Skip to main content

Advertisement

Log in

Mathematical modeling of cancer–immune system, considering the role of antibodies

  • Original Article
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

A mathematical model for the quantitative analysis of cancer–immune interaction, considering the role of antibodies has been proposed in this paper. The model is based on the clinical evidence, which states that antibodies can directly kill cancerous cells (Ivano et al. in J Clin Investig 119(8):2143–2159, 2009). The existence of transcritical bifurcation, which has been proved using Sotomayor theorem, provides strong biological implications. Through numerical simulations, it has been illustrated that under certain therapy (like monoclonal antibody therapy), which is capable of altering the parameters of the system, cancer-free state can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam J, Bellomo N (1997) A survey of models for tumor immune dynamics. Birkhauser, Boston, MA

    Book  Google Scholar 

  • Adams GP, Weiner LM (2005) Monoclonal antibodies therapy of cancer. Nat Biotechnol 23(9):1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Sarkar RR (2008) Delay Induced-model for tumor–immune interaction and control of malignant tumor growth. Bio Syst 91:268–288

    CAS  Google Scholar 

  • Banerjee S, Khajanchi S, Chowdhuri S (2015) Mathematical model to elucidate brain tumor abrogation by immunotherapy with T11 target structure. PLoS ONE 10(5):1–21

    Article  Google Scholar 

  • Banerjee S, Tsygvintsev A (2015) Stability and bifurcations of equilibria in a delayed Kirschner–Panetta model. Appl Math Lett 40:65–71

    Article  Google Scholar 

  • Bodnar M, Foryś U (2000) Periodic dynamics in the model of immune system. Int J Appl Math Comput Sci 10(1):1201–1209

    Google Scholar 

  • Chaplain MAJ, Matzavinos A (2006) Mathematical modeling of spatio-temporal phenomena in tumor immunology. Springer, Berlin

    Google Scholar 

  • de Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretation. J Theor Biol 238:841–862

    Article  PubMed  Google Scholar 

  • Foryś U (2002) Marchuk’s Model of Immune System Dynamics with Application to Tumor Growth. J Theor Med 4(1):85–93

    Article  Google Scholar 

  • Fink M (2006) myAD: fast automatic differentiation code in Matlab. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=15235. Accessed 28 Oct 2016

  • Fink M, Batzel JJ, Tran H (2008) A respiratory system model: parameter estimation and sensitivity analysis. Cardiovasc Eng 8:120–134

    Article  PubMed  Google Scholar 

  • Gabriel JA (2007) The biology of cancer, 2nd edn. Wiley, Boca Raton

    Book  Google Scholar 

  • Ivanov A, Beers SA, Walshe CA, Honeychurch J, Alduaij W, Cox KL, Potter KN, Murray S, Chan CHT, Klymenko T, Erenpreisa J, Martin GJ, Illidge Tim M, Cragg MS (2009) Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J Clin Investig 119(8):2143–2159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khajanchi S, Banerjee S (2014) Stability and bifurcation analysis of delay induced tumor immune interaction model. Appl Math Comput 248:652–671

    Google Scholar 

  • Kirschner D, Panetta JC (1998) Modeling the immunotherapy of tumor–immune interaction. J Math Biol 37(3):235–252

    Article  CAS  PubMed  Google Scholar 

  • Kirschner D, Tsygvintsev A (2009) On global dynamics of a model for tumor immunotherapy. Math Biosci Eng 6(3):579–583

    Article  Google Scholar 

  • Kolev M (2003a) Mathematical modeling of the competition between acquired immunity and cancer. Appl Math Comput Sci 13(3):289–296

    Google Scholar 

  • Kolev M (2003b) Mathematical modeling of the competition between tumors and the immune systems considering the role of antibodies. J Math Comput Model 37:1143–1152

    Article  Google Scholar 

  • Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Non-linear Dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 56(2):295–321

    Article  CAS  PubMed  Google Scholar 

  • Mallet DG, de Pillis LG (2006) A cellular automata model of tumor–immune system interactions. J Theor Biol 239:334–350

    Article  CAS  PubMed  Google Scholar 

  • Nagumo N (1942) Uber die Lage der Integralkurven gewonlicher Differantialgleichungen. Proc Phys Math Soc Jpn 24:551–567

    Google Scholar 

  • Nossal GJV, Makela O (1962) Elaboration of antibodies by single cell. Ann Rev Microbiol 16:53–74

    Article  CAS  Google Scholar 

  • Perelson AS, Mimirani M, Oster GF (1976) Optimal strategies in immunology, B-cell differentiation and proliferation. J Math Biol 3:325–367

    Article  CAS  PubMed  Google Scholar 

  • Perko L (1991) Differential equations and dynamical systems, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Preziosi L (1996) From population dynamics to modeling the competition between tumor and immune system. Math Model 23(6):135–152

    Article  Google Scholar 

  • Rosenberg S, Yang J, Restifo N (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909915

    Google Scholar 

  • Sarkar RR, Banerjee S (2005) Cancer self remission and tumor stability—a stochastic approach. J Math Biosci 196:65–81

    Article  Google Scholar 

  • Schulz WA (2007) Molecular biology of human cancer. Springer, Berlin

    Google Scholar 

  • Szymanska Z (2003) Analysis of immunotherapy models in the context of cancer dynamics. Int J Appl Math Comput Sci 13(3):407–418

    Google Scholar 

  • Tsygvintsev A, Banerjee S (2014) Bounded immune response in immunotherapy described by delay Kirschner–Panetta model. Appl Math Lett 35:90–94

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their comments and useful suggestions to improve the quality of the paper. This study was supported by the Indo-French Centre for Applied Mathematics (IFCAM) (Grant No. MA/IFCAM/13/120) and the Ministry of Human Resource Development (MHRD) (Grant No. MHR02-41-113-429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Banerjee.

Appendix: Sotomayor theorem (Perko 1991)

Appendix: Sotomayor theorem (Perko 1991)

Consider the system of ordinary differential equations

$$\begin{aligned} \frac{{\mathrm{d}}x}{{\mathrm{d}}t}=f(x,\eta ).~~x\in {\mathbb {R}}^n, \end{aligned}$$
(10)

where \(\eta \in {\mathbb {R}}\) is a system parameter. It is assumed that the function f is sufficiently differentiable so that all the derivatives appearing in that theorem are continuous on \({\mathbb {R}}^n\times {\mathbb {R}}\). We denote the matrix of partial derivatives of the components of the vector field f with respect to the components of x by Df and the vector of partial derivatives of the components of f with respect to parameter \(\eta\) denoted by \(f_{\eta }\).

Theorem 5

(Perko 1991) (Sotomayor):Suppose that \(f(x_0,\eta _0)\) and that  \(n\times n\) matrix \(B\equiv Df(x_0,\eta _0)\) has a simple eigenvalue \(\lambda =0\) with eigen vector v and that \(B^T\) has an eigen vector u corresponding to the eigenvalue \(\lambda =0.\) Furthermore, suppose that B has k eigenvalues with negative real parts and \((n-k-1)\) eigenvalues with positive real parts.

  1. (i)

    If the following conditions are satisfied

    $$\begin{aligned} u^Tf_\eta (x_0,\eta _0)\ne 0,~~~~~~~~u^T[D^2f(x_0,\eta _0)(v,v)]\ne 0 \end{aligned}$$
    (11)

    Then there is a smooth curve of equilibrium point of  (10) in \({\mathbb {R}}^n\times {\mathbb {R}}\) passing through  \((x_0,\eta _0)\) and tangent to the hyperplane \({\mathbb {R}}^n\times {\eta _0}\)Depending on the signs of the expressions in  (11), there are no equilibrium points of  (10near  \(x_0\)  when  \(\eta <\eta _0\) (or \(\eta >\eta _0\)) and there are two equilibrium points of  (10near  \(x_0\)  when \(\eta >\eta _0\)  (or \(\eta <\eta _0\)). The two equilibrium points of  (10near \(x_0\) are hyperbolic and have stable manifolds of dimension  k  and  \(k+1\)  , respectively, that is, the system  (10experiences a saddle-node bifurcation at the equilibrium point \(x_0\)  as the parameter \(\eta\) passes through the bifurcation value \(\eta =\eta _0\)The set of  \(C^\infty\) -vector fields satisfying the above conditions is an open, dense subset in the Banach space of all \(C^\infty\)one parameter vector fields with an equilibrium point at \(x_0\) having a simple zero eigenvalue. (ii)If the following conditions are satisfied

    $$\begin{array}{r} u^Tf_\eta (x_0,\eta _0)= 0,\nonumber \\ u^T[Df(x_0,\eta _0)v\ne 0 \nonumber \\ u^T[D^2f(x_0,\eta _0)(v,v)]\ne 0 \end{array}$$
    (12)

    the system (10) experiences a transcritical bifurcation at the equilibrium point \((x_0,\eta _0)\) as the parameter  \(\eta\) varies through the bifurcation value \(\eta =\eta _0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Banerjee, S. Mathematical modeling of cancer–immune system, considering the role of antibodies. Theory Biosci. 137, 67–78 (2018). https://doi.org/10.1007/s12064-018-0261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-018-0261-x

Keywords

Navigation