Skip to main content
Log in

The need for sperm selection may explain why termite colonies have kings and queens, whereas those of ants, wasps and bees have only queens

  • Short Communication
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Hymenoptera have haploid males, which produce sperm by cloning. Sperm selection theory predicts that because termites have diploid males that produce genetically diverse sperm, they may profit from a high sperm surplus (large K), whereas Hymenoptera (ants, bees and wasps) should produce few sperm per fertilization (low Κ). Male reproductive “kings”, which continuously provide spermatozoa during the whole life of the queen, allow for a large K. Available empirical evidence confirms the existence of a large difference in K between diploid insects, especially Blattodea (Isoptera) (> 1,000), and haplo-diploids such as Hymenoptera (< 10). The available data suggest that sperm selection may be an important evolutionary force for species with diploid, but not haploid males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Baer B (2005) Sexual selection in Apis bees. Apidologie 36:187–200

    Article  Google Scholar 

  • Baer B, Boomsma JJ (2004) Male reproductive investment and queen mating frequency in fungus growing ants. Behav Ecol 15:426–432

    Article  Google Scholar 

  • Baer B, Armitage AO, Boomsma JJ (2006) Sperm storage induces an immunity cost in ants. Nature 44:872–875

    Article  CAS  Google Scholar 

  • Ball MA, Parker GA (2003) Sperm competition games: sperm selection by females. J Theor Biol 224:27–42

    Article  PubMed  CAS  Google Scholar 

  • Boomsma JJ, Baer B, Heinze J (2005) The evolution of male traits in social insects. Annu Rev Entomol 50:395–420

    Article  PubMed  CAS  Google Scholar 

  • Brueckner D (1978) Why are there inbreeding effects in haplodiploid systems? Evolution 32:456–458

    Article  Google Scholar 

  • Cochran DG (1979) A genetic determination of insemination frequency and sperm precedence in the German cockroach. Entomol Exp Appl 26:259–266

    Google Scholar 

  • Cohen J (1999) Sperm galore: why mammals produce large number of spermatozoa. Science Spectra 16:14–20

    Google Scholar 

  • Dagg J 2002 Strategies of Sexual reproduction in Aphids. PhD dissertation, Georg August Universität Göttingen

  • Damiens D, Bressac C, Brillard JP, Chevrier C (2002) Qualitative aspects of sperm stock in males and females from Eupelmus orientalis and Dinarmus basalis (Hymenoptera: Chalcidoidae) as revealed by dual fluorescence. Physiological Entomology 27:97

    Article  Google Scholar 

  • Duchateau MJ, Marien J (1995) Sexual biology of haploid and diploid males in the bumble bee Bombus terrestris. Ins soc 42:255–266

    Article  Google Scholar 

  • Evans JP, Zane L, Francescato S, Pilastro A (2003) Directional postcopulatory sexual selection revealed by artificial insemination. Nature 421:360–363

    Article  PubMed  CAS  Google Scholar 

  • Grasse PP (1982) Termitologia. Foundation Singer-Polinac, Masson

    Google Scholar 

  • Harris WE, Moore AJ, Moore PJ (2007) Variation in sperm size within and between ejaculates in a cockroach. Funct Ecol 21:598–602

    Article  Google Scholar 

  • Hastings IM (1989) Potential germline competition in animals and its evolutionary implications. Genetics 123:191–197

    PubMed  CAS  Google Scholar 

  • Hecht NB (1995) The making of a spermatozoon: a molecular perspective. Dev Genetics 16:95–103

    Article  CAS  Google Scholar 

  • Heinze J, Hölldobler B (1993) Fighting for a harem of queens: Physiology of reproduction in Cardiocondyla male ants. Proc Natl Acad Sci USA 90:8412–8414

    Article  PubMed  CAS  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hurst LD, Peck JR (1996) Recent advances in the understanding of the evolution and maintenance of sex. Trend Ecol Evol 11:46–52

    Article  Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    Article  PubMed  CAS  Google Scholar 

  • Jaffe K (2004) Sex promotes gamete selection. Complexity 9:43–51

    Article  Google Scholar 

  • Jaffe K (2007) What is Science: an interdisciplinary perspective. Equinoccio, Universidad Simón Bolívar, Caracas

    Google Scholar 

  • Jaffe K, Camejo MI, Carrillo TE, Weffer M, Muñoz MG (2006) Evidence favoring sperm selection over sperm competition in the interraction between human seminal plasma and sperm motility in vitro. Arch Androl 52:1–6

    Article  Google Scholar 

  • Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  PubMed  CAS  Google Scholar 

  • Jones J (1968) The sexual life of a mosquito. Sci Amer 218:108–116

    Article  PubMed  CAS  Google Scholar 

  • Keller L, Passera L (1992) Mating system, optimal number of matings and sperm transfer in the Argentine ant Iridomyrmex humilis. Behavioural Ecology and Sociobiology 31

  • Königer N, Königer G, Wongsiri S (1989) Mating and sperm transfer in Apis florea. Apidologie 21:413–418

    Article  Google Scholar 

  • Königer G, Königer N, Tingek S (1994) Mating fights, number of spermatozoa, sperm transfer and degree of polyandry in Apis koschevnikovi (Buttel-Reeper 1906). Apidologie 25:224–238

    Article  Google Scholar 

  • Königer G, Königer N, Tingek S, Kelit A (2000) Mating flights and sperm transfer in the dwarf honeybee Apis andreiformis (Smith 1858). Apidologie 31:301–311

    Article  Google Scholar 

  • Kraus FB, Neuman O, van Praagh J, Moritz RFA (2004) Sperm limitation and the evolution of extreme polyandry in honeybees. Behav Ecol Sociobiol 55:494–501

    Article  Google Scholar 

  • Kronauer DJC, Boomsma JJ (2007) Do army ant queens re-mate later in life?

  • Lee JXQ, Starr CK (2007) Violent combat among Polistes Gigas males (Hymenoptera: Vespidae). Sociobiology 50:337–342

    Google Scholar 

  • Moore PJ, Harris WE, Montrose T, Levin D, Moore AJ (2004) Constraints on evolution and postcopulatory sexual selection: trade-offs among ejaculate characteristics. Evolution 58:1773–1780

    PubMed  Google Scholar 

  • Page RE (1986) Sperm utilization in social insects. Ann Rev Entomol 31:297–320

    Article  Google Scholar 

  • Pitnick S, Miller GT, Reagan J, Holland B (2001) Males’ evolutionary responses to experimental removal of sexual selection. Proc R Soc Lond B 268:1071–1080

    Article  CAS  Google Scholar 

  • Poore AGB, Fagerström T (2001) A general model for selection among modules in haplo-diploid life histories. Oikos 92(2):256–264

    Article  Google Scholar 

  • Raina AK, Park YI, Florane C (2003) Behavior and reproductive biology of the primary reproductives of the Formosa subterranean termite (Isoptera: Rhinotermitidae). Sociobiology 41:37–48

    Google Scholar 

  • Raina A, Murphy C, Florance C, Williams K, Park YI, Ingber B (2007) Structure of speramtheca, sperm dynamics and associated bateria in Formosa subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Amer 100:418–424

    Article  Google Scholar 

  • Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609

    Article  PubMed  CAS  Google Scholar 

  • Röseler PF (1973) Die Anzahl der Spermien im Receptaculum seminis von Hummelköniginnen (Hymenoptera, Apoidea, Bombinae). Apidologie 4:267–274

    Article  Google Scholar 

  • Ruttner-Kollisko A (1983) The significance of mating processes for the genetics and for the formation of resting eggs in the monogonont rotifers. Hydrobiologia 104:181–190

    Article  Google Scholar 

  • Schaus JM, Sakaluk SK (2001) Ejaculate expenditures of male crickets in response to varying risk and intensity of sperm competition: not all species play games. Behavioral Ecology 12:740–745

    Article  Google Scholar 

  • Schröder T (2003) Precopulatory mate guarding and mating behaviour in the rotifer Epiphanes senta. Proc R Soc Lond B 270:1965–1970

    Article  Google Scholar 

  • Simmons LW, Kotiaho JS (2007) Quantitative genetic correlation between trait and preference supports a sexually selected sperm process. PNAS 104:16604–16608

    Article  PubMed  CAS  Google Scholar 

  • Sivinski J (1980) Sexual selection and insect sperm. Florida Entomologist 63:99–111

    Article  Google Scholar 

  • Skalhegg BS, Huang Y, Su T, Idzerda RL, McKnight GS, Burton KA (2002) Mutation of the Calpha subunit of PKA leads to growth retardation and sperm dysfunction. Mol Endocrinol 16:630–639

    Article  PubMed  CAS  Google Scholar 

  • Snell TW, Childress M (1987) Aging and the loss of fertility in male and female Brachionus plicatilits (Rotifera). International Journal of Invertebrate Reproduction and Development 12:103–110

    Google Scholar 

  • Snell TW, Hoff FH (1987) Fertilization and male fertility in the rotifer Brachionus plicatilis. Hysrobiologia 147:329–334

    Article  Google Scholar 

  • Tasei JN, Moinard C, Moreau L, Himpens B, Guyonnaud S (1998) Relationship between aging, mating and sperm production in captive Bombus terrestris. J Apic Res 37:107–113

    Google Scholar 

  • Tschinkel WR (1987) Relationship between ovariole number and spermathecal sperm count in ant queens: A new allometry. Ann Entomol Soc Am 80:208–221

    Google Scholar 

  • Tschinkel WR, Porter SD (1988) Efficiency of sperm use in queens of the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Ann Entomol Soc Am 81:777–781

    Google Scholar 

  • Watanabe M, Hachisuka A (2005) Dynamics of eupyrene and apyrene sperm storage in ovipositing females of the swallowtail butterfly Papilio xuthus (Leopidiptera: Papilionidae). Entomological Science 8:65–71

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Boris Baer, Rodolfo Jaffe, Johan Billen, Juergen Heinze, Jacobus Boomsma, Christopher Star, Laurent Keller, Judith Korb, Ashok Raina, W. Edwin Harris, Trish Moore, Joe Dagg, and an anonymous referee for helpful information and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Jaffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffe, K. The need for sperm selection may explain why termite colonies have kings and queens, whereas those of ants, wasps and bees have only queens. Theory Biosci. 127, 359–363 (2008). https://doi.org/10.1007/s12064-008-0050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-008-0050-z

Keywords

Navigation