
SOFTWARE ORIGINAL ARTICLE

Predicting Synaptic Connectivity for Large-Scale Microcircuit
Simulations Using Snudda

J. J. Johannes Hjorth1
& Jeanette Hellgren Kotaleski1,2 & Alexander Kozlov1,2

Accepted: 9 June 2021
The Author(s) 2021

Abstract
Simulation of large-scale networks of neurons is an important approach to understanding and interpreting experimental data from
healthy and diseased brains. Owing to the rapid development of simulation software and the accumulation of quantitative data of
different neuronal types, it is possible to predict both computational and dynamical properties of local microcircuits in a ‘bottom-
up’ manner. Simulated data from these models can be compared with experiments and ‘top-down’ modelling approaches,
successively bridging the scales. Here we describe an open source pipeline, using the software Snudda, for predicting microcir-
cuit connectivity and for setting up simulations using the NEURON simulation environment in a reproducible way. We also
illustrate how to further ‘curate’ data on single neuron morphologies acquired from public databases. This model building
pipeline was used to set up a first version of a full-scale cellular level model of mouse dorsal striatum. Model components from
that work are here used to illustrate the different steps that are needed when modelling subcortical nuclei, such as the basal
ganglia.

Keywords Large-scale simulations . Striatum . Basal ganglia . Brain microcircuits . Synaptic connectivity . Model building
pipeline

Introduction

Neuroscientists are producing data at an ever growing rate, and
sharing the data in public databases. Within the computational
neuroscience field, hypothesis-drivenmodelling has over many
decades generated new ideas that in turn have been tested via
experiments. Recently a data-driven mechanistic modelling ap-
proach has also gained ground thanks to new technologies
allowing the collection of large quantities of useful data. In
particular, large-scale spiking neural network models have
been reconstructed in a data-driven manner and simulated
(Markram et al., 2015; Gratiy et al., 2018; Migliore et al.,
2018; Casali et al., 2019; Einevoll et al., 2019; Kanari et al.,

2019; Billeh et al., 2020; Hjorth et al., 2020). Collecting data
from the brain at multiple biological scales from mouse, non-
human primates, and human, are important goals of several of
the big brain initiatives (Insel et al., 2013; Amunts et al., 2019;
Okano et al., 2015; Grillner et al., 2016), and will further facil-
itate and speed up this modelling process. In parallel, various
brain simulation tools have been optimized to capitalize on
supercomputers (Hepburn et al., 2012; Plesser et al., 2015;
Carnevale & Hines, 2006; Hines et al., 2009; Kumbhar et al.,
2019; Ray & Bhalla, 2008; Gleeson et al., 2010; Jordan et al.,
2020; Akar et al., 2019). In this respect, the principles of FAIR
– Findable, Accessible, Interoperable, Reusable (Wilkinson
et al., 2016) – are important for catalysing this process, both
with regard to the experimental data, the data-driven models as
well as the software used during the modelling and simulation
process. We also believe that to be able to reproduce the actual
model reconstruction process, given the same or new additional
data, is one important aspect of the FAIR criteria when making
the modelling process transparent, repeatable, reusable and
comparable.

Here we present our open source modelling pipeline that
facilitates a reproducible, data-driven reconstruction of cellu-
lar level network/microcircuit models. This pipeline inspired

* J. J. Johannes Hjorth
hjorth@kth.se

1 Science for Life Laboratory, School of Electrical Engineering and
Computer Science, KTH Royal Institute of Technology,
SE-10044 Stockholm, Sweden

2 Department of Neuroscience, Karolinska Institute,
SE-17172 Stockholm, Sweden

https://doi.org/10.1007/s12021-021-09531-w

/ Published online: 19 July 2021

Neuroinformatics (2021) 19:685–701

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-021-09531-w&domain=pdf
http://orcid.org/0000-0002-9302-0750
https://orcid.org/0000-0002-0550-0739
https://orcid.org/0000-0003-3994-0799
mailto:hjorth@kth.se

by the cortical columnmicrocircuit (Markram et al., 2015) has
been applied to predict a full-scale microcircuit model of the
mouse dorsal striatum (Hjorth et al., 2020). Snudda is a soft-
ware to create a detailed network of connected neurons, where
the connectivity is derived from reconstructed neuronal mor-
phologies as well as from more qualitative experimental
knowledge (see also Reimann et al., 2015). ‘Snudda’ means
‘touch’ in Swedish, and it supports the creation of a network
with connectivity based on touch detection. If detailed mor-
phological data exist, the algorithm looks for close appositions
between axons and dendrites, which are locations for putative
synapses. Thus the morphology restricts where connections
can be positioned. Snudda can also define the axon using a
probability cloud if a reconstructed axon is missing. This is an
extension of the method where the connection probability is
proportional to the overlap of two spheres representing axons
and dendrites (Humphries et al., 2009). Based on a set of rules,
as described below, the putative synapses are then pruned to
match the connectivity seen from pairwise experimental re-
cordings, or other types of connectivity experiments. The
same technique can be applied to also place gap junctions.
The generated network can then be simulated using parallel
NEURON (Carnevale & Hines, 2006). Similar approaches
have been used to build the somato-sensory cortex microcir-
cuit (Markram et al., 2015; Colangelo et al., 2019), visual
cortex model (Billeh et al., 2020; Dai et al., 2020), cerebellar
network (Sudhakar et al., 2017; Casali et al., 2019; Wichert
et al., 2020) and hippocampal neurons (Migliore et al., 2018).

The reconstruction of a local microcircuit model (such as
striatum) consists of the following steps: a) experimental data
acquisition of the electrophysiological and morphological prop-
erties of neuronal types, and also characterisation of synapses, b)
optimization of neuron and synapse models, c) placement of the
model neurons in the brain volume to be modelled, d) prediction
of microcircuit connectivity in silico, e) constraining and emulat-
ing inputs for the model, and finally f) simulating the microcir-
cuitry. Our software Snudda is used for steps c)-f). Software
Treem for improving the morphological reconstructions in pre-
paratory step b) is described at the end. The code is publicly
available on GitHub (https://github.com/Hjorthmedh/Snudda/)
and (https://github.com/a1eko/treem). Below we will go
through the different steps and provide code to set up an
example network using Snudda, followed by explanation of the
configuration files, network building and simulation process, as
well as some preprocessing options. The network example
corresponds to a 0.5 mm cube within the mouse striatum. We
will assume that we already have a set of electrophysiologically
optimized neurons and synapses, e.g. using the optimization tool
BluePyOpt (Van Geit et al., 2016). Examples of neuron and
synapse models relevant for striatum are provided on GitHub
(in the snudda/examples folder with scripts and notebooks).

Our approach offers novel contributions in the follow-
ing aspects: (i) we design and present a complete, free and

open source toolchain for building and simulating ana-
tomically constrained biologically detailed neural net-
works including morphology-based neuron touch detec-
tion; (ii) we illustrate the use of this platform on the ex-
ample of the striatal microcircuit, implemented at a very
detailed level and accuracy; (iii) we include all tools and
parameters in the source code repository, enabling other
labs to reproduce as well as reconstruct our striatal model
with new data when it becomes available.

Getting Started with Snudda

Snudda is available for download fromGitHub (https://github.
com/hjorthmedh/Snudda) or from PyPi through pip3 install
snudda. Both source code and the data files necessary to set
up a striatal network are provided, Table 1 provides an
overview of the Snudda directory structure. Snudda is
compatible with Linux, Mac and Windows 10.

In the directory snudda/data/neurons/<region> there are
separate subdirectories for each neuron type (<region> in
our use case is striatum). Each of those directories contains
multiple subdirectories, one for each unique morphology from
that neuron type. The neuron directories include the morphol-
ogy in SWC format, a JSON parameter file with one or more
sets of optimised neuron parameters from BluePyOpt, a JSON
mechanism file specifying which mechanisms are present in
each compartment, and a JSON modulation file which spec-
ifies the neuron modulation of the neuron. The JSON file
format was chosen as it is a standardised and human readable
way to store structured data. The neurons folder also has a
mechanisms folder containing the NEURON model descrip-
tion language .mod files with definitions of ionic mechanisms.

To keep the networks separate, each generated network has
its own directory which contains a network.json file that links
together all the different components that make up the network.
The network.json file can be manually created, or in the case of
the striatal network there is a way to automatically generate a
network.json file of user specified size. The script init.py can be
extended to create networks of other brain structures. A Jupyter
notebook in examples/notebooks shows an alternative example
for how to define brain slices and other structures.

In the main Snudda directory there is an examples folder
with useful scripts and Jupyter notebooks for generating and
running networks. The directory snudda/plotting contains
scripts to plot simulation results as well as visualise the net-
work or parts of it using Blender (https://www.blender.org/).

Use Case: Striatal Microcircuit

First we create an example striatal network, then further down
we go through all configuration details. The network-

686 Neuroinform (2021) 19:685–701

https://github.com/Hjorthmedh/Snudda/
https://github.com/a1eko/treem
https://github.com/hjorthmedh/Snudda
https://github.com/hjorthmedh/Snudda
https://www.blender.org/

config.json can be generated using the snudda init shell com-
mand. In the below example a homogeneous cube with 0.5 mm
side length in the mouse striatum is generated (Fig. 1a). This
corresponds to 10,062 neurons (Fig. 1b) using the estimated
average density of striatal neurons (Rosen & Williams, 2001),
but the number of neurons can be varied depending on compu-
tational resources and research questions. The neurons are tak-
en from the data/neurons/striatum directory, where every neu-
ron type has its own directory, e.g. dspn or ispn. A neuron type
is represented by one or more single-cell models, each in its
own subdirectory as described above. When the network is
initialised, the init.py code will look in the folders of the differ-
ent neuron types and instantiate single-cell models in random
order. No modifications of the neuron models other than rota-
tions are applied at runtime. In order to improve the cell diver-
sity, one should populate the neuron types directories with a
sufficient number of different single-cell models.

The following commands can be used in a terminal win-
dow to generate the example network that we have used for
the figures in this article. We go into more detail in the sec-
tions later in the article. There are additional Jupyter notebook
examples in examples/notebooks and examples/
Neuroinformatics2021. The first step is to create a

configuration file network.json specifying e.g. 10,062 neurons
in a directory called smallSim.

Next we need to place the neurons in a specified volume.
For large simulations the neurons are placed inside a volume
representing the mouse striatum (Fig. 1a), while smaller net-
works use a simple cube (Fig. 1b, c). This is done to preserve
physiological neuron densities in the simulations. The mesh
definition of the striatal volume, or other structures, can be
extracted from databases such as the Allen Brain Atlas of
the mouse brain. The command to place the neurons inside
the volume defined by the mesh is:

The next step is the touch detection (Fig. 2a). Here the
algorithm voxelizes the space, and looks for overlaps (within
a certain predefined distance) between axons and dendrites
from different neurons (Fig. 3a, b) (Hellwig, 2000).

The touch detection will create a putative set of synapses at
all the close appositions between axons and dendrites.

Table 1 Snudda directory
structure snudda Snudda directory, code usually executed from this folder

snudda/data Snudda data folder

snudda/data/mesh 3D meshes for brain structures

snudda/data/neurons/striatum morphology and parameters for striatal neurons in subfolders

snudda/data/neurons/mechanisms NEURON mechanisms folder with mod-files

snudda/data/synapses synapse model parameters

snudda/data/input_config input configuration files

snudda/input_tuning scripts for synaptic input tuning

snudda/plotting scripts for plotting networks, includes subfolder with blender scripts

snudda/utils scripts for small tasks

examples examples on how to run snudda, contains shell scripts and notebooks

tests contains unit and regression tests

tests/networks networks used or created for testing

tests/validation morphologies and mechanisms used for testing

Fig. 1 Example of the volume definition. a Selection of the volume of
interest (red cube, size of the side 500 μm) inside the left part of the dorsal
striatum (blue shells beneath the cerebral cortex). b The 10,062 neuron

somas placed within the red cube. c Illustration of 100 neurons showing
the complexity of axons and dendrites

687Neuroinform (2021) 19:685–701

However, not all close appositions correspond to real synap-
ses, as explained in detail further down. The next step prunes
the set of putative synapses to match the connectivity seen in
experimental pairwise recordings (Fig. 2b, distance dependent
connectivity). The rules used for pruning are qualitatively
similar to what Markram et al. (2015) created for their cortical
network. The parameters for the pruning (Fig. 3c-g) are spec-
ified in the network.json file, explained more in detail below.
The command to perform the pruning is:

Code to generate figures analysing the connectivity (Fig.
2c, d) (distance dependent connection probability, histogram
showing the number of synapses between connected neigh-
bours, histogram showing the number of connected neigh-
bours) is in snudda/analyse_striatum.py, also see examples/
Neuroinformatics2021 for Jupyter notebooks.

Fig. 2 Example of the synaptic pruning procedure when connecting
neurons within the microcircuit. a Putative synapses detected between
iSPN and dSPN shown on top, and remaining synapses after pruning
shown below. b Connection probability as a function of distance after
each of the pruning steps. Distance dependent pruning (DP) filters syn-
apses based on the distance to the soma on the postsynaptic neuron. A

fraction f1 of all synapses is removed. The soft max (SM) synapse filter
does not disconnect any connected pairs as it only reduces the number of
synapses of pairs that are connected by a large number of synapses.
Finally mu2 filters neuron pairs with few synapses, and leads to a large
reduction in connectivity. c Number of synapses between connected
pairs. d Number of connected neighbours each post synaptic neuron has

�Fig. 3 Touch detection and pruning. a Illustration of ball and stick neurons
with soma and dendrites marked in black, axon in red and synapse in green.
b Corresponding two neurons in the hypervoxel representation. The
neurites are traced by taking small steps along Δx, Δy, Δz corresponding
to the direction of the neurite. Where axon and dendrites occupy the same
voxel a putative synapse is detected, here marked by a green dot. The
volume of the soma is also voxelized. c Ball-and-stick neurons arranged
so their synapses are on a grid, with four synapses connecting every neuron
pair. Pruning with parameter f1 = 1, 0.5 and 0.25 keeping 100%, 50% and
25% of all synapses, respectively. Number of synapses retained shown
under each network (including a numeric estimate of mean and standard
deviation, n = 1000). d Combination of f1 and mu2 pruning. Here P = f1 ·
1.0 / (1.0 + exp(−8.0 /mu2 · (nSynapses -mu2))), whereP is the probability
to keep a synapse, nSynapses is the total number of synapses connecting the
neuron pre-post pair. e softMax pruning step. If there are more than softMax
synapses then the probability of keeping synapses between that pair isP = 2
· softMax / ((1 + exp(−(nSynapses - softMax) / 5)) · nSynapses). f Pruning
a3 = 1, 0.5 and 0.25 removing all synapses between a connected pair in 0%,
50% and 75% of the cases, respectively. g Distance dependent pruning of
proximal, medial and distal synapses. Jupyter Notebooks to generate this
f igure are available on Snudda GitHub in the examples/
Neuroinformatics2021 folder)

688 Neuroinform (2021) 19:685–701

689Neuroinform (2021) 19:685–701

Next we need to generate external synaptic input for the
network simulation. Here we specify how much time we want
to generate inputs for. The parameters for the synaptic input
from cortex and thalamus are defined in a separate JSON file:

The last step involves compiling the .mod files, and then
running the simulation.

There are two functions in the plotting directory that allow the
user to plot either the spike raster or the voltage traces, plotting/
plot_spike_raster.py (Fig. 4) and plotting/plot_traces.py, the lat-
ter requires the user to have run the simulation with the –voltOut
parameter to also save the voltage traces. The simulation output
files are stored in the $simName/simulations directory.

Validation Against Anatomical Data

The network building results in Fig. 2 have been validated in
our previous study. Figures 8, S4-S7 in Hjorth et al. (2020)
showed experimental pair-wise connection probability be-
tween neuron types and how the Snudda generated network
matched the data, and matched estimations of number of syn-
apses between connected pairs.

To validate the mean synaptic density in the simulated net-
work, we use the data from the recent studies with genetic
labeling and electron microscopy techniques. Santuy et al.
(2020) estimate a density of 1.41 synapses/μm3 in the striatum,
with 4.4% of the symmetric synapses (range 1.29–20.23%),
which corresponds to 62 million GABAergic synapses per
mm3. In our striatal model 500,000 neurons (6.2mm3) has

469 million intrastriatal GABAergic synapses which corre-
sponds to 75.6 million synapses per mm3, well within the ex-
perimental range (18–285 million). This also agrees with an-
other independent study by Cizeron et al. (2020).

Snudda Configuration Explained

Connectivity Configuration

Running the command snudda init mysimulation –size N gen-
erates the Snudda network configuration file network-
config.json where N is the size of the network to create. The
network-config.json contains the blueprints for the striatal net-
work hierarchically organised into the blocks RandomSeed,
Volume, Units, Connectivity and Neurons. All parameters in
the configuration file are specified in SI units. Below we go
into more detail how Snudda is configured.

The RandomSeed block specifies the random seeds used
for the different steps of the network creation.

The Volume block can contain several named volumes,
such as for example Striatum, Cortex, Thalamus. For each
volume block we define type (e.g. mesh), dMin (minimum
distance between somas in the volume), meshFile (this

Fig. 4 Simulation of 10,062
striatal neurons (4872 dSPN,
4872 iSPN, 133 FS, 113 ChIN, 72
LTS) receiving cortical and
thalamic input. The cortical drive
is increased for half a second at
1.0 s. The histograms above the
spike raster show the total number
of spikes in the respective neuron
populations. (See the striatum_
example* notebooks in the
example/notebooks folder, note
that the size of the network was
changed)

690 Neuroinform (2021) 19:685–701

specifies the Wavefront OBJ file that defines the mesh
enclosing the volume) and meshBinWidth (voxelization size
of the mesh for determining what is inside and outside the
mesh during cell placement). Future versions of Snudda will
allow for density variations within the volume and directional
gradients for the neurons.

FG
An example block for PopulationUnits looks as follows.

Here two units are defined: UnitID 1 with 20% of dSPN and
iSPN neurons in Striatum, and UnitID 2 with 30%.

In the Connectivity block we define the rules guiding
how the different neuron populations are connected togeth-
er. Each connection pair has its own block (e.g.
“iSPN,dSPN”). In the example below this is illustrated with
the iSPN-dSPN pair (indirect-pathway and direct-pathway
striatal projection neurons, respectively), which are con-
nected by GABA synapses.

Each connection has a conductance parameter, which spec-
ifies the mean and standard deviation of the conductance. The
channelParameters gives flexibility by specifying a dictio-
nary with the channel specific parameters, in this case it is
tau1, tau2, failRate (the synapse failure rate) that are passed
directly to the NEURON channel model. Next parameterFile
(JSON file with additional channel parameters) and modFile
(NEURON channel .mod file). The final two blocks pruning
and pruningOther specify the pruning parameters for neurons

691Neuroinform (2021) 19:685–701

within the same population unit, and neurons in different pop-
ulation units. The pruning parameters help shape the connec-
tivity by parameterising the rules that define which putative
connections should be removed, and which ones should be
kept. The probability to keep a synapse is equal to the product
of the individual pruning steps:

Pkeep ¼ f1 � Pmu � PSM � a3 � Pdist

The examples given in Fig. 3c-g are synthetic, their pur-
pose is to illustrate pruning rules. The f1 parameter defines
how large a fraction of the putative synapses should be
kept, a value of 1.0 or None means that this pruning step

692 Neuroinform (2021) 19:685–701

is not used (Fig. 3c). For f1 = 0.5 we would expect on av-
erage 0.5 · 400 = 200 synapses kept, and for f1 = 0.25 we
expect 0.25 · 400 = 100 synapses (c.f. 203 and 104 synapses
randomly selected for f1 = 0.5 and f1 = 0.25, respectively,
in Fig. 3c).

Themu2 defines a sigmoid curve used to decide whether to
keep or remove all synapses between a coupled pair of neu-
rons (Fig. 3d):

Pmu ¼ 1= 1þ exp −8=mu2 n−mu2ð Þð Þð Þ

With mu2 = 3, we have Pmu(n = 4) = 93.5%, Pmu(n =
3) = 50%, Pmu(n = 2) = 6.5%, Pmu(n = 1) = 0.5%. Thus for
f1 = 1 we expect 400 · 0.935 = 374 synapses left. For f1 =

0.5 we have two parts to the pruning, first f1 where half the
synapses are removed, then mu2 which operates on all the
synapses between a coupled pair. We thus look at the 100
possible neuron pairs. The expected number of synapses

Esyn ¼ 100 � ∑4
1Pn � Pmu nð Þ � n, with Pn the probability of a

neuron pair having n synapses after the f1 pruning. We then
get

4 � 0:935 � 4
0

� �þ 3 � 0:5 � 4
1

� �þ 2 � 0:065 � 4
2

� �þ 1 � 0:005 � 4
3

� �� � � 0:54 � 100
¼ 65:9

synapses, and for f1 = 0.25 we expect on average

4 � 0:935 � 4
0

� � � 0:254 þ 3 � 0:5 � 4
1

� � � 0:253 � 0:751 þ 2 � 0:065 4
2

� � � 0:252 � 0:752 þ 1 � 0:005 4
3

� � � 0:251 � 0:753� � � 100 ¼ 11:4

synapses.
The softMax specifies at which value we start applying

a soft cap to the total number of synapses between the
pair:

PSM ¼ 2softMax= 1þ exp − n−softMaxð Þ=5ð Þð Þnð Þ

where PSM is probability to keep a synapse, and n is the
initial number of synapses between the pair of neurons
(Fig. 3e). For n = 4 and softMax = 3 yields PSM = 82.5%
resulting in on average 400 · 0.825 = 330 synapses left.
For softMax = 2 around 239 synapses will remain, and for
softMax = 1 on average 129 synapses are kept.

The a3 parameter specifies which fraction of all con-
nected pairs to keep, e.g. 0.8 means that 20% of all con-
nected pairs will have all their synapses removed (Fig.
3f). Here a3 = 1, 0.5 and 0.25 result in on average 400,
200 and 100 synapses left, correspondingly. The
distPruning defines a distance d dependent function
Pdist: d → [0,1], where d is the distance from the soma
along the dendrites (Fig. 3g). The expected number of
synapses for the distance dependent pruning is given by

Esyn ¼ 20 � ∑20
k¼1P dkð Þ where P(d) is one of the equations

in Fig. 3g. In this example the distances to the soma are
d = 56, 65, 86, 95, 116, 125, 146, 155, 176, 185, 206,
215, 236, 245, 266, 275, 296, 305, 326 and 335 μm (with
20 putative synapses at each distance). The expected
number of synapses in the three cases are thus 107, 134
and 91, respectively.

Continuing our look at the network configuration file
structure, the final block Neurons defines the different

neuron populations. Here each neuron template has its
own block. For each neuron template we specify four
files: morphology (a SWC file defining the soma, axon
and dendrites), parameters (neuron parameters optimised
using BluePyOpt), mechanisms (NEURON mechanisms),
modulation (a JSON file defining the neuromodulation).
The template can be used to define multiple neurons,
the number defined by num. The hoc parameter is op-
tional, and intended to be used in the future when
expo r t i n g t o SONATA fo rma t f o r u s e w i t h
Neurodamus (Williams et al., 2018). The neuronType
can be either neuron or virtualNeuron, the latter can
be used to define axons from other structures providing
input to the striatum. The rotationMode lets us specify
if the neurons should be left unrotated, or rotated in
some manner. The volumeID defines which volume the
neurons belong to.

The $DATA keyword is a shorthand for the snudda/data
folder.

693Neuroinform (2021) 19:685–701

Configuring External Synaptic Input

The input spikes to the network are generated as prescribed in
the input configuration file input.json in JSON format. Below
we will give a simple example of how to set up input, and
there are more examples available on Github in the examples/
notebooks directory.

In this example the dSPNwill each receive 200 inputs, with
1 Hz Poisson random spikes. The configuration also specifies
the conductance and the tmGlut mod file that is used by
NEURON to simulate the input synapses.

To complement the cortical (Ctx) input with thalamic, add a
second input block with parameters inside the dSPN target
block and give it a name e.g. Thalamic. The entire dSPN
population will then receive both cortical and thalamic inputs.

Only one target block is applied to each neuron. When
Snudda generates input for the network it iterates through all
the different neurons in the simulation and picks the most
specific target block that matches that neuron. In the example
below a dSPNwith neuron ID 5 andmorphology dSPN_0will
match all three blocks, but the neuron ID is most specific so
the “5” block will be used. A dSPN_1 morphology neuron
will only match the dSPN block and will use that.

In the dSPN target configuration the start, end and
frequency are specified as vectors. Here the input is 4 Hz at
2–3 s, and 2 Hz at 5–7 s. We can also use population units to
specify heterogenous external input to the target volume, see
examples/notebooks on Github.

To create advanced inputs not supported by Snudda the
custom spike times can be read from a CSV file (with one
spike train per row) by using “generator”: “csv” and
“csvFile”:“path/to/your/csvfile”.

Amore complex example using additional input generation
functionality is given below. The type defines what sort of
input the synapses form, e.g. AMPA_NMDA or GABA. The
number of inputs to each neuron can either be defined directly
using nInputs or indirectly by specifying the density of inputs

694 Neuroinform (2021) 19:685–701

synapseDensity along the dendrites. If both parameters are
given, the code will use the density but scale it so that the
nInputs are created. There is also an optional parameterFile
that can be used to define a set of parameters for the synaptic
channel.

The populationCorrelation describes how correlated the
Poisson input is that is generated by mixing a shared mother
process (each spike is included with probability P = sqrt(C))
and a number of independent child processes (inclusion prob-
ability 1 - P) to get the resulting input trains (Hjorth et al.,
2009).

We also include the functionality of virtual neurons, which
are neurons that are not simulated, instead their activity is
driven by a predefined spike train. This can be used to model,
for example, the activation of reconstructed cortical axons in
the striatum, which after touch detection will drive the neurons
they connect to.

When using synapse density to place excitatory input onto
the neurons, larger neurons will receive more input than small-
er neurons of the same type. However, size does not necessar-
ily correlate with excitability of the neuron, or steepness of the
I-V curve which depends on intrinsic channels. To handle this
variation of excitability Snudda allows the user to scale the
number of synapses reaching a neuron, a process which in a
real network might be regulated by neuronal homeostatic
processes.

What Happens under the Hood?

For each volume modelled the cell placement is restricted to
be inside the mesh specified. The neurons are placed one by
one, with coordinates randomly sampled from a uniform dis-
tribution. If a neuron position is inside the mesh, and there are

no other neurons within a distance dMin from it, the position is
accepted. To avoid an artificial increase of neuron density at
the border, the neuron positions placed outside the mesh are
also tracked. These padding positions are not counted towards
the total, and are discarded afterwards. Orientation of the neu-
rons in the striatum is completely random, but it is possible to
specify other ways to sample the orientation.

For touch detection the space is divided into voxels of 3μm
side length (Fig. 3b). Synapses are only detected when axon
and dendrite are present in the same voxel. The maximal in-
teraction distance is thus decided by the voxel size. To
parallelise the touch detection the voxels are grouped into
hypervoxels, containing 1003 voxels each. The mouse dorsal
striatum occupies about 26.2 mm3 (https://mouse.brain-map.
org/), and contains almost 2 million neurons (Rosen &
Williams, 2001). The first step is to identify which neurons
belong to which hypervoxels. For a large portion of the neu-
rons they will be present in more than one hypervoxel. This
procedure is done in parallel where the worker nodes of the
parallel computer get allocated a subset of the neurons and
based on the vertex coordinates of the neurites calculate which
hypervoxel the neurons are in. The results are gathered, creat-
ing a list of neurons for each hypervoxel. The hypervoxels are
then sorted based on the number of neurons inside, and those
with most neurons are processed first for better load balance.
To perform the touch detection, a line parsing algorithm takes
small steps Δx, Δy, Δz along all line segments of the den-
drites, marking the voxels they intersect. The voxels contained
within the soma are also marked. It then repeats the procedure
for the axon line segments of the morphologies. Voxels that
contain both axons and dendrites are considered to have a
putative synapse if the two neuron types are allowed to have
a connection between them (Fig. 3a, b).

The purpose of the touch detection is to find the potential
locations where neurons can connect to each other based on
the restrictions set by the morphologies. The result of the
above touch detection is a set of putative synapses, which is
larger than the set of actual synapses. In the pruning step, the
set of putative synapses is reduced to match the connectivity
statistics from experimental pairwise recordings.

In experiments it is common to report only the binning size
and the number of connected neuron pairs, and the total num-
ber of pairs. It would be beneficial for circuit modelling if the
distance for each pair was also recorded, we could then extract
distance dependent connectivity profiles and compare those to
what the computer models predict. The pruning is divided into
multiple steps, described above. The touch detection for a
cubic millimeter can be run in a couple of hours on a desktop,
and the whole striatum can be created in a couple of hours on a
supercomputer (Fig. 5). As an example, creating a striatal
network with 10,000 neurons (6.4 million synapses and
1468 gap junctions) on a desktop Intel Xeon W-2133 CPU
@ 3.60GHz with 6 cores and 64GB RAM took: init ~ 1 s,

695Neuroinform (2021) 19:685–701

https://mouse.brain-map.org/
https://mouse.brain-map.org/

place 10 s, detect 8 min and prune 6 min. For 20,000 (50,000)
neurons the corresponding times are ~1 s (~1 s), 16 s (32 s),
15 min (38 min), 12 min (36 min) to detect 14.3 million (39.9
million) synapses and 3462 (9395) gap junctions.

In addition to JSON configuration files, the resulting net-
work data is stored in HDF5 files.

The Challenge of Limited Morphology Data

A big challenge of the biologically detailed anatomically
constrained simulations of the neural microcircuits is avail-
ability of the high quality morphological reconstructions of
the main neuron types, in sufficient numbers and variability.
Open public morphometric repositories, similar to ModelDB
for models present in the world-wide web since 1996
(McDougal et al., 2017), were pioneered in 2006 by G.
Ascoli with NeuroMorpho.Org (Akram et al., 2018; http://
neuromorpho.org/) and continued by other research centers
like Allen Brain Institute (Jones et al., 2009; https://portal.
brain-map.org), Janelia Research Campus (Gerfen et al.,
2018; Economo et al., 2019; http://mouselight.janelia.org/),
eBRAINS Knowledge Graph (https://kg.ebrains.eu/), to
name a few, have become increasingly popular among
computational neuroscientists.

Single-cell morphological reconstructions vary in quality
due to the difference in experimental procedures leading to
varying degrees of physical integrity of the neurites, spatial
resolution, tissue shrinkage, slicing, etc. Need for consistent
quality assurance of morphological reconstructions facilitated
development of morphology processing tools for morphomet-
ric measurements, data processing and error correction, such
as L-measure (Scorcioni et al., 2008; http://cng.gmu.edu:
8080/Lm), TREES toolbox (Cuntz et al., 2010; https://www.
treestoolbox.org/), btmorph (Torben-Nielsen, 2014; https://
bitbucket.org/btorb/btmorph) and NeuroM/NeuroR (Anwar

et al., 2009; https://github.com/BlueBrain/NeuroM; https://
github.com/BlueBrain/NeuroR). Here we will illustrate
typical use cases of manipulating morphological data on the
example of a small Python module treem (https://github.com/
a1eko/treem), developed by the authors in conjunction with
Snudda as a complementary instrument to above mentioned
packages.

Module Treem provides data structure and command-line
tools for accessing and manipulating the digital reconstruc-
tions of the neuron morphology in Stockley-Wheal-Cannon
format, SWC (Cannon et al., 1998). Access to morphological
data from the source code is supported by several Python
classes. Common operations with SWC files are possible from
the user-written scripts or via the command-line tool swc. For
the detailed description of the user interface, see API and CLI
references in the online documentation (https://treem.
readthedocs.io).

A common reconstruction error is so called “z-jump”
(Brown et al., 2011) when a part of the neurite gets shifted
along the z-axis by a fewmicrometers as shown in Fig. 6a (top
panel). These can result from an accumulated error during the
manual reconstruction or as a mistake in automatic procedure.
Possible z-jumps can be eliminated in Treem by the repair
command using one of the four methods, align, split, tilt or
join, as illustrated in Fig. 6a. Choice of the repair method as
well as the assessment of the result should ideally be left to the
author of the reconstructed data; if this is not possible the
preference is given to the method which better preserves cell
symmetry.

Since neuronal tissue can shrink due to dehydration during
histological preparation, correction factors are required before
a reconstructed morphology can enter the simulation pipeline.
Shrinkage correction involves scaling of the entire reconstruc-
tion in (x, y)-plane, expansion in z-direction, as well as de-
creasing contraction of selected neurites, e.g. dendrites, by
stretching along their principal axes (termed “unravelling” in

Fig. 5 Snudda benchmarking on Tegner cluster at PDC/KTH. Each node
has Intel E5-2690v3 Haswell with 2 × 12 cores and 512 GB RAM. a
Runtime on one node (24 CPU cores) for different network sizes. b
Runtime as a function of the number of CPUs when creating a network

with 500,000 neurons, around 469 million synapses and a hundred thou-
sand gap junctions. Place takes very little time compared to the other two
phases and is barely visible at the bottom of the two graphs

696 Neuroinform (2021) 19:685–701

http://neuromorpho.org
http://neuromorpho.org/
http://neuromorpho.org/
https://portal.brain-map.org
https://portal.brain-map.org
http://mouselight.janelia.org/
https://kg.ebrains.eu/
http://cng.gmu.edu:8080/Lm
http://cng.gmu.edu:8080/Lm
https://www.treestoolbox.org/
https://www.treestoolbox.org/
https://bitbucket.org/btorb/btmorph
https://bitbucket.org/btorb/btmorph
https://github.com/BlueBrain/NeuroM;
https://github.com/BlueBrain/NeuroR
https://github.com/BlueBrain/NeuroR
https://github.com/a1eko/treem
https://github.com/a1eko/treem
https://treem.readthedocs.io
https://treem.readthedocs.io

Markram et al., 2015) or length-preserving spatial filtering
(not shown, see online documentation).

Another important omission is that the neurons located close
to the slice surface often have their neurites cut and thus miss-
ing in the digital reconstruction. Cut neurites can be replaced
using the intact branches of the same topological order from the
inner part of the slice, assuming spherical or axial symmetry of
the neuron morphology as shown in Fig. 6b. In Treem this is
achieved with the repair command (see online documentation
for the example commands to reproduce Fig. 6b).

One of the aspects of the large-scale simulations is realistic
variability of the model parameters mimicking the natural

spread of morpho-electric characteristics in live neurons. To
enforce variability in the simulation based on the limited num-
ber of reconstructed neurons, we apply randommanipulations
to the morphological reconstructions. Examples of the length-
preserving modifications implemented in Treem are shown in
Fig. 7a. Methods jitter, twist and rotate do not change the
length of the dendritic branches and thus do not affect electro-
physiological features of the optimized models but help to
recover spatial symmetry of the morphological reconstruc-
tions as shown in Fig. 7b. To distribute excitability of the
single-cell models, digital reconstructions can be scaled ran-
domly in 3D, as was done in the large-scale simulation by

Fig. 6 Repairing digital reconstruction of the neuron morphology. a
Correcting “z-jump” reconstruction errors (top panel). Dots illustrate
reconstructed points, soma is black, dendrites are blue, the orange dot
labels the node at the point of presumed discontinuity. Four correction
methods implemented in Treem (Python module treem) are shown below

(align, split, tilt and join). bRepairing the dendrites cut at the slice border.
Orange dots in a 3D plot show the cut points of the dendrites. Red lines in
2D projections show “repaired” dendrites, i.e. extended neurites using
undamaged reconstructions of the same topological order as the cut
branches

Fig. 7 Adding variability to the morphological reconstructions. a
Examples of modification methods used in Treem (modifications
preserving the total length are shown). b Distribution of the coordinates
of the dendritic terminations of the fast-spiking interneurons at different
stages of morphology processing - original reconstructions (n = 3),

repaired reconstructions (n = 3) and “jittered”, i.e. randomly manipulated
reconstructions, nine variants per each cell (n = 27). Here, only random
twisting of the dendritic branches at the bifurcation points was applied
which proved to be sufficient to restore the symmetry

697Neuroinform (2021) 19:685–701

Hjorth et al. (2020) and illustrated in the online documentation
of Treem (https://treem.readthedocs.io).

Discussion

In this paper we show how to use our open source modelling
pipeline to build microcircuit models. An important goal is
that the model building process should be transparent and
possible to reproduce by other labs, and the model should be
extendable when new data accumulate. The pipeline is devel-
oped for setting up large-scale simulations of subcortical nu-
clei, such as striatum. In our current pipeline, based on the
software Snudda, neurons can be placed in a defined volume,
and then prediction of the location of synapses (as well as gap
junctions) can be made using neuron morphologies and the
specified pruning rules. Also synaptic data for short-term syn-
aptic plasticity or failure rates can be represented. Finally a
simulation using the NEURON simulation environment can
be launched. A challenge when using cellular level data from
public databases is that sometimes the data for the reconstruct-
ed neuronal morphologies only include soma and dendrites,
missing the axon entirely. Therefore Snudda supports the pre-
diction of synapses using different approaches. If the detailed
morphology is available, the reconstructed axons and den-
drites can be used to constrain which neurons are within reach
of one another. If the axon is missing, the user can instead
specify an axonal density which is then used for the synapse
detection. Also our pipeline provides the opportunity to ‘re-
pair’ the dendritic morphologies, and we have illustrated ways
to do this using the software Treem. In addition, Treem can
provide jittering of morphological parameters to increase the
variability in the modelled population of neurons, which is
useful to avoid artefacts when there are too few available
morphologies for each neuron type. The current version of
Snudda does not treat spines separately from the rest of the
dendrites, a future improvement would be to allow the user to
specify requirements to target spines separately, e.g. if spines
are already specified in the reconstruction data.

Models of neocortical microcircuits have been built with
similar approaches (see above), however, not all elements of
their workflow were available or open-source at the time of
Snudda development. We believe that our open source pipe-
line might become useful when building biophysically de-
tailed microcircuit models of other subcortical brain regions,
such as the other basal ganglia nuclei.

When using the current modelling workflow, it is assumed
that one has a collection of quantitatively detailed neuron
models for each neuron type to be used in the modelled mi-
crocircuit. Such neuron models might come from public data-
bases (see above). But most likely several of the neuron types
in the selected microcircuit to be modelled might have to be
built from scratch. Here the challenges are several as described

above. Data on electrophysiological recordings published
might be incomplete in such a way that only a few selected
traces, as shown in the published manuscripts, exist. Also
transcriptional, electrophysiological and morphological data
might come from different experiments. Ideally, however, it
would be best to have recordings from the neurons that were
morphologically reconstructed, such as in patch-seq technique
(e.g. Fuzik et al., 2016). Although the electrophysiological
properties are well studied, one might lack the knowledge of
which ion conductances are expressed in the neurons.
Fortunately, such data are starting to emerge, and for example,
for striatum transcriptomics data already exist (Muñoz-
Manchado et al., 2018; Ho et al., 2018; Gokce et al., 2016;
Saunders et al., 2018). If one has a good hypothesis of which
channels are expressed, characterisation as well as models are
starting to be collected at resources such as the Channelpedia
(Ranjan et al., 2011; http://channelpedia.net) and Ion Channel
Genealogy (Podlaski et al., 2017; https://icg.neurotheory.ox.
ac.uk/). Although still not trivial, if one has both the
morphology and electrophysiological data of a particular
neuron type, workflows have already been developed for
optimizing neuron models (Van Geit et al., 2016; Migliore
et al., 2018; Masoli et al., 2020).

A natural future goal would, however, be to link microcir-
cuit models built in different labs, e.g. a cortical microcircuit
connected to a striatal microcircuit. Then interoperability be-
tween models as well as model specification, such as
SONATA, would be crucial. We have on our road map for
Snudda to support the SONATA standard (Dai et al., 2020)
and work has already started on it to become interoperable
with the EBRAINS infrastructure (https://ebrains.eu/).

Information Sharing Statement

The p r e s en t ed so f twa r e Snudda (ve r s i on 1 . 1 ;
RRID:SCR_021210) and Treem (version 1.0.0, DOI:https://
doi.org/10.5281/zenodo.4890845) are available on GitHub
and PyPI:

Snudda - https://github.com/Hjorthmedh/Snudda, https://
pypi.org/project/snudda/

Treem - https://github.com/a1eko/Treem, https://pypi.org/
project/Treem/

Acknowledgements The simulations were performed on resources pro-
vided by the Swedish National Infrastructure for Computing at PDC
(Center for Parallel Computing). We acknowledge the use of Fenix
Research Infrastructure resources, which are partially funded from the
European Union’s Horizon 2020 research and innovation programme
through the ICEI project under the grant agreement No. 800858. The
authors wish to thank Sten Grillner, Johanna Frost-Nylén, Robert
Lindroos and Ilaria Carannante for helpful discussions. We also thank
Robin de Schepper, Kadri Pajo, and Wilhelm Thunberg for help with
software compatibility.

698 Neuroinform (2021) 19:685–701

https://treem.readthedocs.io
http://channelpedia.net
https://icg.neurotheory.ox.ac.uk/
https://icg.neurotheory.ox.ac.uk/
https://ebrains.eu/
https://doi.org/10.5281/zenodo.4890845
https://doi.org/10.5281/zenodo.4890845
https://github.com/Hjorthmedh/Snudda
https://pypi.org/project/snudda/
https://pypi.org/project/snudda/
https://github.com/a1eko/treem
https://pypi.org/project/treem/
https://pypi.org/project/treem/

Code Availability (see Information Sharing Statement)

Funding Open access funding provided by Royal Institute of
Technology. Horizon 2020 Framework Programme (785907, HBP
SGA2); Horizon 2020 Framework Programme (945539, HBP SGA3);
Vetenskapsrådet (VR-M-2017-02806, VR-M-2020-01652); Swedish e-
science Research Center (SeRC); KTH Digital Futures.

Data Availability Data used for single-cell neuron models as well as
synaptic connectivity within the example network of the striatal micro-
circuit is available on GitHub (in the snudda/data and examples folders at
https://github.com/hjorthmedh/Snudda).

Declarations

Conflicts of interest/Competing Interests The authors have no relevant
financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akar, N. A. et al. (2019). Arbor — A morphologically-detailed neural
network simulation library for contemporary high-performance
computing architectures. 2019 27th Euromicro International
Conference on Parallel, Distributed and Network-Based
Processing (PDP), Pavia, Italy, 2019, pp. 274–282. https://doi.org/
10.1109/EMPDP.2019.8671560.

Akram, M., Nanda, S., Maraver, P., Armañanzas, R., & Ascoli, G. A.
(2018). An open repository for single-cell reconstructions of the
brain forest. Sci Data, 5, 180006. https://doi.org/10.1038/sdata.
2018.6.

Amunts, K., Knoll, A. C., Lippert, T., Pennartz, C. M. A., Ryvlin, P.,
Destexhe, A., Jirsa, V. K., D’Angelo, E., & Bjaalie, J. G. (2019).
The human brain project-synergy between neuroscience, comput-
ing, informatics, and brain-inspired technologies. PLoS Biology,
17(7), e3000344. https://doi.org/10.1371/journal.pbio.3000344.

Anwar, H., Riachi, I., Schürmann, F., & Markram H. (2009). An ap-
proach to capturing neuron morphological diversity. In
Computat ional neuroscience: Real is t ic model ing for
experimentalists. De Schutter E., editor. (Cambridge: The MIT
Press) 211–232. https://doi.org/10.7551/mitpress/9780262013277.
003.0010.

Berthet, P., Lindahl, M., Tully, P. J., Hellgren-Kotaleski, J., & Lansner,
A. (2016). Functional relevance of different basal ganglia pathways
investigated in a spiking model with reward dependent plasticity.
Frontiers in Neural Circuits., 10, 53. https://doi.org/10.3389/fncir.
2016.00053.

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W.,
Abbasi-Asl, R., Jia, X., Siegle, J. H., Olsen, S. R., Koch, C.,

Mihalas, S., & Arkhipov, A. (2020). Systematic integration of struc-
tural and functional data into multi-scale models of mouse primary
visual cortex. Neuron, 106(3), 388–403.e18. https://doi.org/10.
1016/j.neuron.2020.01.040.

Brown, K. M., Barrionuevo, G., Canty, A. J., De Paola, V., Hirsch, J. A.,
Jefferis, G. S., Lu, J., Snippe, M., Sugihara, I., & Ascoli, G. A.
(2011). The DIADEM data sets: Representative light microscopy
images of neuronal morphology to advance automation of digital
reconstructions.Neuroinformatics, 9(2–3), 143–157. https://doi.org/
10.1007/s12021-010-9095-5.

Cannon, R. C., Turner, D. A., Pyapali, G. K., &Wheal, H. V. (1998). An
on-line archive of reconstructed hippocampal neurons. Journal of
Neuroscience Methods, 84(1–2), 49–54. https://doi.org/10.1016/
s0165-0270(98)00091-0.

Carnevale, T., & Hines, M. (2006). The NEURON book (p. 2006).
Cambridge Universi ty Press. ht tps: / /doi .org/10.1017/
CBO9780511541612.

Casali, S., Marenzi, E., Medini, C., Casellato, C., & D’Angelo, E. (2019).
Reconstruction and simulation of a scaffold model of the cerebellar
network. Frontiers in Neuroinformatics, 13, 37. https://doi.org/10.
3389/fninf.2019.00037.

Cizeron, M., Qiu, Z., Koniaris, B., Gokhale, R., Komiyama, N. H.,
Fransén, E., & Grant, S. G. N. (2020). A brainwide atlas of synapses
across the mouse life span. Science., 369(6501), 270–275. https://
doi.org/10.1126/science.aba3163.

Colangelo, C., Shichkova, P., Keller, D., Markram, H., & Ramaswamy,
S. (2019). Cellular, synaptic and network effects of acetylcholine in
the neocortex. Frontiers in Neural Circuits, 13, 24. https://doi.org/
10.3389/fncir.2019.00024.

Cuntz, H., Forstner, F., Borst, A., &Häusser, M. (2010). One rule to grow
them all: A general theory of neuronal branching and its practical
application. PLoS Computational Biology, 6(8), e1000877. https://
doi.org/10.1371/journal.pcbi.1000877.

Dai, K., Hernando, J., Billeh, Y. N., Gratiy, S. L., Planas, J., Davison, A.
P., Dura-Bernal, S., Gleeson, P., Devresse, A., Dichter, B. K.,
Gevaert, M., King, J. G., van Geit, W. A. H., Povolotsky, A. V.,
Muller, E., Courcol, J. D., & Arkhipov, A. (2020). The SONATA
data format for efficient description of large-scale network models.
PLoS Computational Biology, 16(2), e1007696. https://doi.org/10.
1371/journal.pcbi.1007696.

Economo,M. N.,Winnubst, J., Bas, E., Ferreira, T. A., & Chandrashekar,
J. (2019). Single-neuron axonal reconstruction: The search for a
wiring diagram of the brain. The Journal of Comparative
Neurology, 527(13), 2190–2199. https://doi.org/10.1002/cne.
24674.

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de
Kamps, M., Migliore, M., Ness, T. V., Plesser, H. E., &
Schürmann, F. (2019). The scientific case for brain simulations.
Neuron., 102(4), 735–744. https://doi.org/10.1016/j.neuron.2019.
03.027.

Fuzik, J., Zeisel, A., Máté, Z., Calvigioni, D., Yanagawa, Y., Szabó, G.,
Linnarsson, S., & Harkany, T. (2016). Integration of electrophysio-
logical recordings with single-cell RNA-seq data identifies neuronal
subtypes. Nature Biotechnology, 34(2), 175–183. https://doi.org/10.
1038/nbt.3443.

Gerfen, C. R., Economo, M. N., & Chandrashekar, J. (2018). Long dis-
tance projections of cortical pyramidal neurons. Journal of
Neuroscience Research, 96(9), 1467–1475. https://doi.org/10.
1002/jnr.23978.

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O.,
Farinella, M., Morse, T. M., Davison, A. P., Ray, S., Bhalla, U. S.,
Barnes, S. R., Dimitrova, Y. D., & Silver, R. A. (2010). NeuroML:
A language for describing data driven models of neurons and net-
works with a high degree of biological detail. PLoS Computational
Biology, 6(6), e1000815. https://doi.org/10.1371/journal.pcbi.
1000815.

699Neuroinform (2021) 19:685–701

https://github.com/hjorthmedh/Snudda
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1038/sdata.2018.6
https://doi.org/10.1038/sdata.2018.6
https://doi.org/10.1371/journal.pbio.3000344
https://doi.org/10.7551/mitpress/9780262013277.003.0010
https://doi.org/10.7551/mitpress/9780262013277.003.0010
https://doi.org/10.3389/fncir.2016.00053
https://doi.org/10.3389/fncir.2016.00053
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1007/s12021-010-9095-5
https://doi.org/10.1007/s12021-010-9095-5
https://doi.org/10.1016/s0165-0270(98)00091-0
https://doi.org/10.1016/s0165-0270(98)00091-0
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.1126/science.aba3163
https://doi.org/10.1126/science.aba3163
https://doi.org/10.3389/fncir.2019.00024
https://doi.org/10.3389/fncir.2019.00024
https://doi.org/10.1371/journal.pcbi.1000877
https://doi.org/10.1371/journal.pcbi.1000877
https://doi.org/10.1371/journal.pcbi.1007696
https://doi.org/10.1371/journal.pcbi.1007696
https://doi.org/10.1002/cne.24674
https://doi.org/10.1002/cne.24674
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1038/nbt.3443
https://doi.org/10.1038/nbt.3443
https://doi.org/10.1002/jnr.23978
https://doi.org/10.1002/jnr.23978
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1371/journal.pcbi.1000815

Gokce, O., Stanley, G. M., Treutlein, B., Neff, N. F., Camp, J. G.,
Malenka, R. C., Rothwell, P. E., Fuccillo, M. V., Sudhof, T. C., &
Quake, S. R. (2016). Cellular taxonomy of the mouse striatum as
revealed by single-cell RNA-Seq. Cell Reports, 16(4), 1126–1137.
https://doi.org/10.1016/j.celrep.2016.06.059.

Gratiy, S. L., Billeh, Y. N., Dai, K., Mitelut, C., Feng, D., Gouwens, N.
W., Cain, N., Koch, C., Anastassiou, C. A., & Arkhipov, A. (2018).
BioNet: A Python interface to NEURON for modeling large-scale
networks. PLoS ONE, 13(8), e0201630. https://doi.org/10.1371/
journal.pone.0201630.

Grillner, S., Ip, N., Koch, C., Koroshetz, W., Okano, H., Polachek, M.,
Poo, M. M., & Sejnowski, T. J. (2016). Worldwide initiatives to
advance brain research. Nature Neuroscience, 19(9), 1118–1122.
https://doi.org/10.1038/nn.4371.

Gurney, K., Prescott, T. J., & Redgrave, P. (2001). A computational
model of action selection in the basal ganglia. II Analysis and sim-
ulation of behaviour. Biological Cybernetics, 84(6), 411–423.
https://doi.org/10.1007/PL00007985.

Hellwig, B. (2000). A quantitative analysis of the local connectivity be-
tween pyramidal neurons in layers 2/3 of the rat visual cortex.
Biological Cybernetics, 82(2), 111–121. https://doi.org/10.1007/
pl00007964.

Hepburn, I., Chen, W., Wils, S., & De Schutter, E. (2012). STEPS:
Efficient simulation of stochastic reaction-diffusion models in real-
istic morphologies. BMC Systems Biology, 6, 36. https://doi.org/10.
1186/1752-0509-6-36.

Hines, M. L., Davison, A. P., & Muller, E. (2009). NEURON and
Python. Frontiers in Neuroinformatics, 3, 1. https://doi.org/10.
3389/neuro.11.001.2009.

Hjorth, J., Blackwell, K. T., & Kotaleski, J. H. (2009). Gap junctions
between striatal fast-spiking interneurons regulate spiking activity
and synchronization as a function of cortical activity. The Journal of
Neuroscience, 29(16), 5276–5286. https://doi.org/10.1523/
jneurosci.6031-08.2009.

Hjorth, J. J. J., Kozlov, A., Carannante, I., Frost Nylén, J., Lindroos, R.,
Johansson, Y., Tokarska, A., Dorst, M. C., Suryanarayana, S. M.,
Silberberg, G., Hellgren Kotaleski, J., & Grillner, S. (2020). The
microcircuits of striatum in silico. Proceedings of the National
Academy of Sciences of the United States of America, 117(17),
9554–9565. https://doi.org/10.1073/pnas.2000671117.

Ho, H., Both, M. D., Siniard, A., Sharma, S., Notwell, J. H., Wallace, M.,
Leone, D. P., Nguyen, A., Zhao, E., Lee, H., Zwilling, D.,
Thompson, K. R., Braithwaite, S. P., Huentelman, M., &
Portmann, T. (2018). A guide to single-cell transcriptomics in adult
rodent brain: The medium spiny neuron transcriptome revisited.
Frontiers in Cellular Neuroscience, 12, 159. https://doi.org/10.
3389/fncel.2018.00159.

Humphries, M. D., Wood, R., & Gurney, K. (2009). Dopamine-
modulated dynamic cell assemblies generated by the GABAergic
striatal microcircuit. Neural Networks, 22(8), 1174–1188. https://
doi.org/10.1016/j.neunet.2009.07.018.

Insel, T. R., Landis, S. C., & Collins, F. S. (2013). Research priorities.
The NIH BRAIN initiative. Science., 340(6133), 687–688. https://
doi.org/10.1126/science.1239276.

Jones, A. R., Overly, C. C., & Sunkin, S. M. (2009). The Allen brain
atlas: 5 years and beyond. Nature Reviews. Neuroscience, 10(11),
821–828. https://doi.org/10.1038/nrn2722.

Jordan, J., Helias, M., Diesmann, M., & Kunkel, S. (2020). Efficient
communication in distributed simulations of spiking neuronal net-
works with gap junctions. Frontiers in Neuroinformatics, 14, 12.
https://doi.org/10.3389/fninf.2020.00012.

Kanari, L., Ramaswamy, S., Shi, Y., Morand, S., Meystre, J., Perin, R.,
Abdellah, M., Wang, Y., Hess, K., & Markram, H. (2019).
Objective morphological classification of neocortical pyramidal
cells. Cerebral Cortex, 29(4), 1719–1735. https://doi.org/10.1093/
cercor/bhy339.

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J.,
Delalondre, F., & Schürmann, F. (2019). CoreNEURON : An opti-
mized compute engine for the NEURON simulator. Frontiers in
Neuroinformatics, 13, 63. https://doi.org/10.3389/fninf.2019.
00063.

Lindahl, M., & Hellgren Kotaleski, J. (2017). Untangling basal ganglia
network dynamics and function: role of dopamine depletion and
inhibition investigated in a spiking network model. eNeuro, 3(6),
ENEURO.0156-16.2016. https://doi.org/10.1523/ENEURO.0156-
16.2016.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah,
M., Sanchez, C. A., Ailamaki, A., Alonso-Nanclares, L., Antille, N.,
Arsever, S., Kahou, G. A. A., Berger, T. K., Bilgili, A., Buncic, N.,
Chalimourda, A., Chindemi, G., Courcol, J. D., Delalondre, F.,
Delattre, V., Druckmann, S., Dumusc, R., Dynes, J., Eilemann, S.,
Gal, E., Gevaert, M. E., Ghobril, J. P., Gidon, A., Graham, J. W.,
Gupta, A., Haenel, V., Hay, E., Heinis, T., Hernando, J. B., Hines,
M., Kanari, L., Keller, D., Kenyon, J., Khazen, G., Kim, Y., King, J.
G., Kisvarday, Z., Kumbhar, P., Lasserre, S., le Bé, J. V.,
Magalhães, B. R. C., Merchán-Pérez, A., Meystre, J., Morrice, B.
R., Muller, J., Muñoz-Céspedes, A., Muralidhar, S., Muthurasa, K.,
Nachbaur, D., Newton, T. H., Nolte, M., Ovcharenko, A., Palacios,
J., Pastor, L., Perin, R., Ranjan, R., Riachi, I., Rodríguez, J. R.,
Riquelme, J. L., Rössert, C., Sfyrakis, K., Shi, Y., Shillcock, J. C.,
Silberberg, G., Silva, R., Tauheed, F., Telefont, M., Toledo-
Rodriguez, M., Tränkler, T., van Geit, W., Díaz, J. V., Walker, R.,
Wang, Y., Zaninetta, S. M., DeFelipe, J., Hill, S. L., Segev, I., &
Schürmann, F. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell, 163(2), 456–492. https://doi.org/10.1016/j.cell.
2015.09.029.

Masoli, S., Tognolina, M., Laforenza, U., Moccia, F., & D'Angelo, E.
(2020). Parameter tuning differentiates granule cell subtypes
enriching transmission properties at the cerebellum input stage.
Communications Biology, 3(1), 222. https://doi.org/10.1038/
s42003-020-0953-x.

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R.,
Migliore, M.,Miller, P. L., Shepherd, G.M., & Hines, M. L. (2017).
Twenty years ofModelDB and beyond: Building essential modeling
tools for the future of neuroscience. Journal of Computational
Neuroscience, 42(1), 1–10. https://doi.org/10.1007/s10827-016-
0623-7.

Migliore, R., Lupascu, C. A., Bologna, L. L., Romani, A., Courcol, J.-D.,
Antonel, S., van Geit, W. A. H., Thomson, A. M., Mercer, A.,
Lange, S., Falck, J., Rössert, C. A., Shi, Y., Hagens, O., Pezzoli,
M., Freund, T. F., Kali, S., Muller, E. B., Schürmann, F., Markram,
H., & Migliore, M. (2018). The physiological variability of channel
density in hippocampal CA1 pyramidal cells and interneurons ex-
plored using a unified data-driven modeling workflow. PLoS
Computational Biology, 14(9), e1006423. https://doi.org/10.1371/
journal.pcbi.1006423.

Muñoz-Manchado, A. B., Bengtsson Gonzales, C., Zeisel, A., Munguba,
H., Bekkouche, B., Skene, N. G., Lönnerberg, P., Ryge, J., Harris,
K. D., Linnarsson, S., & Hjerling-Leffler, J. (2018). Diversity of
interneurons in the dorsal striatum revealed by single-cell RNA se-
quencing and PatchSeq. Cell Rep, 24(8), 2179–2190.e7. https://doi.
org/10.1016/j.celrep.2018.07.053.

700 Neuroinform (2021) 19:685–701

https://doi.org/10.1016/j.celrep.2016.06.059
https://doi.org/10.1371/journal.pone.0201630
https://doi.org/10.1371/journal.pone.0201630
https://doi.org/10.1038/nn.4371
https://doi.org/10.1007/PL00007985
https://doi.org/10.1007/pl00007964
https://doi.org/10.1007/pl00007964
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.1523/jneurosci.6031-08.2009
https://doi.org/10.1523/jneurosci.6031-08.2009
https://doi.org/10.1073/pnas.2000671117
https://doi.org/10.3389/fncel.2018.00159
https://doi.org/10.3389/fncel.2018.00159
https://doi.org/10.1016/j.neunet.2009.07.018
https://doi.org/10.1016/j.neunet.2009.07.018
https://doi.org/10.1126/science.1239276
https://doi.org/10.1126/science.1239276
https://doi.org/10.1038/nrn2722
https://doi.org/10.3389/fninf.2020.00012
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1523/ENEURO.0156-16.2016
https://doi.org/10.1523/ENEURO.0156-16.2016
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1038/s42003-020-0953-x
https://doi.org/10.1038/s42003-020-0953-x
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1371/journal.pcbi.1006423
https://doi.org/10.1371/journal.pcbi.1006423
https://doi.org/10.1016/j.celrep.2018.07.053
https://doi.org/10.1016/j.celrep.2018.07.053

Okano, H., Miyawaki, A., & Kasai, K. (2015). Brain/MINDS: Brain-
mapping project in Japan. Philosophical Transactions of the Royal
Society of London. Series B, Biological Sciences, 370(1668),
20140310. https://doi.org/10.1098/rstb.2014.0310.

Plesser, H., Diesmann, M., Gewaltig, M., & Morrison, A. (2015). Nest:
The neural simulation tool. In D. Jaeger & R. Jung (Eds.),
Encyclopedia of computational neuroscience (pp. 1849–1852).
Springer New York.

Podlaski, W. F., Seeholzer, A., Groschner, L. N., Miesenböck, G.,
Ranjan, R., & Vogels, T. P. (2017). Mapping the function of neuro-
nal ion channels in model and experiment. Elife., 6, e22152. https://
doi.org/10.7554/elife.22152.

Ranjan, R., Khazen, G., Gambazzi, L., Ramaswamy, S., Hill, S. L.,
Schürmann, F., & Markram, H. (2011). Channelpedia: An integra-
tive and interactive database for ion channels. Frontiers in
Neuroinformatics, 5, 36. https://doi.org/10.3389/fninf.2011.00036.

Ray, S., & Bhalla, U. S. (2008). PyMOOSE: Interoperable scripting in
Python forMOOSE.Frontiers in Neuroinformatics, 2, 6. https://doi.
org/10.3389/neuro.11.006.2008.

Reimann, M. W., King, J. G., Muller, E. B., Ramaswamy, S., &
Markram, H. (2015). An algorithm to predict the connectome of
neural microcircuits. Frontiers in Computational Neuroscience, 9,
120. https://doi.org/10.3389/fncom.2015.00120.

Rosen, G. D., & Williams, R. W. (2001). Complex trait analysis of the
mouse striatum: Independent QTLs modulate volume and neuron
number. BMC Neuroscience, 2, 5. https://doi.org/10.1186/1471-
2202-2-5.

Santuy, A., Tomás-Roca, L., Rodríguez, J. R., González-Soriano, J., Zhu,
F., Qiu, Z., Grant, S. G. N., DeFelipe, J., & Merchan-Perez, A.
(2020). Estimation of the number of synapses in the hippocampus
and brain-wide by volume electronmicroscopy and genetic labeling.
Scientific Reports, 10, 14014. https://doi.org/10.1038/s41598-020-
70859-5.

Saunders, A., Macosko, E. Z., Wysoker, A., Goldman, M., Krienen, F.
M., de Rivera, H., Bien, E., Baum, M., Bortolin, L., Wang, S.,
Goeva, A., Nemesh, J., Kamitaki, N., Brumbaugh, S., Kulp, D., &
McCarroll, S. A. (2018). Molecular diversity and specializations
among the cells of the adult mouse brain. Cell, 174(4), 1015–
1030.e16. https://doi.org/10.1016/j.cell.2018.07.028.

Scorcioni, R., Polavaram, S., & Ascoli, G. (2008). L-measure: A web-
accessible tool for the analysis, comparison and search of digital
reconstructions of neuronal morphologies. Nature Protocols, 3,
866–876. https://doi.org/10.1038/nprot.2008.51.

Sudhakar, S. K., Hong, S., Raikov, I., Publio, R., Lang, C., Close, T.,
Guo, D., Negrello, M., & De Schutter, E. (2017). Spatiotemporal
network coding of physiological mossy fiber inputs by the cerebellar
granular layer. PLoS Computational Biology, 13, e1005754. https://
doi.org/10.1371/journal.pcbi.1005754.

Torben-Nielsen, B. (2014). An efficient and extendable Python library to
analyze neuronal morphologies. Neuroinformatics, 12(4), 619–622.
https://doi.org/10.1007/s12021-014-9232-7.

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.,
Muller, E. B., Schürmann, F., Segev, I., & Markram, H. (2016).
BluePyOpt: Leveraging open source software and cloud infrastruc-
ture to optimise model parameters in neuroscience. Frontiers in
Neuroinformatics, 10, 17. https://doi.org/10.3389/fninf.2016.
00017.

Wichert, I., Jee, S., De Schutter, E., & Hong, S. (2020). Pycabnn:
Efficient and extensible software to construct an anatomical basis
for a physiologically realistic neural network model. Frontiers in
Neuroinformatics, 14, 31. https://doi.org/10.3389/fninf.2020.
00031.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva
Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark,
T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T.,
Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P.,
Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R.,
Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A.,
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik,
R., Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G.,
Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E.,
Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K.,
Zhao, J., & Mons, B. (2016). The FAIR Guiding Principles for
scientific data management and stewardship [published correction
appears in Sci Data. 2019 Mar 19;6(1):6]. Sci Data, 3, 160018.
https://doi.org/10.1038/sdata.2016.18.

Williams, T. J., Balakrishnan, R., Delalondre, F., Schuermann, F., Muller,
E., &Gewaltig, M. O. (2018). Large-Scale Simulation of Brain
Tissue, Blue Brain Project, EPFL. United States: N. p., 2018.
Web. https://doi.org/10.2172/1483995.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

701Neuroinform (2021) 19:685–701

https://doi.org/10.1098/rstb.2014.0310
https://doi.org/10.7554/elife.22152
https://doi.org/10.7554/elife.22152
https://doi.org/10.3389/fninf.2011.00036
https://doi.org/10.3389/neuro.11.006.2008
https://doi.org/10.3389/neuro.11.006.2008
https://doi.org/10.3389/fncom.2015.00120
https://doi.org/10.1186/1471-2202-2-5
https://doi.org/10.1186/1471-2202-2-5
https://doi.org/10.1038/s41598-020-70859-5
https://doi.org/10.1038/s41598-020-70859-5
https://doi.org/10.1016/j.cell.2018.07.028
https://doi.org/10.1038/nprot.2008.51
https://doi.org/10.1371/journal.pcbi.1005754
https://doi.org/10.1371/journal.pcbi.1005754
https://doi.org/10.1007/s12021-014-9232-7
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.3389/fninf.2020.00031
https://doi.org/10.3389/fninf.2020.00031
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.2172/1483995

	Predicting Synaptic Connectivity for Large-Scale Microcircuit Simulations Using Snudda
	Abstract
	Introduction
	Getting Started with Snudda
	Use Case: Striatal Microcircuit
	Validation Against Anatomical Data
	Snudda Configuration Explained
	Connectivity Configuration

	Configuring External Synaptic Input
	What Happens under the Hood?
	The Challenge of Limited Morphology Data
	Discussion
	Information Sharing Statement
	References

