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Deep learning-based classification of resting-state fMRI 
independent-component analysis  
Victor Nozais1,2 , Philippe Boutinaud1,3, Violaine Verrecchia1,2 , Marie-Fateye Gueye1,2,  

Pierre Yves Hervé1,3, Christophe Tzourio4,5 , Bernard Mazoyer1,2,5 , Marc Joliot1,2  

Abstract 
Functional connectivity analyses of fMRI data have shown that the activity of the brain at rest is spatially 

organized into resting-state networks (RSNs). RSNs appear as groups of anatomically distant but functionally 

tightly connected brain regions. Inter-RSN intrinsic connectivity analyses may provide an optimal spatial level 

of integration to analyze the variability of the functional connectome. Here we propose a deep learning 

approach to enable the automated classification of individual independent-component (IC) decompositions 

into a set of predefined RSNs. Two databases were used in this work, BIL&GIN and MRi-Share, with 427 and 

1811 participants, respectively. We trained a multilayer perceptron (MLP) to classify each IC as one of 45 

RSNs, using the IC classification of 282 participants in BIL&GIN for training and a 5-dimensional parameter 

grid search for hyperparameter optimization. It reached an accuracy of 92%. Predictions for the remaining 

individuals in BIL&GIN were tested against the original classification and demonstrated good spatial overlap 

between the cortical RSNs. As a first application, we created an RSN atlas based on MRi-Share. This atlas 

defined a brain parcellation in 29 RSNs covering 96% of the gray matter. Second, we proposed an individual-

based analysis of the subdivision of the default-mode network into 4 networks. Minimal overlap between RSNs 

was found except in the angular gyrus and potentially in the precuneus. We thus provide the community with 

an individual IC classifier that can be used to analyze one dataset or to statistically compare different datasets 

for RSN spatial definitions. 

Keywords: Resting-state, artificial intelligence, neuroimaging cohort, independent-component analysis, 
Brain functional network, classification.  
 

1. Introduction 

The resting-state is defined as a cognitive state of 

spontaneous activity that is not triggered by 

externally imposed tasks. In such a state, Biswal et 

al. (Biswal et al. 1995) used blood-oxygen-level 

dependent (BOLD) functional MRI (fMRI) 

techniques and showed for the first time that distant 

regions can have similar quasi-periodic low-

frequency BOLD time courses. This interregional 

intrinsic connectivity phenomenon occurs between 

assemblies of regions that define so-called resting-

state networks (RSNs). Interestingly, these 

networks are somehow related to the way the brain 

supports cognition, which was initially 
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demonstrated by Smith et al. (Smith et al. 2009) by 

comparing the 30000-subject activation studies in 

the brain-mapping database (Laird et al. 2005) and 

a dataset of resting-state acquisitions. It has been 

demonstrated that intrinsic connectivity is a 

biomarker of events that occur throughout life, 

such as genetics (Richiardi et al. 2015; Kong et al. 

2020), development and aging (Dosenbach et al. 

2010; Zuo et al. 2010; Pervaiz et al. 2020), 

cognitive skills (Pervaiz et al. 2020) or mental 

content at the time of acquisition (G. Doucet et al. 

2012). The signal-to-noise ratio of resting-state 

BOLD fMRI is very low and contaminated by 

numerous extraneural sources of noise. Following 

tailored postprocessing corrections, two ways of 
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efficiently managing these problems have been 

identified: increase the number of participants and 

use spatial averaging. The former strategy is 

implemented in so-called cohort studies with 

thousands of subjects (Miller et al. 2016; Pervaiz et 

al. 2020), although this strategy is not always 

possible, especially when studying neural 

pathologies or rare types of brain organization. The 

latter strategy requires the definition of a 

parcellation of the brain gray-matter tissue in 

regions, networks, modules (G. Doucet et al. 2011) 

or systems (Fox et al. 2005). Based on our past 

work, we propose that the RSN level of integration 

can provide an ideal scale for describing the 

systemic brain organization of healthy individuals 

or patients. 

To date, the definition of RSNs comes mainly from 

the analysis of subject groups that vary in number 

from tens to hundreds of subjects (M. P. van den 

Heuvel and Hulshoff Pol 2010; Yeo et al. 2011; G. 

E. Doucet et al. 2019; Pervaiz et al. 2020) primarily 

using group-based independent-component 

analysis (ICA) (Abou Elseoud et al. 2011; 

Beckmann et al. 2005; Calhoun et al. 2008; 

Damoiseaux et al. 2006; G. Doucet et al. 2011; 

Jutten and Herault 1991; Shirer et al. 2012; Smith 

et al. 2009) as well as other techniques (Chen et al. 

2013; M. van den Heuvel et al. 2008; Varoquaux et 

al. 2011; Yeo et al. 2011). Under this framework, 

we previously proposed a methodology named 

MICCA (for multiscale individual component 

clustering algorithm (Naveau et al. 2012b)) to 

create an atlas based on individual subject ICA 

decomposition (Naveau et al. 2012a) using a 

hierarchical classification algorithm and ICASSO 

(Himberg et al. 2004). This methodology led us to 

propose an atlas with finer-grained partitions than 

were obtained from group-based processing 

methodologies. Note that this algorithm is not 

specific for ICA and can be applied to any 

technique that provides individual network-based 

decompositions of the data, e.g., seeding 

(Dosenbach et al. 2006; Margulies et al. 2007), 

snowball (Wig et al. 2014), restricted Boltzmann 

machine (Kim et al. 2020) or dictionary learning 

(Lv et al. 2015; Varoquaux et al. 2011). 

In addition to the methodology used for their 

construction, the atlases are dependent on the 

population selected and the acquisition device. If 

some RSNs have been reproduced across many 

studies (M. P. van den Heuvel and Hulshoff Pol 

2010), this reproducibility may be valid only up to 

some partitioning level and may strongly depend 

on the aforementioned variables. Using a badly 

fitting atlas can create strong biases in the analysis 

and lead to results that are difficult to interpret. The 

most straightforward example can be found in the 

analysis of patient or aged subject datasets. 

Because the majority of atlases are built from 

healthy young subjects, if one finds a decrease in 

the intrinsic connectivity between two networks in 

a patient compared with a healthy subject or in an 

older subject compared with young subjects, then 

this finding could be either interpreted as a true 

decrease or as a modification of the spatial support 

of one or both of the networks.  

In addition to accommodating different 

populations, the price paid for fMRI sampling of 

the whole brain every few seconds (or even less) is 

dependent on the image geometry of the 

instrumentation, namely, the field homogeneity, 

antenna type, acquisition sequence, and head 

positioning in the antenna. Even if an atlas is used, 

we need a tool to adapt this atlas to the specificities 

of the scanner. 

Atlases are very popular (for example, the regional 

anatomical-based atlas AAL (Tzourio-Mazoyer et 

al. 2002)). In addition to providing an anatomical 

reference, one of the main reasons for this 

popularity is that they fulfill the task of boosting 

the signal-to-noise ratio of both the task and 

resting-state fMRI by averaging the signal in each 

region. This benefit is potentially even higher with 

RSN atlases in which the number of voxels in each 

RSN is higher than in the regional atlases. Another 

benefit is that these atlases limit the number of tests 

that need to be calculated when using those 

variables for statistical analysis. The drawback is 

that the spatial topography of functional regions is 

strongly predictive of variation in behavior and 

lifestyle factors (Bijsterbosch et al. 2019; 

Bijsterbosch et al. 2018). The difficulty in 

interpreting variations of the intrinsic connectivity 

in term of spatial support or decreases (see above) 

implies that analyses based on individually defined 

RSNs may surpass atlas-based analyses and may 

possibly become mandatory in some cases 

(Bijsterbosch et al. 2019). Indeed, individual-based 

analyses provide support for new descriptions of 

the brain intrinsic connectivity organization, such 
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as that proposed by Braga et al. (Braga and 

Buckner 2017) and Margulies et al. (Margulies 

2017). 

Individual-based decomposition can also be used to 

address the question of overlap, which indicates 

cases that show a region belonging to at least 2 

RSNs. Most of the atlases of RSNs are built 

without allowing overlap. When calculating the 

intrinsic connectivity between 2 RSNs, overlaps 

are difficult to handle because they introduce some 

unwanted and nonbiological correlation between 

the 2 RSN BOLD signal variations. Moreover, 

these atlases do not acknowledge areas that could 

belong to two or more networks and represent 

potential hubs of connectivity when modeling the 

brain functional organization as a graph (Bullmore 

and Sporns 2009). Based on a group analysis, Yeo 

et al. (Yeo et al. 2014) and van den Heuvel et al. 

(M. P. van den Heuvel and Sporns 2013) 

demonstrated that there are in fact many regions of 

overlap between RSNs. The former group used a 

methodology where the constraint of unicity (no 

overlap) is probably less stringent than in the 

spatially independent ICA used by the latter, and 

they also performed a group analysis; however, 

assessing the region that truly belongs to 2 

networks is difficult because of the overlap created 

by the group averaging. One way to solve this 

problem is to initially search the overlaps at the 

individual level and then perform a group statistical 

analysis.  

Machine-learning algorithms, particularly artificial 

neural networks, have become more powerful in 

recent years, and applications in biological 

research have led to their successful application in 

medical imaging (Heinsfeld et al. 2017; Plis et al. 

2014; Zhang et al. 2016). In this context, machine 

learning appears to be a potential tool to tackle the 

problem of automatic classification of individual 

structural or functional brain maps. Given a set of 

individual brain maps labeled in N classes, the goal 

is to train a supervised machine-learning algorithm 

to automatically classify each map of a new subject 

into one of the N classes. Some promising results 

in this area have already been obtained for a small 

number of classes with perceptrons ((Vergun et al. 

2016) classification in 5 RSN classes) or 

convolutional neural networks (CNNs, (Chou et al. 

2018; Lv et al. 2015; Zhao et al. 2018) 

classification in 10 RSN classes). Note that in those 

works, the ground truth used for training was given 

by a manual classification. 

Our goal was to leverage the deep-learning 

methods to classify brain maps into a higher 

number of classes. In fact, the optimal number for 

ICA was proposed to be 45 RSNs (Abou Elseoud 

et al. 2011). Two datasets, namely, BIL&GIN (for 

Brain Imaging of Lateralization by the “Groupe 

d’Imagerie Neurofonctionelle”, 427 participants, 

(Mazoyer et al. 2016)) and MRi-Share (for 

Magnetic Resonance internet-based Student health 

research enterprise, 1811 participants, (Tsuchida et 

al. 2020)), obtained from two different populations 

and two different scanners, were used in this 

analysis. The ground truth was not provided by a 

manual classification but from the automatic 

clustering method of individual independent 

components (ICs) from 282 subjects of the 

BIL&GIN dataset using the MICCA (Naveau et al. 

2012a; Naveau et al. 2012b) and ICCASO 

algorithms (Himberg et al. 2004). From this 

dataset, the number of classes was estimated at 45 

(including some spatially reproducible artifacts).  

We first designed and trained a multilayer 

perceptron (MLP), a type of deep neural network 

(DNN), to automatically assign each IC extracted 

from individual fMRI sessions to one of the 

MICCA RSNs (or to a noise class), creating 

subject-specific functional brain maps without the 

need for manual labeling. Note that MICCA and 

MLP are complementary: the former is a clustering 

algorithm that cannot label new data, and the latter 

is a classification algorithm that cannot cluster the 

data by itself. In the second phase, the DNN was 

tested on the second part of the BIL&GIN dataset 

(145 subjects with unlabeled ICs), and the resulting 

labeling was tested against the MICCA labeling. In 

the third phase, the DNN predictor was applied to 

the MRi-Share dataset and once again compared 

with the MICCA labeling. As an application, this 

last analysis was used to provide both an atlas 

based on MRi-Share and an individual-based 

analysis of the subdivision of the default-mode 

network (DMN) of the brain. The DMN was 

chosen as it is specific to the resting state (Mazoyer 

et al. 2001; Raichle et al. 2001). In fact, its 

identification is overrepresented compared with the 

other networks in the ICA resting-state analysis. 

Based on an interindividual overlap analysis, we 

searched for regions that are part of 2 or more 

subsystems (Andrews-Hanna et al. 2010; Yeo et al. 
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2014) and could thus qualify as hubs (Bullmore and 

Sporns 2009). 

2. Methods  

Two databases, BIL&GIN (see 2.1) and MRi-Share 

(see 2.2), were used in this work (Table 1.). A 

graphical sketch of the analysis is presented in 

Figure 1, including the training of the MLP to 

select the best model (specific set of 

hyperparameters, see 2.4) using the MICCA-

labeled ICs of BIL&GIN (see 2.3) and testing the 

MLP on 3 datasets (see 2.5).  

2.1. BIL&GIN dataset 

The first dataset was from the BIL&GIN database 

(Mazoyer et al. 2016). This database was designed 

to investigate the cognitive, behavioral, and brain-

morphological correlates of hemispheric 

specialization. A total of 427 participants who 

underwent both an anatomical MRI and a resting-

state functional MRI were selected. Note that the 

BIL&GIN participant recruitment was biased 

toward young adults  (age 27 ± 8 years [18-57], 

median of 24 years), balanced for sex (51% 

women, N = 219) and was enriched in left-handed 

individuals relative to the general population (46% 

versus 10%). The study was approved by the local 

ethics committee (Basse-Normandie, France).  

Two independent data groups were defined: G1, 

282 participants (age 26 ± 7 years [18-57]), and G2, 

145 participants (age 29 ± 9 years [18-57]).  

A full description of the BIL&GIN imaging dataset 

acquisition parameters and resting-state processing 

can be found in (G. Doucet et al. 2011; Mazoyer et 

al. 2016; Naveau et al. 2012b). A summary of the 

main parameters and steps of the analysis is given 

below. 

Acquisition. Imaging was performed on a Philips 

Achieva 3-Tesla MRI scanner. The session started 

with acquisition of structural MR brain images,  

weighted volume (sequence parameters: repetition 

time (TR) = 20 ms; echo time (TE) = 4.6 ms; flip 

angle = 10°; inversion time = 800 ms; turbo field 

echo factor = 65; sense factor = 2; field of view = 

256 x 256 x 180 mm3; 1 x 1 x 1 mm3 isotropic voxel 

size). 

Spontaneous brain activity was monitored using 

BOLD fMRI, while the participants were at rest for 

8 min T2*-echo planar imaging (sequence 

parameters: 240 volumes, 8 min; TR = 2 s; TE = 35 

ms; flip angle = 80°; 31 axial slices; 3.75 x 3.75 x 

3.75 mm3 isotropic voxel size). Immediately before 

fMRI scanning, participants were instructed to 

“keep their eyes closed, to relax, to refrain from 

moving, to stay awake, and to let their thoughts 

come and go”. 

Table 1. Summary of the dataset. BIL&GIN: Brain Image Lateralization acquired by the 

“Groupe d’Imagerie Neurofonctionelle”. MRi-Share: Magnetic Resonance internet-

based Student health research enterprise. MICCA: Multiscale independent component 

clustering algorithm. IC: Independent component. G1/2/3: Group (of subjects) 1/2/3, 

respectively. Ps-G1 and Pu-G1: Independent components from G1 successfully and 

unsuccessfully labeled with MICCA, respectively. PG2/3: sets of Independent 

components extracted from groups 2/3, respectively. 
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Processing. The analysis pipeline chains include 

temporal and motion correction of the fMRI signal 

and MNI stereotaxic normalization SPM5 

(sampling 2x2x2 mm3) using the mediation of the 

T1-weighted anatomical device. Voxelwise 

temporal variance was removed using linear 

regression including the average white matter 

signal, average cerebrospinal fluid (CSF) signal 

and 6 movement parameters (3 rotations and 3 

translations). The corrected signal was filtered 

temporally (0.01-0.1 Hz) and spatially (6 mm full 

width at half maximum (FWHM)). Individual 

fMRI data were individually processed using the 

ICA program called MELODIC (multivariate 

exploratory linear optimized decomposition into 

independent components, version 3.14) available 

in the FMRIB Software Library (FSL, (Smith et al. 

2004)). The number of ICs was estimated by 

Laplace approximation (Minka and Thomas 2000). 

In the G1 subset, 13729 ICs were extracted 

(average of 49 ± 6 ICs per subject), and 7281 ICs 

were extracted in G2 (average of 50 ± 7 per 

subject). 

2.2. MRi-Share dataset  

The second dataset was provided by the MRi-Share 

database (Tsuchida et al. 2020), a subpart of the i-

Share (Internet-based Student Health Research 

Enterprise, http://www.i-share.fr), a large 

prospective cohort of French university students 

that investigates student health status (both 

physical and mental). MRi-Share was designed to 

investigate the brain morphological and functional 

organization of a subset of i-Share participants. We 

included 1,811 MRi-Share participants (referred to 

as G3) who completed full MRI examinations and 

did not show any abnormalities on their brain 

structural scans: the G3 group had an average age 

of 22.1 ± 2.3 years ([18-35], median at 21.7 years), 

a higher proportion of women (72%, 1,300 women) 

and 12.9% of left-handers (N = 233). The study 

was approved by the local ethics committee 

(Bordeaux, France). 

Acquisition. Imaging was performed on a Siemens 

Prisma 3-Tesla MRI scanner. The session included 

Fig. 1 Top: Short description of the MLP principles. Middle: Grid search (testing all hyperparameter 

combinations to find the best one), which requires the training of each model using Ps-G1 ICs. The 

hyperparameters of the best MLP model and its evaluation metrics are given on the right side. This trained 

MLP model is the one used in subsequent classifications. Bottom: Using the trained MLP to classify 

unlabeled ICs and associate each IC with an RSN. On the far right, the number of PG2 ICs (Y-axis) 

classified in each RSN (X-axis) is shown as an example. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.07.02.183772doi: bioRxiv preprint 

http://www.i-share.fr/
https://doi.org/10.1101/2020.07.02.183772


6 

 

structural MR brain images, including a high-

resolution, three-dimensional MPRAGE T1-

weighted volume (sequence parameters: TR = 2000 

ms; TE = 2.03 ms; flip angle = 8°; inversion time = 

880 ms; field of view = 256 x 256 x 192 mm3; 1 x 

1 x 1 mm3 isotropic voxel size, in-plane 

acceleration = 2). 

Spontaneous brain activity was monitored using 

BOLD fMRI while the participants were at rest to 

obtain 15 min multiband T2*-echo planar imaging 

(sequence parameters: 1058 volumes, 15 min; TR 

= 850 ms; TE = 35 ms; flip angle = 56°; 66 axial 

slices; 2.4x2.4x2.4 mm3 isotropic voxel size, x6 

multislice acceleration 

(https://www.cmrr.umn.edu/multiband/). 

Additional sequences, as part of the diffusion 

imaging acquisition protocol, were acquired to 

estimate a field map used for distortion correction 

(see below). Immediately before fMRI scanning, 

participants were instructed to “keep their eyes 

closed, to relax, to refrain from moving, to stay 

awake, and to let their thoughts come and go”.  

Processing. The analysis pipeline concatenates 

distortion correction, motion correction and MNI 

stereotaxic SPM12 (https://www.fil.ion.ucl.ac.uk) 

normalization (sampling 2x2x2 mm3) using T1-

weighted anatomical data. Voxelwise temporal 

variance was removed using linear regression, 

including the average white matter signal, average 

CSF signal, average gray matter signal, 6 

movement parameters (3 rotations and 3 

translations) and 18 parameters derived from the 

measured movement parameters (Friston et al. 

1996). The corrected signal was filtered temporally 

(0.01-0.1 Hz) and spatially (5 mm full width at half 

maximum (FWHM)). Data were individually 

processed using the ICA MELODIC program (see 

above). A total of 90,658 ICs were extracted 

(average of 50 ± 5.5 ICs per subject). 

2.3. MICCA unsupervised labeling 

Using an original unsupervised method named 

MICCA (Naveau et al. 2012b), RSNs were built 

using a spatial-overlap correlation criterion applied 

to the 282 individual ICA results from the G1 

group. There are two outcomes of the MICCA 

algorithm: assignment of each IC to one of 45 

classes plus one additional class and the creation of 

an atlas that describes the spatial support of these 

45 RSNs (Naveau et al. 2012a), 

http://www.gin.cnrs.fr/en/tools/micca/). The 

additional 46th class, denoted “class-0”, includes 

all the ICs that could not be labeled with one of the 

45 classes. Overall, 58% of the G1 individuals’ ICs 

were labeled and 42% remained unlabeled and 

were assigned to class-0. The former group of ICs, 

referred to as Ps-G1, consisted of 7,999 ICs, and 

the latter, Pu-G1, consisted of 5,730 ICs (“s” and 

“u” stand for successfully and unsuccessfully 

labeled by MICCA, respectively). This Pu-G1 class 

of unlabeled ICs was mostly composed of artifacts, 

but it also includes an unknown proportion of 

neural ICs. 

Regarding the second outcome of the algorithm, 

the RSN atlas was built by creating for each RSN a 

voxelwise t-map of all ICs of Ps-G1 belonging to 

the same class.  Figure 2 shows the cortical support 

of 29 of the 45 RSNs. Five other RSNs were 

localized in subcortical and medial temporal areas, 

and 2 were localized in the cerebellum. The 9 

remaining RSNs were localized mostly in the white 

matter (1 RSN), in the temporal and frontal poles 

that are areas affected by susceptibility artifacts (2 

RSNs) and in draining veins (4 RSNs). The 

remaining 2 RSNs showed band-like artifacts 

across both the white and the cortical matter and 

were identified as related to scanning defaults. 

2.4. Artificial neural network specifications 

Among machine-learning algorithms, two classes 

of DNNs are well adapted to multiclass monolabel 

classification problems such as ours: MLP and 

CNN. After testing different architectures (see the 

discussion for details), we selected the MLP 

approach. We implemented an MLP trained on the 

MICCA-labeled ICs (see 2.4.1.) using a 5-

dimensional grid search (see 2.4.2). KNIME 

(Berthold et al. 2009) was used for the data 

management workflows; Python-based Keras 

(https://keras.io), Scikit-learn (Pedregosa et al. 

2011) and TensorFlow (Abadi et al. 2016) were 

used for the DNN implementations; and Rstudio 

was used for visualization. All computations were 

run on a Centos computer with a Xeon ES2640 

(DELL, USA), 40 cores, and 256 GB RAM and 

two NVIDIA P100 GPUs with 16 GB dedicated 

memory. 
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2.4.1. Training and validation strategy 

The Ps-G1 group of 7,999 ICs (see Figure 3A) was 

used as the training set of the DNN classifier. Each 

Ps-G1 IC consisted of a 3-dimensional z-map that 

was downsampled to the spatial resolution of the 

preprocessed fMRI data (~8 mm FWHM in each 

dimension) as 23x27x23 voxel-sized images. Note 

that the z-map represents a measure of the 

probability for each voxel belonging to this IC 

based on the normalized correlation between the 

voxel’s signal and the temporal IC signal extracted 

by the ICA (Beckmann et al. 2005). 

To quantify the accuracy of the classifiers, a 

stratified 5-fold cross-validation scheme was used. 

This method consists of dividing the data into 5 

groups, or folds, of equal size. Each fold was 

selected in turn as a validation set, while the other 

4 were used as training sets. Note that the ICs were 

balanced across RSN categories in the different 

folds, and the results showed that each fold 

validation set contained between 56 and 10 ICs for 

the most- and least-populated classes (RSN#01 and 

RSN#45), respectively. 

2.4.2. MLP model architecture and 
implementation 

A grid-search approach was employed to search for 

the optimal values of 5 hyperparameters of the 

architecture of the MLP: 

● Number of layers: [2; 3; 4] 

● Number of units per layer (same for every 

layer): [512; 1,024; 2,048; 4,096; 5,120; 

6,144] 

● Type of activation function: [ReLU; tanh] 

● Learning rate: [10-5; 10-4; 10-3] 

● Dropout rate: [0; 0.25; 0.33; 0.4; 0.5; 0.66] 

For each combination of hyperparameters (N = 

648), a complete training and validation process 

was performed by the MLP. The metric used to 

assess the models’ quality was the average 5-fold 

validation loss. The hyperparameter combination 

giving the smallest loss was selected as the winning 

classifier. 

The weights of the different hidden units were 

randomly initialized using a Glorot uniform 

initializer, which is also called the Xavier uniform 

initializer (Glorot and Bengio 2010). Categorical 

Fig. 2 Twenty-nine color-coded cortical networks among the 45 RSN’s MICCA atlas. Each rendering set 

shows 4, 5 or 6 RSNs aggregated into 6 partitions: DMN: default mode, sFPT: symmetric fronto-parieto-

temporal, L&A: language and attentional, FRON: frontal, V&A: visual and auditory, and SM: 

sensorimotor. The renderings were computed using Caret software (Van Essen et al. 2001). 
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cross-entropy was used as the loss function, and 

Adam (Kingma and Ba 2014) was used as the 

optimizer. An adaptive learning-rate method was 

implemented that reduces the learning rate when 

the loss plateaus. To avoid overfitting the training 

data, two different methods were used. First, a 

dropout strategy was used, which consists of 

ignoring some randomly chosen units in each layer 

during the training. The ignored units changed in 

every iteration so that all of them were eventually 

trained. This method also helps the DNN learn 

more robust features (Srivastava et al. 2014). 

Second, an “early stopping” strategy was applied, 

which consisted of stopping the MLP training 

when the validation loss stops decreasing for a 

number of epochs, thus maintaining the loss at the 

minimum value and reducing overfitting. The 

trained model at the minimal validation loss epoch 

is then chosen. Additionally, because the classes 

showed an imbalanced distribution (Figure 3A), a 

Fig. 3 BIL&GIN processing. For each row, the figure on the left shows, for each RSN, the number of 

associated ICs (right Y-axis) and the equivalent % of labeled ICs per subject (left Y-axis); the figure on the 

right shows the t-SNE projection. A) MICCA labeling, B) DNN validation, C) PG2 labeling, and D) MICCA 

labeling and Pu-G1 combined. Only the Pu-G1 prediction was traced on the corresponding t-SNE graph. 

Note that the RSN names under the histograms were colored according to whether they were identified as 

a brain network (black) or an artifact (orange). 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.07.02.183772doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.183772


9 

 

class weight method was used, and it penalized 

errors more heavily for the underrepresented 

classes. The output dense layer uses the “softmax” 

activation function, with 45 units (one per class), to 

map the output as a confidence distribution for the 

predictions (mapped between 0 and 1). The final 

trained classifier is composed of 5 models, each 

trained on one of the 5 folds. For each RSN class, the 

confidence output by the classifier is the mean of the 

confidence yielded by those 5 models. The resulting 

predictions were used in the following analysis. 

2.5. New classification and analyses 

Once the model architecture of the MLP was 

defined and trained, we used it to classify 2 datasets 

that did not have previous RSN assignments.  

The first dataset was composed of all ICs extracted 

from the BIL&GIN dataset that were not 

previously labeled by MICCA, namely, Pu-G1 

(5,730 ICs) and PG2 (7,281 ICs). To test the 

robustness of the labeling, the spatial support of 

each RSN was compared to the spatial support of 

their MICCA-derived equivalent (see 2.5.1). Note 

that the Pu-G1 ICs were labeled to compare the 

labeling of all the ICs of G1 (Ps-G1 + Pu-G1) with 

PG2, as only part of the G1 ICs were labeled using 

MICCA (see 2.3). 

The second dataset was composed of all ICs 

extracted from the MRi-Share database (PG3, 

90,658 ICs). First, the spatial support of each RSN 

was compared to the MICCA RSN spatial support 

(see 2.5.1.), and then an RSN atlas was calculated 

(see 2.5.2). Finally, an individual-based analysis of 

the main subcomponents of the DMN subpartition 

was performed (see 2.5.3). 

In all analyses following the MLP predictions, the 

ICs classified with a confidence below 50% were 

considered artifactual and reassigned to the noise-

component class. Such a stringent criterion was 

also chosen to reduce the classification of ICs that 

overlap with only one part of the RSN. In fact, 

because of some instability in the automatic 

estimation of the number of ICs of the individual 

ICA decomposition, some RSN can be split into 2 

or more ICs. Moreover, a unicity constraint was 

applied to the labeled data: for each set of ICs 

belonging to a specific individual, only one IC was 

assigned to each RSN. In cases where several ICs 

were competing for the same RSN, only the IC with 

the highest confidence was retained, and the others 

were discarded. This unicity method was used to 

make the results comparable to MICCA’s, since 

unicity was part of this algorithm. 

2.5.1. Spatial comparison of the MICCA and 
DNN results 

We evaluated the differences in RSN 

neuroanatomical support depending on the 

algorithm used—MICCA or DNN—by 

quantifying the spatial overlap of PG2 MLP 

labeling (resp. PG3 MLP labeling) with G1 

MICCA labeling. For this analysis, 2x2x2 mm3 

sampling size images were used. To achieve this 

goal, a group-based voxelwise comparison was 

performed for each RSN using SPM12 

(www.fil.ion.ucl.ac.uk/spm/), while balancing the 

samples in terms of the number of ICs, age, sex and 

handedness. Differences in overlap were computed 

and tested for significance (voxelwise t-test with 

p<0.05, familywise error (FWE) corrected).  

2.5.2. MRi-Share RSN atlas building 

Based on the MRi-Share classification, an RSN 

atlas was created. First, all ICs (sampled at 2x2x2 

mm3) belonging to the same class were averaged to 

define the spatial support of the corresponding 

RSN. For each RSN, the voxel distribution was fit 

by a mixture model (a Gaussian and two gamma 

functions as implemented in MELODIC 

(Beckmann et al. 2005)), and only the voxels above 

a 0.95 threshold were kept for further analysis. The 

atlas was built using a “winner take all” rule 

applied to each voxel, i.e., each voxel was 

associated with the RSN exhibiting the highest 

value.   

2.5.3. MRi-Share DNN-based default-mode 
network subpartitioning 

Using the labeling results of the DNN classifier, the 

DMN subnetwork mapping was explored on the 

G3 dataset. An individual-based overlap analysis 

was performed instead of a group-based analysis to 

take into account overlaps at the individual level. 

We selected all RSNs that include part of the 

precuneus, which is considered to be the functional 

core of the DMN (Utevsky et al. 2014). 

Accordingly, we retained RSN #2, #8, #9 and #15 

(see Figure 2, top row). Only the participants with 

an IC belonging to each of the 4 selected RSNs 
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were considered in the analysis. Each individual IC 

(sampled at 2x2x2 mm3) was binarized using the 

associated mixture model and a threshold of 0.5, 

i.e., at the crossing between the positive gamma 

(modeling the active voxel) and the Gaussian 

distribution (modeling the noise). The mapping 

was performed by first associating each brain 

voxel, in each subject, to one of the 15 possible 

RSN “combinations”: none, 2, 8, 9, 15, 2&8, 

2&9,…, 2&8&9&15. Then, the mapping itself 

consisted of selecting for each voxel the 

combination most often represented among the 

selected individuals. Note that voxels belonging to 

fewer than 50% of the individuals in each of the 4 

RSNs were sorted into the “none” class. 

3. Results 

3.1. DNN training and validation 

The grid search revealed several sets of 

hyperparameters with a comparable minimal loss 

(Figure 4A). The set with minimal loss was 

selected to define the best MLP: 3 layers of 5,120 

units, with rectified linear unit (ReLU) activation 

with a 0.66 dropout rate and a learning rate of 10-5. 

This set achieved 89% accuracy and 0.34 

categorical cross-entropy loss during cross-

validation (Figure 4A). Note that approximately 

half of the tested hyperparameter sets displayed a 

comparably low loss (0.36 or below), and the first 

100 MLP models displayed a loss below 0.35 (see 

the enlargement of Figure 4A). This finding shows 

the remarkable stability of this type of algorithm 

when used for the type of classification problem 

encountered in studies such as ours.  

To observe the interaction of different 

hyperparameters on the loss, losses were projected 

for each pair of hyperparameters (Figure 4C), and 

all other hyperparameters were fixed at their value 

obtained from the best MLP. We observed that the 

activation function ReLu had better loss than tanh. 

The optimal number of layers was reproducibly 

found to be 3. Some of the hyperparameters (units 

per layer, dropout rate, learning rate) were chosen 

on the borders of the search space; outside the 

borders, technical limitations were met such as out 

of GPU memory, training not converging or 

maximum time set for hyperparameter 

optimization. As expected, there was a correlation 

between the number of units per layer and the level 

of the dropout rate: the more units per layer, the 

higher was the dropout rate needed to optimize the 

loss. Overall, we observed that the minimal loss 

was systematically located at the bottom of a well-

defined “valley”.  

To improve the model’s accuracy, we tested a 

consensus method aggregating the 5 best MLP 

models (according to the loss), which resulted in 

less than a 1% increase in accuracy. This minor 

improvement was achieved at the cost of 

drastically increasing the complexity and size of 

the training and prediction process; thus, the 

minimal-loss MLP was chosen for the testing 

analysis (see 3.2). 

The selected MLP model showed a high and 

relatively stable f1-score across all RSNs (mean 

0.87, SD 0.08; Figure 4B) despite a notable class 

imbalance (see Figure 3A). In addition, a 2-

dimensional projection of the classification results 

with the t-SNE method (Maaten and Hinton 2008) 

shows a qualitative high similarity between the 

results obtained from MICCA (Figure 3A) and 

those from the validation steps of the MLP (Figure 

3B). Note that the t-SNE coordinates were 

computed based on the matrix of all paired IC voxel 

value correlations from the full BIL&GIN dataset 

(Ps-G1, Pu-G1 and PG2). Additionally, the effects 

of applying the 0.5 confidence cutoff and the 

unicity constraint were tested on the validation data 

labeled with the MLP, since those post hoc steps 

were used in the rest of the study. This process led 

to a 1.5% increase in accuracy with the cutoff and 

an additional 1.7% increase in accuracy when 

applying both the cutoff and unicity, for a 3.2% 

increase in total, reaching an accuracy of over 92%. 
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3.2. Predictions on BIL&GIN 

The selected optimal classifier was used to process 

both the Pu-G1 and PG2 BIL&GIN datasets. On 

PG2, 58% of the ICs were labeled to an RSN class 

(excluding Class-0). The t-SNE of PG2 (Figure 3C) 

was similar to both the t-SNE of MICCA labeling 

and that of DNN validation (Figure 3A & B). The 

percentage of detection per RSN of PG2 (Figure 

3C) showed the same trend as that of MICCA (see 

Figure 3A) except for some networks, namely, 

RSN#27, #32, #33 and #34, which were 

Fig. 4 Analysis of the training set parameters. A) Sorted mean loss computed on each of the 648 MLP 

models tested in the grid search. Note that 48 models showing a loss greater 0.8 were not included in the 

figure. B) RSN f1-score of the selected model (minimal loss) across each RSN. Note that each RSN name 

is colored according to whether it is a brain network (black) or an artifact (orange). C) Interaction of the 

5 hyperparameters on the loss; the losses were projected for each pair of hyperparameters. The red dots 

show the parameters of the optimal solution. 
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overrepresented in the PG2 analysis. This 

phenomenon was expected considering that all the 

ICs of G2 were classified and only some were in 

G1. After adding the ICs labeled by MLP on the 

Pu-G1 ICs to the MICCA set, the overall 

percentage of labeled ICs in G1 reached 69%, and 

the detection percentage per RSN (Figure 3D) 

showed the same “overrepresentation” as in the G2 

analysis. 

The balanced group-based voxelwise comparison 

performed between PG2 MLP-labeled and Ps-G1 

MICCA-labeled ICs did not show any significant 

voxelwise difference (p<0.05, FWE corrected) on 

any of the RSNs. Figure 5A shows the overlap 

analysis for 3 networks (RSN#09: default mode 

proper, RSN#11: dorsal attentional and RSN#14: 

language network). For the 45 RSNs, the average 

dice was 0.75 ± 0.01 (mean ± SD, N = 45), and 

when restricted to the 32 RSNs localized in the gray 

matter, it was 0.79 ± 0.08 (mean ± SD, N = 32). 

Note that among the latter RSNs, the lowest dice 

index was 0.50 for RSN#42, which primarily 

encompasses the frontal medial pole. 

3.3. Prediction on MRi-Share (PG3) 

3.3.1. Spatial comparison of the MICCA and 
DNN results 

The DNN classified 55.1% of the MRi-Share PG3 

group ICs in one of the 45 RSNs (Figure 6, top). 

Among the 29 cortical networks of BIL&GIN, 27 

RSNs appeared in the MRi-Share dataset analysis 

with a comparable or higher frequency. The 2 

underrepresented networks were RSN#28 

(localized mainly in the temporal poles) and 

RSN#42 (localized mainly in medial frontal areas). 

For the 27 networks, the balanced group-based 

voxelwise comparison between PG3 MLP-labeled 

and Ps-G1 MICCA-labeled results (see Figure 6, 

bottom) had an average dice index of 67.8 ± 4% 

(mean ± SD, N = 27). Figure 5B shows examples 

of the balanced group-based voxelwise comparison 

performed between PG3 MLP-labeled and Ps-G1 

MICCA-labeled ICs for 3 RSNs (default mode, 

dorsal attentional and language networks). 

Compared with the same analysis with the PG2 

BIL&GIN dataset (see 3.2), we only observed 

small significant differences between the spatial 

support of the RSNs. On all 27 cortical RSNs, the 

proportion of voxels appearing in MICCA but not 

in MRi-Share (p<0.05 FWE corrected) was on 

average 4.6 ± 3.1%, and the proportion of voxels in 

Fig. 5 Balanced analysis of the overlap, based on a 0.05 FWE threshold, of the two dataset MLP 

classifications, i.e., PG2 (BIL&GIN, A) and PG3 (MRi-Share, B), with respect to the MICCA classification 

of Ps-G1 (named Ps-G1-MICCA). Red represents the common voxels, and purple and orange represent 

voxels with nonsignificant and significantly higher Ps-G1-MICCA values, respectively. Green and cyan 

represent voxels with nonsignificant and significantly lower Ps-G1-MICCA values, respectively. No 

significant difference was observed in the PG2-MLP vs Ps-G1-MICCA analysis. Note that only the left 

cerebral hemisphere is shown. 
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MRi-Share but not MICCA was 2.4 ± 2.6%. Those 

numbers defined on average an overlap percentage 

of 93 ± 4%. Among the subcortical (n=2) and 

temporal medial (n=3) RSNs, only RSN#25, 

encompassing the thalamus, appeared in MRi-

Share with the same frequency as in MICCA. 

Regarding the other 11 networks, RSN#30, 

covering the cerebellum, appeared with a higher 

frequency in MRi-Share, while 9 networks, labeled 

as artifacts in BILGIN, exhibited a much lower 

frequency with a dice index below 50%, or were 

absent in MRi-Share. 

3.3.2. MRi-Share RSN atlas 

By using the MRi-Share PG3 MLP classification, 

a brain atlas (Figure 7) was built in the same 

manner as the original MICCA atlas (Figure 2). 

The atlas was built from the 27 cortical RSNs 

(Figure 7), with the addition of one RSN 

encompassing the thalami and one the cerebellum. 

Fig. 6 A) For each RSN, the % of labeled ICs per subject for MICCA (blue) and I-SHARE (red). B) Dice 

index of the overlap analysis of MICCA and MRi-Share based on the SPM balanced analysis results. The 

RSNs are ordered as in Figure 2 for the cortical networks: default mode (DMN, 4 RSNs), symmetric fronto-

parieto-temporal (sFPT, 4 RSNs), language and attention (L&A, 5 RSNs), frontal (FRON, 5 RSNs), visual-

auditory (V&A, 5 RSNs), and sensorimotor (SM, 5 RSNs). The other networks are in subcortical and medial 

temporal areas (SC&MT, 5 RSNs), in the cerebellum (Cere., 2 RSNs), in white matter (White, 1 RSN), or 

are susceptibility artifacts (Susc., 2 RSNs), draining vein (Vein., 4 RSNs) and scanner-related artifacts 

(Art., 2 RSNs). Note that each RSN name under the histograms was colored according to whether it was 

identified as a brain network (black) or an artifact (orange). 
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Note that the underrepresented RSNs (see 3.3.1.) 

were not considered because they were present in 

too few participants. Four percent of gray-matter 

voxels remained unlabeled; those voxels were 

mainly found at the lower part of the brain in areas 

exhibiting susceptibility artifacts. The main 

difference between the original MICCA and the 

MRi-Share-derived MLP atlas was first in the 

RSN#28 localized in the temporal poles. This 

network appeared in very few subjects in the MRi-

Share dataset, and the temporal pole regions were 

affected to RSN#26 and RSN#23 in the left and 

right hemispheres, respectively. Similarly, the 

frontal-medial-temporal region of RSN#42 was 

taken over by another of the frontal networks 

(FRON), namely, RSN#38. The other difference in 

the symmetric fronto-parieto-temporal (sFPT) 

networks was the complete segregation between 

the left and right homotopic networks, while the 

temporal regions appeared on the contralateral 

hemisphere in BIL&GIN.  

3.3.3. Default-mode network 
subpartitioning 

With 1,537 datasets showing the 4 DMN 

subnetworks (RSN#2, #8, #9, #15), G3 allowed us 

to accurately explore the overlaps between DMN 

subnetworks. The results showed a remarkably 

similar mapping between brain hemispheres 

(Figure 8) in two clusters, each showing all 4 

RSNs: one centered on the precuneus, as expected, 

and another centered on the lateral parietal regions. 

The different networks were generally well defined 

with little overlap (Table 2) as ~82% of the voxels 

belonged to only one network. While overlaps of 3 

(less than 1%) or 4 networks (0%) were minimal or 

null, overlaps of 2 networks (≅18%) were of 2 

types. First, there were small bands of overlap at 

the border between 2 regions. These overlaps might 

have been created by the conjunction of spatial 

normalization and the spatial smoothing of the ICs 

(measured at FWHM = 6.4 mm in each orthogonal 

Fig. 7 Twenty-seven cortical networks of the MRi-Share MICCA atlas. Each caret rendering set shows 4, 

5 or 6 RSNs aggregated into 6 partitions: DMN: default mode, sFPT: symmetric fronto-parieto-temporal, 

L&A: language and attentional, FRON: frontal, V&A: visual and auditory and SM: sensorimotor. For 

each partition and hemisphere, the most representative display (lateral or medial view) was chosen. 
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direction). The same might have occurred for the 

overlap between RSN#2 and RSN#9 in the left 

hemisphere, although it was less clear in the right 

hemisphere. Second, the overlap of RSN#8 and 

RSN#15 in lateral clusters centered on the left and 

right angular-2 regions (according to the AICHA 

atlas, (Joliot et al. 2015)) seemed to indicate that 

this region belonged to both networks.  

4. Discussion  
 

In this study, we explore the capacity of an artificial 

neural network to perform automatic classification 

of all individual independent components extracted 

by an ICA of resting-state fMRI data.  

4.1. Choice of DNN methodology 

As briefly explained in the section on the methods, 

two additional types of DNN were explored before 

deciding on the MLP model implemented in the 

present study. Both were CNN architectures, 

namely, VGG (Simonyan and Zisserman 2015) and 

ResneXt (Xie et al. 2017), which were updated to 

use 3D convolutions and batch normalization (Ioffe 

and Szegedy 2015). To determine which would be 

the most fitting, a scattershot approach was first 

used for hyperparameter selection on these three 

classical architectures.  

The relatively small size of the dataset (training on 

6,400 images, validation on 1,600 images) was 

more problematic for the CNN networks, which 

overfit quickly in fewer than 5 epochs. Moreover, 

this problem could not be overcome by traditional 

data augmentation methods, such as rotations, flips 

or translations. Indeed, the data here are 

represented as voxel high values in specific areas 

of the image, with all images normalized to the 

same MNI space during the preprocessing step. 

The different metrics used to evaluate the models 

also showed better results for the MLP compared 

with the CNN. For example, a nonoptimized MLP 

(ReLu activation function, 10-3 learning rate, 0.5 

dropout rate, 2 layers and 512 units per layer) 

achieved a lower loss (0.38 vs. 0.52 for ResNeXt), 

a higher accuracy (88% vs. 85%) and a better f1-

score (0.86 vs. 0.82). Those problems might have 

been resolved by fine-tuning the CNN 

hyperparameters; however, the CNN-based models 

took much longer to train than the MLP-based 

ones, and the grid-search approach applied to the 

MLP was not applicable to the CNNs in a sensible 

amount of time. In addition, the accuracy and loss 

results obtained with the first nonoptimized MLP 

were much more promising, which prompted our 

final choice. 

Table 2. Overlap analysis of 4 DMNs in MRi-

Share. From left to right: list of the 15 possible 

combinations (boldface), the absolute voxel 

count and the voxel count of each combination 

in terms of a percentage of the total voxel 

count. Dots indicate overlapping combinations 

without voxels. 
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In comparable classifications of individual-

extracted RSNs, the CNN was used in two studies 

(Chou et al. 2018; Zhao et al. 2018). The reported 

accuracies were 99% for the average of 2 of the 

RSNs (Chou et al. 2018) and 95% for 10 RSNs 

(Zhao et al. 2018). On 45 RSNs, we reached an 

accuracy of 92%; however, when calculating the 

same index on the first 2 and on the first 10 most-

populated classes, we achieved an accuracy of 95% 

and 93%, respectively. In another study, a 

perceptron-based classification in 5 RSNs (Vergun 

et al. 2016) showed a 90% accuracy (95% for us). 

Certain points make comparisons between these 

globally good results difficult. The 3 cited studies 

used manually labeled individual RSNs as the 

“ground truth”, while in our case, an automatic 

clustering method produced the ground truth. 

There is an advantage in the former methodology 

because only individual RSNs with a clear 

classification in one of the chosen RSN classes 

were used in the training and testing phases of the 

concurrent methods. In other words, certain 

classification mistakes likely occurred in our initial 

set of 7,999 individual ICs lowering the measured 

accuracy. In addition, because of the manual 

labeling, the number of classes was necessarily 

restricted and the classification problem was less 

complex than ours. Note that the proxy we used for 

reporting accuracy with a comparable number of 

RSNs (2/5/10) was still calculated on the 

classification of 45 RSN classes. For example, in 

the other studies, the DMN appears as one network, 

while in our cases, it appeared as 4 RSNs that share 

many spatial borders. Overall, we considered that 

our MLP-based method was in the same range of 

accuracy as the CNNs while handling at least 4 

times more classes, and it was also superior to the 

previously tested perceptron.  

In addition to the perceptron strategy, other 

machine-learning approaches have been tested by 

Vergun et al. (Vergun et al. 2016) on a limited 

dataset of 30 healthy individuals, including support 

vector machines (SVM), decision trees and Naive 

Bayes. Among those, the perceptron and SVM 

methods provided the best results (accuracy of 

90%) but were only applied to a small number of 

classes (5). More generally, DNNs are better 

Fig. 8 Overlap analysis of 4 DMN subnetworks identified with the MLP in the MRi-Share dataset. The 

main overlap can be found on the lateral surface RSN #8 and #15 (purple) and on the medial surface 

RSN #2 and #9 (yellow). Note that because of its small size, the overlap among RSN #2, #9, and #15 does 

not appear in the figure. The color legend is split into 2 parts to improve visibility. The white line 

delineates the precuneus. 
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classifiers with large high-dimensionality data sets 

(Heinsfeld et al. 2017; Zhennan Yan et al. 2016).  

4.2. Grid-search-based training  

After selecting the DNN type, a careful choice of 

its hyperparameters was also needed. The grid-

search approach yielded several good options, 

among which the best was chosen (lowest mean 

loss on the validation folds). However, all the 100 

best MLP models (i.e., MLPs with specific sets of 

hyperparameters) showed little difference in their 

mean loss compared with their variability, as 

illustrated by the difference between the maximal 

and minimal loss of each specific fold set (Supp. 

Figure 1). As a result, most of these models could 

probably be used interchangeably. The mean 

accuracy and mean f1-score of each model again 

showed a similar equivalence of the 100 best 

models, but they still indicated slightly better 

results in general for the best-ranked models. 

Overall, this finding demonstrated the high 

stability and accuracy of MLPs.  

While almost all hyperparameters showed a clear 

and unique minimal loss, interestingly, the dropout 

rate systematically showed a local minimum 

between 0.2 and 0.3. Therefore, if speed is 

necessary or processing power is more limited, a 

dropout rate of 0.25 could be used (0.87 f1-score, 

equivalent to the chosen MLP model). 

Unexpectedly, the results thus showed that instead 

of the recommended 0.5 dropout rate (Srivastava et 

al. 2014), in our application, the best options were 

either higher or lower, highlighting the importance 

of the grid search (or equivalent procedure) in 

determining the optimal dropout rate. Additionally, 

the best learning rate and dropout rate were both 

located at extreme ends of the tested values, which 

indicated that even better results could have been 

obtained had the grid search been a little wider. 

However, further increasing the dropout rate or 

reducing the learning rate would lengthen the time 

needed to train the DNN.  

We also tested an alternative hyperparameter 

optimization method, namely, sequential model-

based global optimization (or Bayesian 

optimization) (Bergstra et al. 2011), to determine 

whether the time needed to search for an optimal 

set of hyperparameters could be reduced. This 

random-search approach has recently been gaining 

popularity (Shahriari et al. 2016) and seems to be 

promising. Indeed, the grid search revealed that the 

hyperparameter space was mostly smooth, thus 

reducing the risk of the algorithm falling into a 

local minimum. Additionally, most of the 

hyperparameter space showed good results (more 

than 70% of the tested MLP models had a mean 

validation loss below 0.4), meaning that even if the 

Bayesian algorithm did not find the best set of 

hyperparameters, it should still be adequate for the 

present use. Using this optimization method, the 

optimum value was reached after testing only 120 

models, compared to the 648 required in the 

traditional grid search. This dramatic reduction 

could therefore be used in similar applications in 

the future to increase the size of the searched space 

while reducing the time needed for the search and 

thus further optimize the DNN model used. 

Nonetheless, the grid-search approach was still 

necessary to control the validity of this new 

method. It also revealed the existence of a local 

minimum in the learning-rate space, which might 

be problematic in other projects (but not here) and 

should be kept in mind for future applications. 

4.3. Prediction analyses 

Once the DNN had been defined and refined, the 

first goal was to perform an array of tests to 

confirm its efficiency. These tests demonstrated the 

high f1-score of classification during training, 

equivalent t-SNE projections and quasi-perfect 

overlap mapping between data classified by 

MICCA and data from the same database 

(BIL&GIN) classified by the DNN. Moreover, its 

capacity to generalize from what it learned from 

MICCA-labeled ICs is a strength that becomes 

apparent with PuG1. This result showed that the 

DNN was capable of extracting relevant RSNs 

from the ICs discarded by MICCA, thus showing a 

higher classification performance, although most 

of those newly labeled PuG1 ICs were placed in 

categories that regrouped non-gray-matter areas. 

The only notable exception was RSN#27, which is 

located in the GM but in areas of susceptibility-

induced artifacts. This finding makes it likely to be 

more variable than other RSNs, which leads to a 

lower detection rate with MICCA (because of the 

initial thresholding that excludes ICs with low 

spatial overlaps), while all the ICs were processed 

with the DNN.  
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Our second goal was to test our prediction DNN on 

another database acquired on a different scanner 

with a different MRI sequence and preprocessed by 

a different pipeline. The main differences between 

MRi-Share and BIL&GIN fMRI data acquisition 

are that the former uses a multiband sequence of a 

longer duration with better temporal and spatial 

sampling than the latter. During preprocessing, 

only the MRi-Share data were corrected for spatial 

distortions, and the spatial smoothing was 

ultimately weaker (FWHM of 6.4 mm, compared 

to 8.6 mm in BIL&GIN). Note that because of the 

multiband MRI sequence, the field of view for the 

MRi-Share data extended to the lower part of the 

head and encompassed the whole cerebellum, even 

in participants with very large heads. While the 

resultant classification and mapping were globally 

homogeneous for 27 of the 29 cortical networks in 

both datasets, two networks localized in the 

anterior medial frontal lobes, and the temporal 

poles (discussed below) were scarcely identified in 

MRi-Share. For the former, detection was low in 

BIL&GIN, and we do not have a clear explanation 

for this phenomenon except that the network is 

located in areas that were corrected for spatial 

distortions in MRi-Share but not in BIL&GIN. In 

addition to the abovementioned RSNs localized in 

the temporal pole, differences occurred in the lower 

part of the brain in 3 other RSNs. For those, further 

investigation will be required (see future works). 

On the one hand, the multiband accelerated 

sequence could have trouble reconstructing slices 

in areas affected by susceptibility variations. On 

the other hand, the networks covering both 

temporal poles were also associated with clusters 

in the outer CSF in BIL&GIN, thus making it a 

potential artifactual network (see 4.4 for further 

evidence). In addition to the 8 RSNs classified as 

artifacts, other missing or poorly overlapping 

networks were located inside the Sylvian fissure (2 

RSNs) and the white matter (1 RSN). For the 

former group, this outcome was expected; some 

differences were probably related to the differences 

between the two MRI scanners that differentially 

affect the imaging of the vein and outer-brain 

artifacts located in the CSF. White-matter ICs were 

detected in a greater proportion in BIL&GIN than 

MRi-Share, which might be because the 

preprocessing was upgraded for the latter database 

to better remove signal variation in the white matter 

and ventricular CSF. This improvement in 

preprocessing could also explain why 2 RSNs 

located in the Sylvian fissures were not found. 

Even in BIL&GIN, they were already considered 

suspicious because they were found in a minimal 

number of participants and consisted of clusters 

centered on the intrasylvian CSF, but they were 

reported because of overlapping gray matter. Note 

also that in BIL&GIN, the spatial smoothness was 

higher than in MRi-Share; moreover, the subjects 

were young in both databases and thus did not 

exhibit aging-associated enlargement of the sulci. 

The filtering level difference was also responsible 

for a large proportion of the 5% of voxels observed 

in MICCA-BIL&GIN but not in DNN-MRi-Share, 

which presented voxels that mostly appeared as a 

thin band surrounding the area common to both 

analyses. Voxels found in DNN-MRi-Share but not 

in MICCA-BIL&GIN (3%) were aggregated as a 

small cluster in the lower part of the brain that 

could tentatively be ascribed to an increase in the 

signal-to-noise ratio because of the much shorter 

acquisition repetition time in MRi-Share compared 

with BIL&GIN (850 ms vs. 2000 ms).  

4.4. Atlas creation 

The first application led to the creation of a 

classical atlas, meaning without overlap between 

RSNs, using the 1,811 datasets of the MRi-Share 

database. The MICCA individual ICA-based 

methodology previously applied to the 282 subjects 

of the BIL&GIN database provided a parcellation 

in 45 RSNs, of which 29 were localized mainly in 

the cortical gray matter (Naveau et al. 2012a). In 

MRi-Share, the number of cortical RSNs decreased 

to 27. One of the “missing” network, strictly 

localized in the anterior frontal medial pole, was 

poorly detected in the MICCA labeling and was 

overlapping two other networks. Increasing the 

sampling size of the ICs could have solved this 

issue (see conclusion and perspective). The other 

missing RSN was localized in both the temporal 

poles and in the most frontal CSF in the BIL&GIN 

database. The MRi-Share dataset analysis 

suggested that this network was mainly related to 

susceptibility artifacts. Based on a winner takes all 

approach, the temporal poles were classified in 

MRi-Share as “language and attentional” networks, 

which makes sense since they included areas 

known to belong to the language network (Price 

2012; Vigneau et al. 2006). This unmasking effect 

is a consequence of imposing the unicity for the 
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voxel assignment to an RSN when creating an 

atlas. The unicity is used by all the atlases of RSNs 

(see review by (G. E. Doucet et al. 2019)) because 

it is complex to perform a statistical analysis on 

biomarkers calculated using overlapping networks 

and thus artifactually correlated signals. Compared 

with the literature, we found the 10 most-cited 

RSNs (see review of (M. P. van den Heuvel and 

Hulshoff Pol 2010)). However, due to the higher 

granularity in our study, each of those 

encompassed up to 4 of our RSNs. The DMN RSN 

overlapped 4 RSNs in our study, the primary motor 

RSN covered 4 of our RSNs, the left and right 

parieto-frontal RSNs each covered 2 of our RSNs 

and the 2 visual RSNs overlapped 4 of our RSNs. 

Among the additional networks, we found a 

network matching the location of the dorsal 

attentional network (RSN#11) that was 

surprisingly absent from the review by Van den 

Heuvel et al. (M. P. van den Heuvel and Hulshoff 

Pol 2010). Its hemispheric symmetrical 

localization may be the reason we were able to 

identify this network because other studies would 

split this network into the two fronto-parietal 

networks localized in each hemisphere. We also 

observed that those 10 networks did not cover the 

whole brain gray matter. With other algorithms, 

Yeo et al. (Yeo et al. 2011) and Gordon et al. 

(Gordon et al. 2015) covered most of the brain with 

17 and 16 RSNs, respectively, and in both works, a 

match was found for the dorsal attentional network. 

With 27 identified cortical networks in our 

partition, the number of RSNs was higher than that 

chosen for those other works. However, according 

to Aboud et al. (Abou Elseoud et al. 2011), such 

numbers could be even higher than what they 

hypothesized, namely, an optimal group ICA 

model order of 80 RSNs leading to 45 gray matter 

RSNs. In our case, the number of classes was 

defined automatically but dependent on the number 

of ICs of the individual ICA (average of 50) that 

was computed with the Laplace approximation 

(Minka and Thomas 2000). Thus, this number of 

RSNs could probably be reached by manually 

setting the IC number in the ICA decomposition to 

a higher value. However, according to the tests 

performed by Abou Elseoud et al. (Abou Elseoud 

et al. 2011), it would also increase the risk of false 

positives. Note that one feature of our algorithm is 

that it allows for a subject to show only part of 

those networks because each IC is classified (or 

rejected) independently from the others. This 

behavior is reasonable when classifying individual 

ICA outputs because only part of the variability is 

taken in account in the decomposition (on average 

40% in our case) or 2 or more RSNs can be 

aggregated in one RSN. Because of the 

classification, we can determine the potentially 

missing RSNs; a post hoc analysis could be 

designed to search for the missing RSNs. Of 

course, certain RSNs may not be functional and 

thus will be truly missing, or the spatial support 

may be different from that found in the general 

population.  

To summarize, our algorithm provides the tools to 

study the individual variability of the brain resting-

state organization. Even at the “atlas” level, we 

advocate that the improved robustness of mixing 

two databases is a strong incentive to further 

process other databases (see the future work 

section below). 

4.5. DMN overlap 

Overlap between RSNs has been scarcely studied 

in the literature except in a few studies, such as Yeo 

et al. (Yeo et al. 2014) and van den Heuvel et al. 

(M. P. van den Heuvel and Sporns 2013). 

Nevertheless, the implication of having or not 

having areas belonging to 2 or more networks is 

essential for understanding the resting-state brain 

organization, such as identifying these networks as 

a hub of IC in the graph analysis (Bullmore and 

Sporns 2009). Overlap analyses are strongly 

impacted by the number of RSNs, and in most 

atlases (see (G. E. Doucet et al. 2019) for a review), 

the DMN is not split into subcomponents. 

However, studies have demonstrated that in both 

animals (Margulies et al. 2009) and humans 

(Andrews-Hanna et al. 2010; Yeo et al. 2014), 

different parts of the precuneus belong to different 

networks that support different cognitive functions. 

In the study by Yeo et al. (Yeo et al. 2014), they 

described the DMN as split among 5 subnetworks 

and identified overlaps in the precuneus, the lateral 

temporal cortex, the posterior parietal cortex and 

the medial prefrontal cortex. Compared with their 

analysis, we found 2 overlaps at approximately the 

same location (precuneus and lateral parietal 

cortex); however, we were also able to more 

precisely identify their locations. In fact, they used 

a group analysis, which favors sensitivity over 
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precision, while our individual-based methodology 

favors precision over sensitivity. In addition, their 

DMN definition does not completely match our 

definition. The van den Heuvel et al. study (M. P. 

van den Heuvel and Sporns 2013) uses both 

functional data (for extracting the 8-RSN 

decomposition) and diffusion imaging data (i.e., 

structural anatomy) for the definition of a hub, 

which is described as a region that links two or 

more RSNs. While showing the smoothness of the 

group analysis used to extract the RSNs, the hub of 

the precuneus showed a comparable localization to 

ours; moreover, we both found that the extension 

of the precuneus hub/overlap area was larger in the 

right than the left hemisphere. The lateral posterior 

parietal cortex also showed a greater overlap in the 

right than the left side, consistent with our findings 

and localization in the angular gyri. Consistent with 

Yeo et al. (Yeo et al. 2014), an overlap was also 

described in the medial prefrontal cortex, although 

it was not present in our results. This area was in 

RSN#16 in our study, and it mainly covers the 

anterior cingulate and has been linked by RSN 

intrinsic connectivity analysis to the salience 

networks but not to the DMN (see Figure 2, (G. 

Doucet et al. 2011)), and it does not extend to the 

precuneus. As shown in the supplementary 

material (Supp. Figure 2), its inclusion in the 

overlap analysis showed the same regional overlap 

in the medial frontal pole as that described in other 

studies.  

Overall, in this overlap analysis of the 

subcomponent of the RSN, including the 

precuneus, it appears that using an independent-

component analysis and individual overlap 

computation led to minimally overlapping ICs. In 

fact, while a group analysis showed a large overlap 

area extension, such an overlap was also observed 

in our study because of the spatial smoothing 

performed during data preprocessing to increase 

the signal-to-noise ratio. 

5. Future work and conclusion  

The present work has demonstrated the 

performance and robustness of the MLP for 

individual dataset classification. As such, it opens 

several lines of research that we intend to pursue. 

First, using recent GPUs with more memory, we 

will be able to apply deep learning methods on 

image data having better spatial resolution and thus 

to possibly perform a decomposition with a larger 

number of RSNs. Second, the atlas creation 

methodology will be upgraded to take into account 

the overlap analysis on the full set of RSNs. For 

this purpose, we hope to secure the authorization to 

use the largest available database, the UK-biobank 

(currently over 40K participants). To address the 

issue of networks covering mainly the lower part of 

the brain, which was identified in BIL&GIN but 

not in MRi-Share, we will also process databases 

with conventional functional sequences. We will 

also explore ways to increase the classification 

power, first by including the ICs discarded because 

of the unicity criteria, and then by analyzing the 

fraction of the variance that had been discarded in 

the first step of the independent component 

analysis. In summary, we provide the community 

with a new powerful tool for automatic 

classification of ICs, and although additional 

improvements are still planed, we demonstrate its 

utility in individual-based analyses. 

6. Information Sharing Statement 

The classifier and documentation are provided with 

the licensing Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International. 

Both  BIL&GIN  and  MRi-Share  data  are open  

to collaborations and partnerships and supports 

local, national,  and  international  collaborations  

from  the public  or  private  sector.  For  BIL&GIN  

requests  to access the database should be sent 

through the GIN website 

(https://www.gin.cnrs.fr/en/current-

research/axis2/bilgin-en/). For MRi-Share, 

requests to access the database should be sent at 

contact@i-share.fr. 
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