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A bstract

A stochastic genetic m odel for biological aging is introduced bridging the gap
between the bit—string Penna m odel and the P letcherN euhauser approach. The
phencom enon ofexponentially increasingm ortality fiinction at interm ediate ages and
its deceleration at advanced ages is reproduced for both the evolutionary steady-—
state population and the genetically hom ogeneous individuals.
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1 Introduction

Theproblam ofbiologicalaging hasattracted m uch attention in recent years. Based on the
data of hum an dem ography and experin ents of other living organism s, m any in portant
phenom ena of Iongevity have been found [, 2, 3]. For instance, the G om pertz law was
observed for Intem ediate ages, that is, the m ortality function Increases exponentially
w ith age, whik at old ages the m ortality was found to decelerate or kevel o , and even
decline for som e organisn s lke ies, wom s, and yeast iR, 4, 5].

To reproduce and explain these phenom ena, various m odels of senescence have been
proposed, w ith genetic or nongenetic m echanism s I, 2, 3,4, 71]. Among them , the one
w idely used by physicists is the Penna m odel [}, }], whhere one com puter word is used to
represent the nherited genom e of one Individual and each bit of the word corresoonds to
one age of the individual lifetin e. A bit set to one represents a delterious m utation and
the su ering from an inherited disease from this age on, and the Individualw ill die ifthe
accum ulation of these set bits exceads a threshold.

A though the Penna m odelhasbeen well applied tom any problem s related to biologi-
calaging [, §], there exists an in portant aw in thism odelaspointed out by P ketcher and
N euhauser very recently {3]. That is, the m odel predicts that for a genetically identical
population all individuals have their genetic death at the sam e age, but this is lnconsistent
w ith the experim ental results {4, 2] which also exhibited the exponential G om pertz law
and the deceleration ofthe old age m ortality for the genetically hom ogeneous case. T hus,
a m ore com plicated m odel has been proposed {].
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In thispaperwe develop a sin pler stochasticm odelbridging the gap between the stan—
dard (determm inistic) Penna m odeland the P ketcherN euhauser approach. T he sim ulations
and analytic resuls of this m odel are shown to agree w ith som e features of the biologi-
calaging, eg., the exponential ncrease of the m ortality finction and the deceleration at
advanced ages, and the aw ofthe Penna m odelm entioned above can be avoided.

2 M odel

A s In the standard Penna m odel, here the genom e of each Individual is characterized by a
string (com puter word) of 32 bits, and each bit is expressed as a particular age In the life
of the individual. A bit iisset to 1 if it represents a deleterious m utation, and from this
age ion thisbi will continuously a ect the survival probability of the lndividual. That
is, atagea ( i) the death probability contrdouted by themutated bitiisf @ i), wih
the corresponding survivalprobability 1 £ @ i) . O themw ise, thisbit is st to zero and
hasno e ect on death. Thus our assum ptions are very di erent from an earlier "Fem i"
function in another stochastic Penna m odel J].

T he individual's survival probability G up to age a is the product of the contriutions
from allthe bitsbefore a:

G @;2;zva)= 1 bf@ 1)1 kf@ 2) L:if 1) 1.£%0)); @)

wherelby = 1 0or0 (1= 1;:5a) reoresents the ith bit. W ith the form off @ i), one can
obtain the m ortality function by sinulation or analytical work. In this work we simply
assum e that

f@ = @ i+ 1)C; )

w ih the constant C = 003 and the lim it £ 1:0, which m eans that the contrbution
of death probability from bit i (if st to 1) is assum ed to Increase lnearly wih the
age. The other ormsof £ @ i), such as the exponential and the square root fom s,
have been tried, and we have also sin ulated the other probabilistic Penna m odel w ith
Ferm i finction [g]. A though som e phenom ena for the genetically heterogeneous steady—
state population can be reproduced, they cannot give a good result for the genetically
hom ogeneous populations.

The alive individual will generate B o springs from the m ininum reproduction age
Ry to the maxinum one Ry .y, and the genom e of each 0 soring is the sam e as the
parent one, except for M mutations random 7 occurring at birth. At each tine step t,
aVerhulst factorV = 1 N {©)=N, .x denoting the survival probability of the lndividual
due to the space and food restrictions is Introduced, where N (t) is the current population
size and N .x is the carrying capaciy of the environm ent, usually sst to 10N (0). In the
next section 3 the sinulations based on these rules are presented, while for genetically
dentical individuals, w hich have the sam e genotype random Iy sam pled from the sin ulated
steady-state population, the analytic results can be derived, as shown in section 4.

M oreover, In this paper the m ortality finction @) atage a isde ned as

dhN,

@) = ! InsS @);



where N, denotes the number of alive Individuals with age a, and S @) = N, .1=N, is
the survival rate. To elin lnate the e ect of the Verhulst factor, the nom alized m ortality
fiinction is preferred fl], ie.,

@= nhB@=s0]: 3)

3 Simulations

In our sim ulations, initially the population size N (0) is 107 and allbits of all the strings
are set to zero, ie., free of m utations. O ne tin e step t corresponds to one aging Interval
of the individuals, or reading one bit of all strings. T he reproduction range is set from
Rumn= 6toR,ax = 20 wih the birth rate B = 1, and the results are sin ilar ifusing the
maximum valle ofR,.x = 32.M = lmutation foreach o spring genom e is ntroduced at
birth, and here only the bad m utations are taken Into acoount, that is, the bit random Iy
selected orm utation isalways sst to 1. (T he good m utations have also been considered,
eg. 10% good mutations and 90% bad ones, and sim ilar results are found.)

Fi. 1, shows the evolution of the whole population size N (t) untilt = 10*. Similar
to the standard Penna m odel, the steady-state population is obtained at late tin esteps,
and as a result of evolution and selection, the frequency of deleterious bis (st as 1) for
the Individual of the steady-state population is low at early ages (especially before the
reproduction age) and very high at old ones. This behavior of the frequency (or the bad
mutation rate) is shown in the inset of Fig. 1.

Them ortality finction is calculated using Eq. (3) and averaged over the steady-state
population from tin esteps 5000 to 10000, as shown in Fig. 4. The result is consistent
w ith the experin ental and em pirical cbservations I, 2], that is, at interm ediate ages the
m ortality fiinction Increases exponentially, exhibiting the G om pertz law , and deceleration
occurs for old ages. For com parison, the m ortality sinulated by the standard (deter-
m inistic) Penna m odel is also shown in Fig. -2, w Ith the threshold of the accum ulated
bad mutations T = 3 and the other param eters unchanged. T he exponential G om pertz
law can also be obtained for the standard Penna m odel E], however, no deceleration is
observed exoept for suitable m odi cations summ arized in ifl]; see also P].

4 G enetically identical population

T o study the genetically hom ogeneous population, one can random k7 sam ple an lndividual
(genotype) from the simulated steady-state population, and then "clone" it to create the
whole genetically identical population. A ccording to the fom of these bit—strings, the
m ortality finction can be derived and calculated analytically.

A's in som e experin ents of fruit  ies '], reproduction is prevented during the aging
of genetically hom ogeneous individuals. T hus, for this population of single genotype, we
have

N; =No@ bf(0))= NG @©0);
N, =N;: @ bfd)Q kf@)=N.GI1;2);



N, =N,:;0 bfe 1)1 kf@ 2)) L.fK0)) = N, 1G (1;2; =:57a);

where N ., a= 1;2; 332, is the num ber of ndividuals w ith age a in the population, and
the function G (1;2; ::;;a) isde ned by Eq. E(:J.) . Then the survival rate is easily cbtained:

Na+l

S @)= =G (1;2;u5a+ 1): @)

a
For the m ortality function, the nom alized ormula (3) is used to be consistent w ith the
sim ulations in Sec. 3, and then we have

@) = nG @;2;x5a+ 1)=G 1)1: o)

Di erent genotypes have been selected random ly from the stable population of Sec.i3,
and the corresponding m ortality fiinction of each type is calculated using Eq. §). Some
exam ples are shown in F ig. 3 for linearJog plots, w here part of them cbey the exponential
G om pertz law at the intemm ediate ages, sin ilar to that of the above sinulation (Sec. ::3)
and experin ents {£,'4]. M oreover, all of these curves exhbit the deceleration for old ages.

M oreover, the analytic calculation is also available if the reproduction is allowed as
in other experim ents of genetically identical population, but for the case of no m utation.
T he details are shown In the appendix, and the m ortality function derived is the sam e as
Eq. ).

5 D iscussion and conclision

In thispapera stochastic geneticm odel ofaging is developed basad on the bit-string asex—
ualPenna m odel, and the resuls ofthe exponentially Increasing m ortality at intermm ediate
ages and is decekeration at old ages are cbtained for both the genetically heterogeneous
steady-state population and the hom ogeneous individuals. H owever, the decrease ofm or—
tality for the oldest ages, cbserved in som e experin ents ], cannot be described by the
m echanisn ofthism odel.

A Tthough the properties for Interm ediate and old ages have been well sin ulated In this
m odel, the behavior at early ages cannot be well reproduced, which is also an artifact
of the Penna-type genetic m odels. From Fig. 3 for genetically identical populations, it
can be found that som e populations have unrealistic zero m ortality at som e early ages.
Thus, the e ects for the early ages studied In the experin ents, such as the investigations
of genetic variation for In-m ortality contributed by steady-state population or by new
m utations {1(], cannot be produced in thism odel. M ore e orts should be m ade to avoid
thisdi culy, eg. by consideringdi erent kindsofgenesbefore and afterthe reproduction
age [11]1.
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A ppendix

H ere an exam ple ofthe analytic solution for this stochasticm odel ispresented, forthe case
w here the reproduction is allowed in the aging process of genetically identical population,
but no m utation occurs when generating the genom esofo springs. T hus, the individuals
keep hom ogeneous, characterized by the sam e bitstring bbb, iilp, with L the length of
genom e (L = 32 in above studies).

W hen the system evolves to the steady state, the population size at tin estep t of this
state

N {=No®)+ N, @O+ + 1) (©)

as well as the Verhulst factor V. can be considered as constant. Thus, the num bers of
Individuals w ith ages from 1 to L at this step t are

N, @® =Ny (£ 1VG (1;2;::5L);
Ny, 1®©=Ngy o, 1VG @;2;:=5L  1);

N, ®©=N, ;€ LVG 1;2;:5a);

N;®=No 1LVGQ); (7

where G (1;2; ::55a) is the living probability of ndividual at age a, asde ned in Eqg. E(ﬂ.),
and the individuals of age zero (nhew Iy bom) are generated by the onesw ith reproducble
age (from age R,y to Ry ax), that is,

No@® = BNg,,+Ng ,+1+ =N, ]
= BVNg_, 1€ 1)G @€;2;u5Rnn)+ Ng_, € 1)G (1;2;:5Rnn + 1)
+ ®N, 1€ DG @727 25Rn ax)] @)

w ith the birth rate B .
Consequently, the number of ndividuals wih certain agea 0 < a L) can be
expressed as
N,©=Ny& aVvsc 1)G 1;2) G (@1;2;:3a):

Therefore, if Ny (t) is unchanged for the steady state, allthe N, (), a = 1;:5L, will
also kesp unchanged, ie., independent of tin estep t, and then the survival rate S can be
obtained from Eq. 7), that is,

S@=N_1=N_,=VG (1;2;:x5a+ 1)

and
SO)=N;=N,;=VG (1):

T he Verhulst factor can be elin lnated when calculating the nom alized rate:
S@=S0)=G 1;2;=a+ 1)=G 1);

and from the de nition of Eq. 3) one can obtain the nom alized m ortality finction,
which isthe ssme asEq. {).



T he constant property of the population size N (t) and the number N, (t) for age 0,
aswell as the above analytic result of the m ortality function have been con m ed by the
sim ulation. M oreover, the steady state condition can be derived from Egs. @) and {9}),
which is

BVErnG (1)G 1;2) G @L;2;:wmROL+VG 1;2;,:5Ry;m+ 1)
+V?G (1;2; u25Rnm + 1)G (1;2; 25Rnm + 2) +
+VEne Bong (1527 25Ry i + 1) G (1;2;:wR)]=1; (10)

depending on the param eters B , Ry i, and Ry ax -
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Figure 1: The evolution ofthe whole population size N (t) w ith tin e step t, for the Initial
population N (0) = 10’ and the parameters Ry = 6, Rpax = 20, B = 1,and M = 1.
Only the bad mutations are considered. Inset: the frequency of deleterious bits (set as
1) as a function of age for the ndividuals of the steady-state population (averaged over
tim estep 5000 to 10000).
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Figure 2: Lineardog plot of the m ortality finction for the evolutionary steady-state pop—
ulation, w ith the sam e param eters of F ig. I} and averaged over tin estep 5000 to 10000.
The m ortality of the standard (detem mistic) Penna m odel is also shown (pluses) for
com parison, w ith the sam e param eters as well as the death threshold T = 3.
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Figure 3: The mortality function for the genetically identical populations, wih each
genotype random ly sam pled from the steady-state population of the sim ulation shown in
Figs. 1 and £. The results are calculated by Eqg. ), and shown i the Ineardog plts.



