MRk,N ,
with k ∈ {1, 2} being the gene expression or projection den-
sity data respectively, Rk the number of genes (k = 1) or
injection locations (sources) (k = 2), and N the number of
sample brain locations (voxels), as

Y k = XkWkH + Ek . (1)

Xk ∈ MRk,L contains the feature coefficients for each
independent component i ∈ L, Wk ∈ ML,L is a diagonal
matrix summarising the kth modality contribution to each
independent component, H ∈ ML,N is a matrix shared
across modalities that represents the shared spatial source of
variation in each independent component, and Ek contains
the modality-dependent additive noise. In addition, the
independent components are being sorted in descending
order based on the total amount of variance that they explain
across both data modalities.

The only difference between this formulation and the
one originally presented in Groves et al. (2011) is that in
our formulation the shared dimension is at the voxel level
while in Groves et al. (2011) it was at the subject level.
Consequently, although the Bayesian inference process
required to learn all the model parameters can be performed
as in Groves et al. (2011), the interpretation is different since
here we search for independent components of genes and
projection densities that are linked through patterns of brain
spatial variation.

Evaluation

Our analysis of the volumetric gene expression and projec-
tion density data proceeded in two steps. First we performed
3 different ’local’ analyses by selecting for each analysis
only injections in the one of the three most densely sampled
brain areas. Specifically, we selected the visual cortex (vis),
the caudoputamen (cp) and the midbrain reticular nucleus
(mrn, see “Projection Density” for details). Subsequently,
we performed a ’global’ linked ICA analysis by including
all (498) available injections. For each run of the linked
ICA model we monitored convergence using the relative
free energy and assessed convergence using a conservative
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relative change < 10−6. The convergence flag chosen rep-
resents a very conservative convergence criterion, and in
fact a relative free energy change of order 10−6 represents a
change of machine precision order at each model parameter.
Setting the parameter to even more conservative (smaller)
values does not change the solutions found. This conver-
gence flag was reached for the local analyses but not for
the global analysis, due to the maximum number of 3000

iteration steps being exceeded. Instead, the global analysis
reached a convergence flag of ∼ 10−4.

For each of the local analyses we determined a number
of components that was equal to the rank of their
projection matrices (i.e. number of injections) and for
the global analysis we selected 200 components instead
of the minimum rank of 498 across the two modalities.
We considered it unnecessary to include the additional

Fig. 1 Schematic overview of the Linked ICA analysis workflow. The
analysis is based on volumes of the gene expression and projection
density modalities, from which we obtain using Linked ICA (A) a
number of coefficients for genes and projection patterns (X1 and X2),
the relative modality weightings (W) and a number of spatial maps
(H). For a more illustrative example in the ’Spatial Maps’ subplot,
we presented a visualization of a spatial map instead of a color-coded
matrix. Regarding the dimensionality of H, rows correspond to inde-
pendent components and columns correspond to voxels. Hence, the
visual example can be interpreted as a row of H, reordered in 3D and

overlaid with an anatomical template provided by the Allen Institute.
BWe analyse the obtained results and we highlight the contribution of
the modalities to the spatial maps using a color-coding scheme (B1),
we highlight tracts formed by specific components (B2), we apply
ontology enrichment analysis to the gene coefficients in order to find
significant functional annotations (B3), we compare the results to the
ones obtained from DLSC (B4) and we validate by comparison with
literature a number of identified regions of interest from the spatial
maps (B5) and a number of cell-type-specific gene markers (B6)
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298 components in the analysis, since correlation statistics
indicated strong links between the lower indexed global
analysis components and the local analysis components at
the level of spatial maps and coefficients (H and X matrices
respectively, see Eq. 1), as shown in results “Local and
Global Independent Components”. In addition, it has been
argued in Llera et al. (2019) that it is not necessary to
increase model order in a Linked ICA analysis when the
correlations of interest have been found in lower indexed
components, since they are strongly reproducible at higher
order decompositions.

From the results of each of these 4 analyses we selected
as components of interest the ones having a non-zero con-
tribution from both data modalities, meaning that their
variance was partly explained by both the gene expression
and projection density modality (see Fig. 1 for the relative
modality contributions across components). Each compo-
nent was associated with a brain spatial map that was
shared across both modalities and reflected brain areas with
shared variance across genes and injections, as well as two
weight vectors weighting each modality variable, and a
two-dimensional vector reporting the contribution of each
modality to the component (H, X and W matrices respec-
tively, see Eq. 1). To aid the interpretation of the results, the
spatial maps and the vectors weighting injections and genes
were thresholded at percentiles 1 and 99, for each compo-
nent individually. That is, values within this percentile range
were set to zero, while values exceeding that range were
considered to highlight the brain areas, genes and injec-
tions most involved in each relevant independent component
(Figs. 2 and 3). The genes we selected were subjected to
enrichment analyses in “Gene Enrichment Analysis”.

In addition, we replicated the analyses by imputing a
number of missing values in the gene expression dataset.
This subset was originally represented in AMBA using the
background value of -1 and comprised 0.8% of the total
dataset. As an alternative strategy, we imputed each missing
value of a given gene to a particular voxel, by assigning the
average value of all expressed voxels belonging to the same
anatomical subregion, as defined by the Allen annotation
volume (see Table 2). This missing value imputation strat-
egy was performed for all genes and was not necessary for
the projection density data because it was acquired volumet-
rically. However, the extracted linked components were not
affected by the imputation strategy.

This suggests that the minor percentage of missing values
in the gene expression dataset was inadequate to affect any
links identified in our analyses.

Gene Enrichment Analysis

In order to validate the biological context of the selected
gene groups, we used gene ontology (GO) and KEGG

(a)

(b)

(c)

Fig. 2 Spatial map visualizations of highlighted brain areas with high
variance in component 0 of the vis injection group. a Shared spatial
map, in which the blue-to-lightblue color represents voxels with large
negative values (below 1st -percentile) and the red-to-yellow color
represents voxels with large positive values (above 99th-percentile),
see colorbar. A number of highlighted subcortical areas give the
impression of being located outside of brain space. This is explained
by the low density of the Nissl volume in these areas, which serves as
the anatomical template. The template has been plotted overlaid with
the spatial map, based on CCF v3.0 (Wang et al. 2020a). bColor-coded
spatial map used to identify which modality drives the component’s
variation in the regions of interest. Green corresponds to voxels
with high shared variance, red corresponds to voxels dominated by
projection density variance and blue corresponds to voxels dominated
by gene expression variance. A detailed description of the color-
coding convention can be found in Supplementary Material Section
1.6. c Nissl stain volume representation of the highlighted areas using
a screen shot from the Scalable Brain Atlas Composer, a 3D brain
visualization tool (Bakker et al. 2015) (see Table 2 for more details).
Areas with less than 10 voxels of high variance were not visualized
with the SBA composer.

enrichment analyses (Rice 2007; Rivals et al. 2007). In
particular, we represented the selected gene groups with
their Entrez id and then searched for annotations belonging
to the KEGG and Org.Mm.eg.db databases (Ogata et al.
1999) that were significantly enriched in these groups (see
Table 2). For the GO and KEGG enrichment analysis of
each tested gene group, we used the hypergeometric test and
we collected significant annotations with a p-value lower
than a cutoff of 3.8 × 10−5. This cutoff was calculated
by applying the false discovery rate (FDR) to the p-values
obtained by the enrichment analysis, in order to correct for
all annotations and injection groups under comparison.

654 Neuroinform (2021) 19:649–667

section*.15
section*.15
subsubsec:ccode


Fig. 3 Shared spatial maps for
components of interest from the
vis, cp and mrn injection groups.
The title of each panel identifies
the injection group (vis, mrn or
cp) and the index of the
component. The blue-to-
lightblue color represents voxels
with large negative values
(below 1st -percentile) and the
red-to-yellow color represents
voxels with large positive values
(above 99th-percentile), see
colorbar in Fig. 2

See Supplementary Material 1.7 for more details con-
cerning the enrichment analyses, theKEGG andOrg.Mm.eg.db
databases and the hypergeometric test, as well as Supple-
mentary Material 1.13 for the software-specific implemen-
tations of this form of analysis. Subsequent strategies related
to the meta-analysis of the thresholded spatial maps, the
modality-specific spatial contributions and the weighted
injections and genes, can be found in Supplementary Mate-
rial 1.6.

Comparing Linked ICA to DLSC

To compare the results obtained with Linked ICA to alterna-
tive decomposition methods, we also considered the Dictio-
nary Learning and Sparse Coding (DLSC) method (Mairal

et al. 2010; Li et al. 2017) for performing factorisations in
the same dimension as in the Linked ICA cases (see Supple-
mentary Material 1.2 for details). To allow for data fusion, we
concatenated both data modalities in the voxel dimension
and computed the DLSC decomposition of the concatenated
matrix, hence creating a fused dictionary set (concat-DLSC).
This is similar to the concat-ICA approach (Calhoun et al.
2006), but by using DLSC instead of ICA. For com-
pleteness, we also decomposed the gene expression and
projection density datasets independently (i.e. not con-
catenated), hence creating exclusive dictionary sets of
gene expression and projection density (exclusive-DLSC).
Although these factorizations did not force any link-
ing across modalities, post-hoc statistics were used to
extract and quantify relationships between the two indepen-
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Table 2 Hyperlinks for websites, tool descriptions and format descriptions related to our analysis

Linked ICA matlab implementation https://github.com/allera/Llera elife 2019 1

Github repository of our Code https://github.com/ntimonid/Connectomic-Composition-Predictor-CCP-

Allen Institute https://alleninstitute.org/

CCF v3.0 http://help.brain-map.org/display/mouseconnectivity/Documentation

MCC documentation https://allensdk.readthedocs.io/en/latest/connectivity.html

AMBA Documentation https://help.brain-map.org/display/mousebrain/Documentation

AMBCA documentation https://help.brain-map.org/display/mouseconnectivity/Documentation

FMRIB Software Library https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Org.Mm.eg database http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html

KEGG pathway database https://www.genome.jp/kegg/pathway.html

GOHyperGParams-class https://www.rdocumentation.org/packages/Category/versions/2.38.0/topics/GOHyperGParams-class

clusterProfiler package https://www.rdocumentation.org/packages/clusterProfiler/versions/3.0.4/

NIfTI files https://nifti.nimh.nih.gov/

JSON files https://en.wikipedia.org/wiki/JSON

Nilearn lbrary https://nilearn.github.io/

Scikit-learn library https://scikit-learn.org/stable/

NumPy library https://numpy.org/

SciPy library https://github.com/scipy/scipy/

NCBI https://www.ncbi.nlm.nih.gov/

SBA Composer https://scalablebrainatlas.incf.org/composer-dev/?template=ABA v3 (Bakker et al. 2015)

See main text for details

dent factorizations and the linked independent components
(Li et al. 2017).

We then compared the global Linked ICA and both
DLSC approaches (concat and exclusive) in two different
ways. First, we evaluated for each factorization the recon-
struction accuracy in terms of r2. In the context of our work,
the r2 measure can be defined as the fraction of total vari-
ance of the original datasets that can be explained by the
reconstruction from a factorisation approach (Dodge 2008):

r2 = 1 −
∑

i (yi − fi)
2

∑
i (yi − ỹ)2

, (2)

here the index i represents voxels, y represents the
volumetric gene expression or projection density data, ỹ

represents its mean and f represents the reconstructed data.
Second, we considered the overlap between the different

analyses by assessing the significant correlations between
the global independent components and the exclusive and
concat dictionaries, estimated by Pearson’s rho, at the level
of both spatial maps and coefficients (Fig. 4). We considered
significant correlations the ones yielding a p-value lower
than 0.004. This is the same threshold as the one used in
the comparison between local and global components, as
explained in Supplementary Material 1.8. A supplemental
evaluation test can be found in Supplementary Material
1.12, where Linked ICA was assessed in reconstructing the
spatial patterns of previously unseen genes. Specifically, it

yielded a median mean squared error (MSE) of 0.28 with 75
% of tested genes having an MSE lower than 1.0.

Example of a component and its characterization

As a visual summary of the analysis steps described above,
Fig. 1 shows a schematic overview of the Linked-ICA and
post-hoc analyses performed, and Fig. 2 shows exemplar
visualizations of vis component 0 in the form of spatial
maps, where various brain areas have been highlighted
with respect to their shared variance, their modality-specific
spatial contribution and their gray-matter volume. The
highlighted areas include the primary visual area (417
voxels, 47% of intra-area volume), lateral visual area
(102 voxels, 66% of intra-area volume), secondary motor
area (97 voxels, 0.7% of intra-area volume), polymodal
association cortex of thalamus (13 voxels in total, 7%
of intra-area volume), ammon’s horn (62 voxels, 0.7% of
intra-area volume), cochlear nuclei (12 voxels, 0.9% of
intra-area volume) and ansiform lobule (31 voxels, 0.2%
of intra-area volume). For vis component 0, the highlighted
voxels have values of shared variance below the 1st or
above the 99th percentiles (-0.41 and 0.29 z-scored values,
see Supplementary Material Tables 4a–7a). Moreover, the
spatial map volume of the global analysis was found to
have a negative correlation with the Nissl volume (z-
scored values, rho = -0.36, p < 10−10). While more brain
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Fig. 4 Heatmap displaying the
correlation between the local
and global components. x-axis:
global components 0, 1, 2, 5, 10,
23. y-axis: vis components 0, 2,
4, 5, 7 and 8, cp components 0,
3 and 5, mrn components 0 and
4. The correlation measure used
is Pearson’s rho, with the
heatmap colors being brighter as
the correlation gets higher

areas exhibited voxels with high shared variance, such
as the laterointermediate area, we selected these areas to
report because of their clear visibility in the exemplary
visualizations (see Supplementary Material Table 4a for a
more extensive report on the highlighted brain areas of vis
component 0).

The variance for the visual areas was mostly driven by
the projection density dataset with 215 projection-driven
voxels for the primary visual area and 47 projection-driven
voxels for the lateral visual area, followed by 140 and
43 voxels with high contribution from both modalities in
these areas, respectively. In contrast, the variance of the
secondary motor area, and of the subcortical areas were
mostly driven by gene expression (88% for secondary
motor area, 66% for ammon’s horn, 75% for cochlear
nuclei and 83% for ansiform lobule, respectively), while
the variance of the thalamic module was mostly driven by
projection density (100%). The modality-specific spatial
contributions are reflected in the green, blue and red colors
shown in Fig. 2 b. Green corresponds to voxels with high
variance contribution from both modalities, red corresponds
to voxels dominated by projection density variance and
blue corresponds to voxels dominated by gene expression
variance (see Supplementary Material Section 1.6 for
more details on the color-coding scheme). In addition, the
projection density modality accounts for 96% of the total
variance in vis component 0, which can explain its strong
contribution to this spatial map (Fig. 5).

Our assumption for the strong projection density domi-
nated variance in the visual areas was that a highly sampled
brain region such as the visual cortex will contain numer-
ous dense intra-regional projections that will be explained
by the model through its components, based on the fact

that source locations tend to project to nearby regions (Oh
et al. 2014). Our subsequent assumption for a core of vox-
els with shared variance in the visual areas, as indicated
by the green voxel cluster in Fig. 2, was that the model
will explain the variance of gene expression patterns which
are present in both a source area and a number of its
targets, given that strongly connected areas tend to have
highly correlated gene expression patterns (French et al.
2011b; Rubinov et al. 2015; Fulcher and Fornito 2016),
hence the gene expression influences the source and tar-
get related voxels. As a supplemental assessment regarding
the anatomical consistency of the results, readers are sug-
gested to consult Supplementary Material Section 1.9, in
which a comparison is made between the global inde-
pendent components and the parcellation scheme of CCF
v3.0.

Results

Local and Global Independent Components

We analyzed the results of the vis, mrn and cp injection
groups (Fig. 3). The components of interest for the vis group
were 0, 2, 4, 5, 7 and 8, while for the mrn group they were
0 and 4, and for the cp group they were 0, 3 and 5. The
corresponding components of the global analysis that were
significantly correlated with the local components were 0,
1, 2, 4, 5, 10 and 23 (p < 0.004, see Fig. 4 and Table 3).
Note that the components are ordered in terms of their total
explained variance, hence the number of the component has
an independent meaning and is reproducible across different
analyses.
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Fig. 5 Modality contributions
for the components of interest
from the vis, mrn, cp injection
groups and from the global
analysis. a vis components 0, 2,
4, 5, 7, 8. b-c mrn components
0, 4 and cp components 0, 3, 5.
d global components 0, 1, 2, 5,
10, 23. x-axis: contribution
percentage. y-axis: components
(starting from 0). The blue color
represents the gene expression
data and the orange color
represents the projection density
data

Each panel of Fig. 3 shows the linked-ICA shared spatial
map for an independent component from one of the analyses
(see subfigure titles). Each of these maps highlights brain
areas having shared variance across modalities (Fig. 5),
and Supplementary Material Figs. 3-5 and Tables 4-7 show
which genes and injections were relevant for identifying
such shared spatial configuration (see Supplementary
Material Section 1.6).

Figure 4 shows the similarity of local components to
the global ones (see Supplementary Material Section 1.8).
When comparing the results between the local analyses and
the global one, the correlation values ranged from 0.12 to
0.93 (Table 3). In addition, the respective p-values indicated
the significance of most correlations, with only three cases
being higher than 0.004 (vis ICA 2 to global ICA 1, vis
ICA 5 to global ICA 2, cp ICA 5 to global ICA 5, all
on a injection coefficient level). Moreover, all spatial map
correlations had a significant p-value below 0.004. Thus,
the significant correlations suggest the preservation of the
content of local analyses in higher order models, hence
establishing some degree of robustness of the approach.

Note that the areas surrounding the injected locations,
namely the various visual areas, the midbrain and the
dorsal striatum region were highlighted in the spatial maps
and tracts, despite the fact that the injection volume was
excluded from the projection density dataset. Thus, we
assume that the components highlight these locations by

capturing the correlated gene expression patterns between
the injected locations and their densely projected areas.

The aforementioned brain areas were also highlighted
by components that did not belong to the corresponding
injection group, for instance vis component 2 highlighting
the midbrain andmrn component 0 highlighting the primary
visual area (see Supplementary Material Table 4a and 4b).
These correspond to known cortico-striatal and cortico-
midbrain connections. Moreover, areas proximal to the
injected ones, such as the retrosplenial area for the vis
group, medulla, pons and hypothalamus for the cp group
and pallidum for the mrn group, were also highlighted.

Direct connections from the primary visual cortex to
the dorsal striatum in the mouse brain have been sug-
gested to subserve visually guided motor behaviors and
the influence of early visual processing on cortico-striatal
synaptic plasticity (Khibnik et al. 2014). Moreover, alter-
ations in cortico-striatal pathways have been shown in
rodent model studies to be associated with Huntington’s
disease (Cepeda et al. 2007), attention-deficit hyperactivity
disorder (ADHD), Tourette syndrome, obsessive compul-
sive disorder (OCD), autism spectrum disorder (ASD), and
schizophrenia (Kuo and Liu 2019). Furthermore, the medial
superior colliculus in the midbrain receives connections
from multiple cortical areas, including the primary and
secondary visual areas, and those connections have been
suggested to be involved in avoidance behaviors in mice
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Table 3 Table containing correlation statistics (Pearson’s rho) between a number of local and global independent components

Global ICA Spatial map rho Gene coefficient rho Gene coefficient p Injection coefficient rho Injection coefficient p

vis ICA 0 0 0.833 0.997 0.0E+00 0.934 1.1E-21

vis ICA 2 1 0.52 0.876 0.0 0.252 8.8E-02

vis ICA 4 5 0.528 0.8 0.0 0.414 3.8E-03

vis ICA 5 2 0.461 0.577 3.7E-294 -0.129 3.9E-01

vis ICA 7 23 0.407 0.465 7.2E-178 0.5 3.5E-04

vis ICA 8 10 0.588 0.757 0.0 0.293 4.6E-02

cp ICA 0 0 0.94 0.999 0.0 0.95 4.7E-10

cp ICA 3 1 0.507 0.868 0.0 0.467 4.4E-02

cp ICA 5 5 0.603 0.844 0.0 0.251 3.0E-01

mrn ICA 0 0 0.936 0.997 0.0 0.884 5.6E-06

mrn ICA 4 2 0.309 0.799 0.0 0.229 3.9E-01

The global components correspond to the elements of the first column, while the local components correspond to the row indices. The spatial map
statistics stem from correlations between the spatial maps of the corresponding components), while the gene coefficient and injection coefficient
statistics stem from correlations between the modality-specific coefficients for the same components. The p-values of all spatial map correlations
were 0

(Savage et al. 2017). Results related to these cortico-striatal
and cortico-midbrain projections in our analysis are repre-
sented in cp ICAs 0, 3 to the motor, somatosensory and
visual areas, vis ICAs 2, 4, 5, 7 to the dorsal and ventral
striatum, and vis ICA 2 to the midbrain (see Fig. 3 and
Supplementary Material Table 4).

Assessing the Biological Context of Selected Gene
Groups

The model suggests that the gene subsets which were
relevant to the aforementioned components could have a
neuronal and synaptic function and might influence vari-
ous developmental and metabolic processes related to the
cortico-striatal and cortico-midbrain pathways in the mouse
brain. For the vis group, we selected 294 out of 3318 genes
(8%), by aggregating all genes that were most involved in
each vis component of interest (see “Gene Enrichment Anal-
ysis” for the selection process). We identified 14 glutamater-
gic neuronal, 12 gabaergic neuronal and 5 non-neuronal
genetic markers (see Supplementary Material Table 3a for
the marker gene list), by comparing these 294 genes with
the cell-class-specific markers provided by (Tasic et al.
2018b). We also found glutamatergic markers in all cp
and mrn components of interest (Supplementary Material
Table 3b). This could explain the uncovering of distal
pathways between distinct, spatially separated regions, as
long-range projections formed by glutamatergic neurons, in
which the identified gene markers are co-expressed.

From the selected genes, LIM motif-containing protein
kinase 2 (Limk2) has been shown to be highly expressed
in the striatum and assist the migration of cortical interneu-
rons through the subpallium (Cuberos et al. 2015). Another

gene selected was syntaxin binding protein 2 (Stxbp2) that
belongs to the Syntaxin family, members of which have
been suggested to influence the development of Hunting-
ton’s disease by interaction alterations in the cortico-striatal
pathway (Cepeda et al. 2007). Two additional selected
genes were nicotinic acetylcholine receptor subunit alpha-
2 (Chrna2), and follistatin-like 1 (Fstl1), which have been
shown to be highly expressed in the ventral tegmental
area (VTA) of the mouse midbrain (Viereckel et al. 2016).
Furthermore, members of the G protein-coupled receptor
(Gpr) family were also selected (’Gpr4’, ’Gpr98’, ’Gpr116’,
’Gpr133’, ’Gpr176’, ’Gprc5b’), a member of which has
been screened as a VTA marker (Viereckel et al. 2016).
Markers Stxbp2 and Fstl1 were also found in the cp group,
with an additional inclusion being nicotinic acetylcholine
receptor subunit alpha-3 (Chrna3) from the same protein
family as Chrna2 (see Supplementary Material Table 3a for
more details regarding the gene subsets and markers of the
cp and mrn groups).

When performing gene ontology analysis for all compo-
nents of interest, the major significant annotations from the
Org.Mm.eg.db database included terms such as postsynap-
tic specialization membrane, postsynaptic density, synapse
part, neuron spine, neuron projection, neurogenesis and
neuronal cell body, dendritic tree, axon, plasma mem-
brane bounded cell projection part (p < 3.8 × 10−5),
and from the KEGG database it included glutamatergic
synapse (vis-component 4, p = 0.0003, and cp-component
5, p = 0.0002), phospholipase D signaling pathway (mrn-
component 0, p = 0.0002), cholinergic synapse (mrn-
component 4, p = 0.0002) and retrograde endocannabinoid
signaling (cp-component 5, p = 0.0007). See Supplemen-
tary Material Figs. 1 and 2 for further details, as well
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as Table 4 for comparison of our enrichment results with
literature.

Comparison with Dictionary Learning and Sparse
Coding

We compared the global independent components with
the concat and exclusive dictionaries that were obtained
from the Dictionary Learning and Sparse Coding (DLSC)
method. We made two different comparisons of the two
methods. First, we calculated their reconstruction accuracy,
followed by estimating the Pearson’s correlation coefficient
(rho) between the shared spatial maps and a number of
concat and exclusive dictionaries (see “Comparing Linked
ICA to DLSC ”).

The reconstruction accuracy was assessed using the
r2 measure, as shown in Table 5a. The performance
of exclusive-DLSC was slightly better than Linked-ICA
for the projection density modality (r2 = 0.67 and 0.64
respectively), and slightly worse for the gene expression
modality (r2 = 0.66 and 0.67 respectively). Meanwhile,
concat-DLSC had lower r2 values. The results were
qualitatively similar when using the MSE as a measure.
Taken together, this suggests that the different methods
capture a similar amount of variance.

Regarding their pairwise correlation, Supplementary
Material Tables 5b-d display significant correlations (p
< 0.004) between components of interest and exclusive
or concat dictionaries, respectively, at the level of both
coefficients and spatial maps. Moreover, as shown in
Table 5d, correlations of coefficients between components
and concat dictionaries followed the relative modality
contributions of the components, such as in component 0
where gene-coefficient correlations were higher than the

injection-coefficient ones (0.78 versus 0.44), and the gene
expression relative contribution was also higher than the
projection density one (0.96 versus 0.03).

The presence of significant correlations between com-
ponents of interest, gene dictionaries and projection dictio-
naries was evident when visually comparing their spatial
maps (see Figure 6). As shown by their color-coded maps,
most of the areas covaried either between components and
gene dictionaries or components and projection dictionar-
ies (highlighted by the blue and red colors in Fig. 6 b, d,
f). Examples include the primary visual area (components
0 and 2, gene dictionary 2 and projection dictionary 47),
anterior cingulate area (component 0 and gene dictionary
9), secondary motor area (component 1, gene dictionary 5),
hypothalamus (component 1, projection dictionary 166) and
dorsal striatum region (component 2, gene dictionary 22
and projection density 2). For a more extensive compari-
son between the two methods, see Supplementary Material
Section 1.5.

Discussion

In this work we searched for links between gene expression
and axonal projection densities in the mouse brain.
Specifically, we used a modified version of the Linked
ICA method (Groves et al. 2011) to link volumetric gene
expression and axonal projection data, which were provided
by the Allen Institute for Brain Science. Specifically, we
identified independent components that account for shared
spatial variance across both data modalities.

Initially, we created projection subsets from the three
most densely sampled brain areas, namely the visual
cortex, midbrain reticular nucleus and caudoputamen

Table 4 Significant GO and KEGG annotations identified in our analysis that have been cross-linked with previous works

GO/KEGG term vis ICA cp ICA mrn ICA Literature

synapse 0, 7 0, 3 0, 4 Ji et al. (2014) and Richiardi et al. (2015)

dendrite 7 0 0, 4 Ji et al. (2014)

synapse part 0, 7 0, 3 0 Ji et al. (2014)

generation of neurons 0, 4, 7 0, 3 0 French et al. (2011b)

neuron differentiation 0, 7 0, 3 0 French et al. (2011a, b)

neurogenesis 0, 7 0, 3 0 French et al. (2011a, b), and Richiardi et al. (2015)

neuron projection 0, 7 0 0, 4 French et al. (2011a, b), and Fulcher and Fornito (2016)

neuron development 0 0 0 French et al. (2011a, b)

axon part 0 Ji et al. (2014)

dendritic spine 5 0 Ji et al. (2014) and Fulcher and Fornito (2016)

neuron spine 5 0 Ji et al. (2014) and Fulcher and Fornito (2016)

neuron migration 0 French et al. (2011a, b), and Fulcher and Fornito (2016)

cholinergic synapse 4 French et al. (2011b)

glutamatergic synapse 4 5 French et al. (2011b) and Fulcher and Fornito (2016)
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Table 5 Tables containing statistical comparisons between the Linked ICA and DLSC results

(a)

exclusive-DLSC concat-DLSC linked-ICA

r2 gene 0.67 0.65 0.68

r2 projection 0.69 0.45 0.64

(b)

Gene Dictionary A1 rho A1 p A2 rho A2 p

global ICA 0 9 0.447 0.0 0.779 0.0

global ICA 1 5 0.334 0.0 0.584 0.0

global ICA 2 22 0.265 0.0 0.473 0.0

global ICA 4 2 0.170 0.0 0.697 0.0

global ICA 5 2 0.349 0.0 0.803 0.0

global ICA 10 187 0.321 0.0 0.401 0.0

global ICA 23 7 0.258 0.0 0.431 0.0

(c)

Projection Dictionary B1 rho B1 p B2 rho B2 p

global ICA 0 47 0.030 0.0 0.578 0.0

global ICA 1 166 0.470 0.0 0.336 0.0

global ICA 2 2 0.455 0.0 0.558 0.0

global ICA 4 3 0.444 0.0 0.636 0.0

global ICA 5 2 0.206 0.0 0.598 0.0

global ICA 10 195 0.187 0.0 0.412 0.0

global ICA 23 197 0.381 0.0 0.369 0.0

(d)

Concat Dictionary C1 rho C1 p C2 rho C3 rho C4

global ICA 0 182 0.285 0.0 0.787 0.447 0.964

global ICA 1 47 0.449 0.0 0.422 0.713 0.470

global ICA 2 10 0.362 0.0 0.381 0.867 0.364

global ICA 4 129 0.412 0.0 0.356 0.694 0.165

global ICA 5 43 0.249 0.0 0.689 0.485 0.588

global ICA 10 92 0.250 0.0 0.439 0.276 0.718

global ICA 23 4 0.326 0.0 0.468 0.571 0.447

a) reconstruction error statistics (r2) across the analyses of global linked-ICA, exclusive-DLSC and concat-DLSC, for both the gene expression
and projection density modalities. b,c) correlation statistics (Pearson’s rho) between the global components of interest and gene and projection
exclusive dictionaries, labeled as A and B respectively. A1,A2,B1,B2: correlations between spatial maps (A1,B1), gene coefficients (A2) and
injection coefficients (B2). d) correlation statistics between the global components of interest and the concat dictionaries. C1, C2, C3: correlation
between spatial maps (C1), gene coefficients (C2) and injection coefficients (C3). C4: the relative contribution of the gene expression modality to
the component of interest. For all comparisons, p < 0.004

injection groups (see “Projection Density”). For each
group, we performed a local analysis and we identified
independent components whose spatial patterns exhibited
high shared variance in brain areas related to the injected
location (source) and long-range projections. These results
were validated by literature, including known cortico-
midbrain and cortico-striatal projections as well as intra-
connections within the cortex, brainstem and subcortical
nuclei. Moreover, the results were highly preserved when
including the complete dataset of 498 injections in the
analysis, hence indicating the capability of Linked ICA
to preserve independent components under increasing data

variance and size (see “Local and Global Independent
Components”, Table 3). The validity of these results was
enhanced by consistency with previous studies and the
well-established Org.Mm.eg.db and KEGG databases (see
Table 2). This consistency was related to a number of
detected white-matter tracts and to identified gene groups
with functional annotations relative to neurotransmitter-
relevant pathways, neuronal function and cell-type specific
markers (Tasic et al. 2016, 2018a).

To our knowledge, this is the first study that identified
data-driven links between volumetric gene expression and
projection density in the mouse brain, instead of links
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Fig. 6 A visual comparison of the spatial maps derived from Linked
ICA and exclusive-DLSC. a-f spatial map visualizations of indepen-
dent components, gene dictionaries and projection dictionaries, which
are followed by their color-coded overlap maps. a-b component 0,
gene dictionary 9 and projection dictionary 47. c-d component 1, gene
dictionary 5 and projection dictionary 166. (e-f) component 2, gene
dictionary 22 and projection dictionary 2. The spatial maps from (a,c,e)
are related through lines with their Pearson’s rho correlation value. The

color-coding in maps (b,d,f) is used to identify which modality drives
the component’s variation in the regions of interest that were selected
by thresholding and masking the spatial maps (below 1st -percentile
and above 99th-percentile, see Supplementary Material Section 1.6
for more details). The color convention for the spatial map visualiza-
tions is similar to the one used in Fig. 2 and a detailed description of
the color-coding convention can be found in Supplementary Material
Section 1.6

between simplified graph representations at the level of
brain areas. Thus, this work expands spatial transcriptomic-
based and connectomic-based analyses to high-dimensional
data.

The reason to compare the local analyses with the global
one is the reduced connectivity sample sizes available when
performing the local analyses with respect to the obviously
bigger sample size of the global analysis. Note that the gene
expression sample size is constant since it is fixed across
all analyses. While the advantage of a higher sample size
is clear, including different injected areas strongly increases
the connectivity variance. Therefore, the increased sample
size might provide less specific results. Since it is not
absolutely clear which approach is the optimal one, we

decided to explore both and we found that the spatial maps
of the local analyses were significantly reproduced in the
global analysis.

As an additional validation, we compared the com-
ponents from Linked ICA with dictionaries from the
DLSC technique, which explained exclusive variance from
each data modality (exclusive-DLSC) and shared variance
(concat-DLSC). We observed that a pairwise correlation
between the spatial maps and the coefficients of both
approaches revealed significant links between components
and dictionaries that indicated high variance in the same
brain regions. Therefore, these patterns of shared spatial
variance were captured by multiple decomposition meth-
ods. A comparison of their reconstruction accuracy revealed
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that Linked ICA was superior to concat-DLSC but slightly
inferior to exclusive-DLSC. Hence, Linked ICA was more
optimal in data fusion instead of reconstruction which is
reasonable given that it focuses on explaining variance
of multiple modalities (see “Comparison with Dictionary
Learning and Sparse Coding”).

These findings suggest that relating both types of
dictionaries using pair-wise correlations is not a trivial
issue, since a gene dictionary might be more accurately
represented as a mixture of projection dictionaries and vice
versa. This points out the necessity of conducting post-
hoc regression analyses for identifying the most optimal
mixtures of dictionaries. In Ji et al. (2014) and Timonidis
et al. (2020), predictions of projection patterns as sparse
linear combinations of gene expression patterns were shown
to be significant when representing both modalities at the
level of brain areas. However, Linked ICA provides an
advantage in terms of interpretation, since reconstructing
both data modalities is implicitly modelled by the method
instead of requiring post-hoc analyses.

We acknowledge some limitations. Unlike the Diffusion
Tensor Imaging technique that uses seeds to directly
represent source locations (Le Bihan and Breton 1985), the
injected locations were indirectly represented by the feature
space of the projection matrix. This resulted in difficulties
to find connections between the identified components and
axonal pathways. For augmenting the source representation,
incorporating single-neuron morphological data could shed
light on projection motifs that have not been covered by tract
tracing data, as shown in (Han et al. 2018). An exemplary
repository was made available by the Mouselight project,
where they have provided reconstructions of long-range
projections from ∼1000 individual neurons in the mouse
brain (Gerfen et al. 2016; Hooks et al. 2018; Economo et al.
2018, 2019; Winnubst et al. 2019). Such data could be fused
together with the bulk tracing data and the gene expression
data using Linked ICA, with the resulting components
linking genes to previously unidentified projection motifs.
A preliminary evaluation of this strategy can be found
in Supplementary Material Section 1.10, where we have
linked single-neuron morphology data with the other two
modalities using Linked ICA. We show that the resulting
spatial patterns highlight brain regions shown in previous
studies (Winnubst et al. 2019), and that they can be used
to complement tract-tracing data from less sampled brain
regions in the Allen Mouse Brain Connectivity Atlas, such
as the motor cortex.

Second, the cell-type specificity of components was eval-
uated through ontology enrichment analysis and comparison
with literature. Note that we could not present direct evi-
dence of cell-type specificity, since the 200 μm3 spatial
resolution of the data is insufficient to resolve the cellular-
level. The relation to cytoarchitecture is important, since it

has been shown in literature that connected brain areas have
similar synaptic and protein profiles (Sperry 1963; Roy et al.
2018; Zhu et al. 2018). Therefore, relating cell-type-specific
densities or expression patterns to connectome-based data
is crucial for understanding the causative factors that link
molecules to brain structure. A pivotal step would be to
incorporate single-cell RNA sequencing data with the use
of tools such as SEURAT (Satija et al. 2015) for identify-
ing cell-types with less bias and imputing missing data that
were caused by the 200 μm thick sections of the original
ISH volumes along the posterior-anterior axis (Lein et al.
2007). Important single-cell RNA-seq sources can be found
in Tasic et al. (2016, 2018b), and Mancarci et al. (2017).

A question that can arise is whether the observed
links can be attributed to spatial autocorrelation, meaning
an increased connection likelihood and correlated gene
expression between nearby brain regions. It is well
known that spatial gene expression patterns have a
strong spatial autocorrelation that reflects the mouse brain
cytoarchitecture (French et al. 2011a, b). Previous studies
have shown that highly correlated gene expression patterns
exhibit both strong global spatial autocorrelation and
spatially overlap with connectivity networks (Richiardi
et al. 2015; Pantazatos and Schmidt 2020). Linked ICA
automatically estimates spatial degrees of freedom that
are included in the cost function (Groves et al. 2011),
Therefore, spatial autocorrelation is carried downstream by
our analysis, since there is no explicit correction for this
in output spatial maps. However, previous studies have
identified significant correlations between connectivity and
gene expression, when correcting for spatial correlation
by regressing correlations on the distance and assessing
the significance of the residuals (French and Pavlidis
2011a). Thus, we acknowledge that there might be relevant
statistical links between structural connectivity and gene
expression beyond spatial autocorrelation that need further
characterization (Fulcher and Fornito 2016; Fornito et al.
2019). This could be exemplified by components exhibiting
high variance in brain areas distal to each other and the
injected region, with a relatively balanced contribution
between both modalities suggesting a strong linkage beyond
spatial autocorrelation. Exemplar cases include vis ICAs
4,7,8 and cp ICA 0 (see Fig. 5a-c for the modality
contributions and Fig. 3 for the spatial maps). For instance,
the major highlighted areas in vis ICA 4 were striatum,
both dorsal and ventral regions, and cerebellum-related fiber
tracts (see Supplementary Material Table 4), which can
not be fully attributed to spatial proximity. Moreover, the
identification of glutamatergic markers in the gene modules
of these components (see Supplementary Material Table 3)
could explain the presence of long-range projection patterns
between the distal areas, given that glutamatergic neurons
from one area are known to project to different brain areas
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(Tasic et al. 2018b). Determining the underlying cellular
subtypes of these markers could shed light on the regional
and layer-specific projection preferences of these areas.
Consequently, links between connectivity and genes might
be more localized than it was presented in this work; the 200
μm resolution at the source level smoothes out cell-type-
specific patterns and their potential links, hence retrieving
data at 25 μm or higher could resolve this issue (Cheveé
et al. 2018; Han et al. 2018; Huang et al. 2020; Kim et al.
2020).

A follow-up question to the spatial autocorrelation issue
is whether the underlying causal factors connecting both
modalities can be uncovered through linked ICA. The pat-
terns that are linked are spatial patterns, hence the density
of a particular gene can be expressed as a pattern across
regions, which matches the patterning of the fluorescent
labels of the connectivity data. Thus, this can be an epiphe-
nomenon. There are two approaches for validating the
causality of the link. First, via a gene ontology analysis that
establishes a functional role of the involved genes in gen-
erating the projection, for instance, by being expressed in
the subset of neurons that make up the projection. For that
reason, integrating single-cell RNA seq data is useful. Sec-
ond, via experimental manipulation of the identified genes
(Polleux 2005; Miller et al. 2010; De la Rossa et al. 2013;
Daimon et al. 2015; Razoux et al. 2017; Goodman and
Bonni 2019). The goal of the paper is to provide a toolbox
that can generate such hypotheses and be used to formulate
experimental studies to validate them. It has to be borne in
mind that development processes generating the projections
have finished by the time we quantify the gene expression
patterns (French and Pavlidis 2011a), so a direct link is diffi-
cult and must rely on turn-over of molecules at the synapse.

While the main focus of this study was to find links
between genes and projection patterns on the mouse meso-
connectome, we aim to go beyond qualitative descriptions
of such links and move towards more into quantitative
tests. We intend to do that by manipulating the expres-
sion of genes of interest according to their functional gene
modules and then predicting the brain-wide changes in pro-
jection densities. Hence, this would make it possible to
test in silico a number of neurodegenerative disease-related
hypotheses. For two preliminary test cases highlighting the
predictive capabilities of Linked ICA, readers are referred
to Supplementary Material Section 1.11 in which controlled
manipulations of gene expression patterns lead to changes
in projection patterns.

Subsequently, the activity of the resulting structural
patterns could be tested in frameworks such as the
Virtual Mouse Brain (Sanz-Leon et al. 2013; Ritter et al.
2013; Woodman et al. 2014) or it could be validated
by electrophysiology-based experiments. These approaches
could be useful for translational neuroscientists.

Taken together, we have built and validated a novel
paradigm for linking gene expression and structural
projection patterns in the mouse mesoconnectome, based
on volumetric data from the Allen Institute and using a
modified version of the Linked ICA method. A comparison
with the DLSC technique and the preservation of the
results under increasing data volume suggest robustness
of the method in capturing independent components of
shared variance across both modalities. Finally, our method
presents a relevant framework through a number of use-
cases, which could support assisting studies aiming to relate
genes to brain function.
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I., Schöll, M., Hansson, O., Teipel, S.J., Initiative, A.D.N.
(2018). Molecular properties underlying regional vulnerability to
Alzheimers disease pathology. Brain: A Journal of Neurology,
141(9), 2755–2771.

Groves, A.R., Beckmann, C.F., Smith, S.M., Woolrich, M.W. (2011).
Linked independent component analysis for multimodal data
fusion. NeuroImage, 54(3), 2198–2217.

Han, Y., Kebschull, J., Campbell, R., Cowan, D., Imhof, F.,
Zador, A.M., Mrsic-Flogel, T.D. (2018). The logic of single-cell
projections from visual cortex. Nature, 556(5), 51–56.

Harris, J.A., Oh, S.W., Zeng, H. (2012). Adeno-associated viral
vectors for anterograde axonal tracing with fluorescent proteins
in nontransgenic and cre driver mice. Current Protocols in
Neuroscience, 59(1), 1–20.

Hawrylycz, M., Lein, E., Guillozet-Bongaarts, A. (2009). An
anatomically comprehensive atlas of the adult human brain
transcriptome. Nature, 489, 391–399.

Henry, A.M., & Hohmann, J.G. (2012). High-resolution gene
expression atlases for adult and developing mouse brain and spinal
cord. Mammalian Genome, 23(9), 539–549.

Hooks, B.M., Papale, A.E., Paletzki, R.F., Feroze, M.W., Eastwood,
B.S., Couey, J.J., Winnubst, J., Chandrashekar, J., Gerfen, C.R.
(2018). Topographic precision in sensory and motor corticostriatal
projections varies across cell type and cortical area. Nature
Communications, 9(1), 3549.

Huang, L., Kebschull, J.M., Fürth, D., Musall, S., Kaufman, M.T.,
Churchland, A.K., Zador, A.M. (2020). Bricseq bridges brain-
wide interregional connectivity to neural activity and gene
expression in single animals. Cell, 182(1), 177–188.e27.

665Neuroinform (2021) 19:649–667



Hyvarinen, A. (1991). Fast and robust fixed-point algorithms for
independent component analysis. IEEE Transactions on Neural
Networks, 10(3), 626–634.

Itahashi, T., Yamada, T., Nakamura, M., Watanabe, H., Yamagata,
B., Jimbo, D., Shioda, S., Kuroda, M., Toriizuka, K., Kato, N.,
Hashimoto, R. (2015). Linked alterations in gray and white matter
morphology in adults with high-functioning autism spectrum
disorder: A multimodal brain imaging study. NeuroImage:
Clinical, 7, 155–169.

Ji, S., Fakhry, A., Deng, H. (2014). Integrative analysis of the
connectivity and gene expression atlases in the mouse brain.
NeuroImage, 84, 245–253.

Kang, H.J., Kawasawa, Y.I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa,
A.M.M., Pletikos, M., Meyer, K.A., Sedmak, G., Guennel, T.,
Shin, Y., Johnson, M.B., Krsnik, Z., Mayer, S., Fertuzinhos, S.,
Umlauf, S., Lisgo, S.N., Vortmeyer, A., Weinberger, D.R., Mane,
S., Hyde, T.M., Huttner, A., Reimers, M., Kleinman, J.E., Sestan,
N. (2011). Spatio-temporal transcriptome of the human brain.
Nature, 478(7370), 483–489. 22031440[pmid].

Kaufman, A., Dror, G., Meilijson, I., Ruppin, E. (2006). Gene
expression of caenorhabditis elegans neurons carries information
on their synaptic connectivity. PLoS Computational Biology, 2,
e167.

Keil, J.M., Qalieh, A., Kwan, K.Y. (2018). Brain transcriptome
databases: A user’s guide. Journal of Neuroscience, 38(10), 2399–
2412.

Khibnik, L.A., Tritsch, N.X., Sabatini, B.L. (2014). A direct projection
from mouse primary visual cortex to dorsomedial striatum. PloS
One, 9(8), e104501.

Kim, E.J., Zhang, Z., Huang, L., Ito-Cole, T., Jacobs, M.W., Juavinett,
A.L., Senturk, G., Hu, M., Ku, M., Ecker, J.R., Callaway, E.M.
(2020). Extraction of distinct neuronal cell types from within a
genetically continuous population. Neuron, 107(2), 274–282.e6.

Kincses, Z.T., Horinek, D., Szabo, N., Toth, E., Csete, G., Stepan-
Buksakowska, I., Hort, J., Vecsei, L. (2013). The pattern of
diffusion parameter changes in alzheimers disease, identified by
means of linked independent component analysis. Journal of
Alzheimers Disease, 36(1), 119–128.

Kobak, D., Bernaerts, Y., Weis, M.A., Scala, F., Tolias, A.,
Berens, P. (2019). Sparse reduced-rank regression for exploratory
visualization of multimodal data sets. bioRxiv.

Kuo, H.Y., & Liu, F.C. (2019). Synaptic wiring of corticostriatal
circuits in basal ganglia: Insights into the pathogenesis of
neuropsychiatric disorders. eNeuro, 6(3), 1–14.

Langfelder, P., & Horvath, S. (2008). Wgcna: an r package for
weighted correlation network analysis. BMC Bioinformatics, 9,
559.

Le Bihan, D., & Breton, E. (1985). Imagerie de diffusion in vivo par
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