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Abstract

It is basic question in biology and other fields to identify the char-
acteristic properties that on one hand are shared by structures from a
particular realm, like gene regulation, protein-protein interaction or neu-
ral networks or foodwebs, and that on the other hand distinguish them
from other structures. We introduce and apply a general method, based
on the spectrum of the normalized graph Laplacian, that yields repre-
sentations, the spectral plots, that allow us to find and visualize such
properties systematically. We present such visualizations for a wide range
of biological networks and compare them with those for networks derived
from theoretical schemes. The differences that we find are quite striking
and suggest that the search for universal properties of biological networks
should be complemented by an understanding of more specific features of
biological organization principles at different scales.

1 Introduction

The large volume of typical data sets produced in modern molecular, cell and
neurobiology raises certain systematic questions, or, more precisely, brings new
aspects to some old scientific issues. These, or at least the ones we wish to
address in this note, are:

1. Given a particular biological structure, which of each features or qualities
are universal, that is, shared by other structures within a certain class,
and what is unique and special for the structure at hand?

2. Given a large and complex structure, should we focus on particular and
specific aspects and quantities in detail, or should we try to obtain, at least
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at some coarse level, a simultaneous representation of all its qualitative
features?

Clearly, these questions can be posed, but not answered in such generality. Here,
we look at those issues for a particular type of biological data, namely those
that are presented as graphs or networks. For these, we introduce and discuss
a certain representation, a spectral plot, that allows for analyzing the questions
raised above, in both cases with an emphasis on the second alternative.

2 Graphs and their invariants

Many biological data sets are, or can be, represented as networks, that is, in
terms of the formal structure of a graph. The vertices of a graph stand for
the units in question, like genes, proteins, cells, neurons, and an edge between
vertices expresses some correlation or interaction between the corresponding
units. These edges can be directed, to encode the direction of interaction, for
example via a synaptic connection between neurons, and weighted, to express
the strength of interaction, like a synaptic weight. Here, for simplicity of pre-
sentation, we only consider the simplest type of a graph, the undirected and
unweighted one, although our methods apply and our considerations remain
valid in the general situation. Thus, an edge expresses the presence of some
interaction, connection or direct correlation between two vertices, regardless of
its direction or strength. Clearly, this abstraction may loose many important
details, but we are concerned here with what it preserves. Thus, we shall inves-
tigate the two issues raised in the introduction for, possibly quite large, graphs.

An (unweighted, undirected) graph is given by a set V of vertices i, j, . . . and
a set of edges E which are simply unordered pairs (i, j) of vertices.1 (Usually,
one assumes that there can only be edges between different vertices, that is,
there are no self-loops from a vertex to itself.) Thus, when the pair (i, j) is
in E, then the vertices i and j are connected by an edge, and we call them
neighbors and write this relation as i ∼ j. The degree ni of a vertex i is de-
fined to be the number of its neighbors. Already for rather modest numbers of
vertices, say 20, the number of different graphs is bewilderingly high.2 Thus, it
becomes impractical, if not impossible, to list all different graphs with a given
number of vertices, unless that number is rather small. Also, drawing a graph
with a large number of vertices is not helpful for visual analysis because the
structure will just look convoluted and complicated instead of transparent. On
the other hand, graphs can be qualitatively quite different, and understanding
this is obviously crucial for the analysis of the represented biological structures.

1Some general references for graph theory are [9, 14].
2As always in mathematics, there is a notion of isomorphism: Graphs Γ1 and Γ2 are called

isomorphic when there is a one-to-one map ρ between the vertices of Γ1 and Γ2 that preserves
the neighborhood relationship, that is i ∼ j precisely if ρ(i) ∼ ρ(j). Isomorphic graphs are
considered to be the same because they cannot be distinguished by their properties. In other
words, when we speak about different graphs, we mean non-isomorphic ones.
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For example, the maximal distance (number of edges) between two vertices in
a graph of size N can vary between 1 and N − 1, depending on the particular
graph. When the graph is complete, that is, every vertex is connected with
every other one, any two vertices have the distance 1, whereas for a chain where
vertex i1 is only connected to i2, i2 then also to i3, and so on, the first and
the last vertex have distance N − 1. For most graphs, of course, some interme-
diate value will be realized, and one knows from the theory of random graphs
that for a typical graph this maximal distance is of the order logN . So, this
maximal distance is one graph invariant, but still, rather different graphs can
have the same value of this invariant. Adjoining a long sidechain to a complete
subgraph can produce the same value as an everywhere loosely connected, but
rather homogeneous graph. The question then emerges whether one should look
for other, additional or more comprehensive, invariants, or whether one should
adopt an entirely different strategy for capturing the essential properties of some
given graph.
In fact, there are many graph invariants that each capture certain important
qualitative aspects, and that have been extensively studied in graph theory (see
e.g. [9, 14]). These range from rather simple and obvious ones, like maximal or
average degree of vertices or distance between them, to ones that reflect more
global aspects, like how difficult it is to separate the graph into disjoint com-
ponents (see e.g. [11]), commmunities (e.g.[24]) or classes, or to synchronize
coupled dynamics operating at the individual vertices (e.g. [19]). For the sake
of the subsequent discussion, we call these properties cohesion and coherence,
resp. Recently, the degree distribution of the vertices received much attention.
Here, for each n ∈ N, one lists the number kn vertices i in the graph with
degree ni = n and then looks at the behavior of kn as a function of n. In
random graphs as introduced by Erdös and Rényi (e.g. [10]), that is, graphs
where one starts with a given collection of, say N , vertices and to each pair
i, j of vertices, one assigns an edge with some probability 0 < p < 1, typically
kn ∼ e−σn for some constant σ, that is the degree sequence decays exponen-
tially.3 Barabasi-Albert [8] (and earlier Simon [27]) gave a different random
construction where the probability of a vertex i to receive an edge from some
other vertex j is not uniform and fixed, but rather depends on how many edges
i already has. This was called preferential attachment, that is, the chance of a
vertex to receive an additional edge increases when it already possesses many
edges. For such a graph, the degree sequence behaves like kn ∼ n−κ for some
exponent κ, typically between 2 and 3. Thus, the degree sequence decays like
a power law, and the corresponding type of graph is called scale free. They
also gave empirical evidence of networks that follow such a power law degree
distribution rather than an exponential one. This produced a big fashion, and
in its wake, many empirical studies appeared that demonstrated or claimed such
a power law behavior for large classes of biological or infrastructural networks.
Thus, scalefreeness seemed a more or less universal feature among graphs com-

3In more precise terms, the degrees are Poisson distributed in the limit of an infinite graph
size.
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ing from empirical data in a wide range of domains. While this does provide
some insights (for some systematic discussion, see e.g. [1, 12, 28]), for example
a better understanding of the resilience of such graphs against random deletion
of vertices, it also directly brings us to the two issues raised in the introduction:

1. A feature like scalefreeness that is essentially universal in empirical graphs
by its very nature fails to identify what is specific for graphs coming from
a particular domain. In other words, do there exist systematic structural
differents for example between gene regulation, protein-protein interaction
or neural networks? Or, asked differently, given an empirical graph, with-
out being told where it comes from, can one identify this domain on the
basis of certain unique qualitative features?

2. Graphs with the same degree sequence can be quite different with respect
to other qualitative invariants like the coherence, as emphasized in [2,
3]. Also, depending on the details of the preferential attachment rule
chosen, invariants like the average or maximal distance can vary widely,
as observed in [20]. Thus, is there some way to encode many, or even
essentially all, important graph invariants simultaneously in some compact
manner?

3 The spectrum of a graph

In order to provide a positive answer to these question, we shall now introduce
and consider the spectrum of a (finite) graph Γ with N vertices. For functions
v from the vertices of Γ to R, we define the Laplacian as

∆v(i) := v(i)− 1
ni

∑
j,j∼i

v(j). (1)

(Note that in the graph theoretical literature (e.g.[9, 14, 21, 23]), it is more
customary to put a factor ni in front of the right hand side in the definition of
the Laplacian. The choice of convention adopted here is explained in [17, 18].
It is equivalent to the one in [11].)
The eigenvalue equation for ∆ is

∆u = λu. (2)

A nonzero solution u is called an eigenfunction for the eigenvalue λ. ∆ then has
N eigenvalues, perhaps occurring with multiplicity, that is, not necessarily all
distinct. (The multiplicity of the eigenvalue λ is the number of linearly indepen-
dent solutions of (2).) The eigenvalues of ∆ are real and nonnegative (because
∆ is a symmetric, nonnegative operator, see e.g. [17, 18] for details). The small-
est eigenvalue is λ = 0. Its multiplicity equals the number of components of Γ.
When Γ is connected, that is, has only one component (as we typically assume
because one can simply study the different components as graphs in their own
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right), this eigenvalue is simple. The other eigenvalues are positive, and we
order the eigenvalues as4

λ1 = 0 ≤ λ2 ≤ ... ≤ λN .

For the largest eigenvalue, we have

λN ≤ 2, (3)

with equality iff the graph is bipartite. Bipartiteness means that the graph
consists of two disjoint classes Γ′,Γ′′ with the property that there are no edges
between vertices in the same class. Thus, a single eigenvalue determines the
global property of bipartiteness.
The eigenvalue λ = 1 also plays a special role as it gives some indication of vertex
or motif duplications underlying the evolution of the graph, as systematically
explored in [5, 7]. For a biological discussion, see [25, 29, 32]. For a general
mathematical discussion of the spectrum, see [11, 6] and the references given
there.
What we want to emphasize here is that the spectrum constitutes an essentially
complete set of graph invariants. At least without the qualification “essentially”,
this is not literally true, in the following sense: there are examples of non-
isomorphic graphs with the same spectrum – such graphs are called isospectral
(see [33]). In other words, the spectrum of a graph does not determine the graph
completely (see [15] for a graph reconstruction algorithm from the spectrum).
Such isospectral graphs, while not necessarily isomorphic, are qualitatively very
similar to each other, however. In particular, the spectrum of the graph encodes
all the essential qualitative properties of a graph, like cohesion and coherence
(e.g. [11, 19, 4]). Thus, for practical purposes, this is a good enough set of
graph invariants.
In conclusion, the spectrum of a graph yields a set of invariants that on one hand
captures what is specific about that graph and on the other hand simultaneously
encodes all its important properties.

4 Visualization of a graph through its spectral
plot

What is more, the spectral plot of a graph is much better amenable to visual
inspection than a direct plot of the graph or any other method of representation
that we know of. In other words, with a little experience in graph theory, one
can quickly detect many important features of a graph through a simple look
at its spectral plot. We now display some examples.5

4Our convention here is different from [19, 17, 18, 6].
5All networks are taken as undirected and unweighted. Thus, we suppress some potentially

important aspects of the underlying data, but as our plots will show, we can still detect
distinctive qualitative patterns. In fact, one can also compute the spectrum of directed and
weighted networks, and doing that on our data will reveal further structures, but this is not
explored in the present paper.
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First of all, the properties of the visualization will obviously depend on the dis-
play style, and this will be described first, see Figure 1. That figure is based
on the metabolic network of C.elegans. The first diagram displays the binned
eigenvalues, that is, the range [0, 2] is divided here into 35 disjoint bins, and
the number of eigenvalues that fall within each such bin is displayed, normal-
ized by the total number of eigenvalues (relative frequency plot). The next
figure smoothes this out by using overlapping bins, see figure legend for param-
eter values. The subsequent subfigures instead convolve the eigenvalues with a
Gaussian kernel, that is, we plot the function

f(x) =
∑
λj

1√
2πσ2

exp(−|x− λj |
2

2σ2
)

where the λj are the eigenvalues. Smaller values of the variance σ2 emphasize
the finer details whereas larger values bring out the global pattern more con-
spicuously.
So, this is a network constructed from biological data. We next exhibit spec-
tral plots, henceforth always with the value σ = .03, of networks constructed
by formal schemes that have been suggested to capture important features of
biological networks, namely an Erdös-Rényi random network, a Watts-Strogatz
small-world network and a Barabási-Albert scale-free network (see Figure 2). It
is directly obvious that these spectral plots are very different from the metabolic
network. This suggests to us that any such generic network construction misses
important features and properties of real biological networks. This will now be
made more evident by displaying further examples of biological networks. We
shall also see that biological networks from one given class typically have quite
similarly looking spectral plots, which, however, are easily disitnguishable from
those of networks from a different biological class. First, in Figure 3, we show
some further metabolic networks. Figures 4 and 5 display transcription and
protein-protein interaction networks. These still look somewhat similar to the
metabolic networks, and this may reflect a common underlying principle. By
way of contrast, the neurobiological networks in Figure 6 and the food-webs in
Figure 7 are entirely different – which is not at all surprising as they come from
different biological scales.

In conclusion, we have presented a simple technique for visualizing the important
qualitative aspects of biological networks and for distinguishing networks from
different origins. We expect that our method will further aid formal analysis of
biological network data.
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Figure 1: Spectral plots of metabolic network of Caenorhabditis el-
egans. Size of the network is 1173. Nodes are substrates, en-
zymes and intermediate complexes. Data used in [16]. Data Source:
http://www.nd.edu/∼networks/resources.htm/. [Download date: 22nd Nov.
2004]. (a) Relative frequency plot with number of bins = 35. (b) Relative fre-
quency polygon with overlapping bins with bin width = 0.04 and number of
bins = 99 and bins are taken as [0, .04], [.02, .06], [.04, .08], . . . , [1.96, 2]. (c) with
Gaussian kernel with σ = 0.01. (d) with Gaussian kernel with σ = 0.02. (e)
with Gaussian kernel with σ = 0.03. (f) with Gaussian kernel with σ = 0.05.
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Figure 2: Specral plots of generic networks. (a) Random network by Erdös
and Rényi’s model [13] with p = 0.05. (b) Small-world network by Watts and
Stogatz model [30] (rewiring a regular ring lattice of average degree 4 with
rewiring probability 0.3). (d) Scale-free network by Albert and Barabási model
[8] (m0 = 5 and m = 3). Size of all networks is 1000. All figures are ploted with
100 realization.
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Figure 3: Metabolic networks. Here nodes are substrates, enzymes
and intermediate complexes. Data used in [16]. Data Source:
http://www.nd.edu/∼networks/resources.htm/. [Download date: 22nd Nov.
2004] (a) Pyrococcus furiosus. Network size is 746. (b) Aquifex aeolicus. Net-
work size is 1052. (c) Saccharomyces cerevisiae. Network size is 1511.
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Figure 4: Transcription networks. Data source: Data published by Uri Alon
(http://www.weizmann.ac.il/mcb/UriAlon/ ). [Download date: 13th Oct.
2004]. Data used in [22, 26]. (a) Escherichia coli. Size of the network is 328.
(b) Saccharomyces cerevisiae. Size of the network is 662.
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Figure 5: Protein-protein interaction networks. Data are collected from
http://www.cosin.org/ [download date: 25th September, 2005]. (a) Saccha-
romyces cerevisiae. Size of the network is 3930. (b) Helicobacter pylori. Size of
the network is 710. (c) Caenorhabditis elegans. Size of the network is 314.
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Figure 6: Neuronal connectivity. (a) Caenorhabditis elegans. Size
of the network is 297. Data used in [30, 31]. Data Source:
http://cdg.columbia.edu/cdg/datasets/ [Download date: 18th Dec. 2006]. (b)
Caenorhabditis elegans (animal JSH, L4 male) in the nerve ring and RVG re-
gions. Network size is 190. Data source: Data is assembled by J. G. White,
E. Southgate, J. N. Thomson, S. Brenner [31] and was later revisited by R.
M. Durbin (Ref. http://elegans.swmed.edu/parts/ ). [Download date: 27th
Sep. 2005]. (c) Caenorhabditis elegans (animal N2U, adult hermaphrodite) in
the nerve ring and RVG regions. Network size is 199. Data source: Data is
assembled by J. G. White, E. Southgate, J. N. Thomson, S. Brenner [31] and
was later revisited by R. M. Durbin (Ref. http://elegans.swmed.edu/parts/ ).
[Download date: 27th Sep. 2005].

14

http://cdg.columbia.edu/cdg/datasets/


0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(c)

Figure 7: Food-web. (a) From ”Ythan estuary”. Data downloaded from
http://www.cosin.org/. [Download Date 21st December, 2006]. Size of the net-
work is 135. (b) From ”Florida bay in dry season”. Data downloaded from
http://vlado.fmf.uni-lj.si/pub/networks/data/ (main data resource: Chesa-
peake Biological Laboratory. Web link: http://www.cbl.umces.edu/). [Down-
load Date 21st December, 2006]. Size of the network is 128. (c) From ”Little
rock lake”. Data downloaded from http://www.cosin.org/. [Download Date
21st December, 2006]. Size of the network is 183.
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