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Abstract
From fish schools and bird flocks to biofilms and neural networks, collective systems in nature are made up of many mutually 
influencing individuals that interact locally to produce large-scale coordinated behavior. Although coordination is central 
to what it means to behave collectively, measures of large-scale coordination in these systems are ad hoc and system spe-
cific. The lack of a common quantitative scale makes broad cross-system comparisons difficult. Here we identify a system-
independent measure of coordination based on an information-theoretic measure of multivariate dependence and show it 
can be used in practice to give a new view of even classic, well-studied collective systems. Moreover, we use this measure to 
derive a novel method for finding the most coordinated components within a system and demonstrate how this can be used 
in practice to reveal intrasystem organizational structure.

Keywords  Collective behavior · Information theory · Coordination · Group structure

Introduction

In the absence of a quantitative definition, papers on col-
lective behavior (including this one) often begin by listing 
well-known examples of collective systems, like fish schools 
or bird flocks. This gives a useful reference point for the 
reader, but offers little guidance on what to consider “col-
lective” in other systems and behaviors. Even a canonical 
example of collective behavior like a fish school may vary 
in the degree of coordinated movement over time and transi-
tion between periods of ordered movement and disordered 
aggregation (Tunstrøm et al. 2013). Moreover, different parts 
of the same school may be more or less locally coordinated 

or preferentially coordinated with only subsets of the larger 
group (for example, in mixed species assemblies; Ward et al. 
2018; Gil et al. 2018). Schools can also vary widely in size 
across and within species and environments. Millions of sar-
dines moving together may be clearly collective, but a school 
of two is less clear.

Rather than searching for a heuristic distinction between 
“collective” and “not collective,” this paper investigates a 
principled measure of one of its defining characteristics: 
coordination. Typically coordination is measured in a sys-
tem- and behavior-dependent way. For example, the average 
alignment of the headings of all the fish in a group provides 
a useful order parameter that indicates coordinated move-
ment when high, and disordered aggregation when low (see, 
e.g., Couzin et al. 2002; Tunstrøm et al. 2013). While this 
same order parameter can be useful in other systems exhib-
iting collective movement, such as locusts (e.g., Buhl et al. 
2006), it would have less utility for describing the degree 
of coordinated behavior in the nest-site selection process 
of honeybees (Seeley and Visscher 2004), bridge forma-
tion (Reid et al. 2015) and foraging decisions (Greene and 
Gordon 2007) in ants, social conflict policing in Macaques 
(Flack et al. 2006), quorum sensing in bacteria (Papenfort 
and Bassler 2016), or neuronal avalanches in slices of neo-
cortex (Beggs and Plenz 2003). System-specific measures 
are useful in their relevant context, but make comparisons 
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of coordination across systems or even between behaviors 
within the same system difficult to perform quantitatively.

Instead, in this paper we explore a system-independent 
measure of coordinated behavior based on a dimensionless 
information-theoretic measure of dependence. This measure 
quantifies the relative degree of statistical dependence shared 
by a set of elements (individuals) in any system, allowing 
the degree of macroscopic coordination to be quantified and 
compared across systems of any size. We demonstrate the 
practical utility of this measure in a classic model of col-
lective behavior. Moreover, we provide a method that uses 
this measure to find the natural decompositions of a system 
into its most coordinated components. These decompositions 
provide mesoscale descriptions of the system that may offer 
a useful basis on which to make inferences about intermedi-
ate-scale social forces governing large-scale group behavior. 
Finally, we demonstrate the application of this method to 
both simulated and empirically recorded systems to show 
its utility in practice.

Results

Redundancy as a measure of coordination

Let S = {1, 2,… , n} be the indices of a set of random vari-
ables, {Xi}i∈S , which in general may be neither identically 
distributed nor independent. In the context of a fish school 
or a bird flock, this could be the set of all the velocity vectors 
of the individuals in the group; for neurons, this could be the 
state of each neuron (firing or silent). In general, it could be 
any heterogeneous assemblage of the microscopic observa-
bles of a system. If we were asked to faithfully record the 
current state of the whole group, one strategy would be to 
simply write down a description of each element separately. 
One of the foundational results from information theory 
is that no lossless description of a random variable can be 
shorter on average than the tight lower bound given by its 
entropy (Shannon 1948). Thus a description of the system 
given by recording every element separately would require 
on average a minimum of 

∑
i∈S H(Xi) bits, where H(Xi) is 

the entropy of Xi.
Alternatively, another strategy would be to instead write 

down a shared (or ‘joint’) description of all elements at 
once. A joint description can capitalize on the dependencies 
among a set of variables to reduce the overall description 
length needed. For example, to characterize the state of both 
a lamp and the light switch that controls it, one could simply 
record the on/off state of one of the two components. Know-
ing the state of either the switch or the lamp automatically 
tells us the state of the other, under perfect operating condi-
tions. For less than perfect operating conditions, it will be 
necessary to include additional information about the state 

of the other component, but only as frequently as the light 
switch fails to determine the state of the lamp. In either case, 
the joint entropy of the lamp and the light switch together 
determines the lower bound on the lossless joint description 
of the system. Thus the smallest lossless joint description 
requires H({Xi}i∈S) bits on average, where we are guaranteed 
that H({Xi}i∈S) ≤

∑
i∈S H(Xi).

In fact, the only way in which the joint description is as 
costly as the sum of the individual (or ‘marginal’) descrip-
tions is if all Xi ’s are independent. The difference between 
the marginal and joint descriptions, given by

gives us a natural measure of how much we reduce the fun-
damental representation cost by using a joint, rather than a 
marginal, description. Another way to think about Eq. 1 is 
as a measure of redundancy: the amount of information that 
is made redundant (unnecessary) when describing {Xi}i∈S as 
a whole rather than by parts. A similar interpretation can be 
found in Watanabe (1960)’s original investigation of Eq. 1 
as a general measure of multivariate correlation (also called 
“total correlation”).1

Notably, redundancy in the absolute sense given by Eq. 1 
scales in magnitude with the size of the system. For example, 
if we take n identical copies2 of the same random variable, 
X, then we have I({Xi}i∈S) = (n − 1)H(X) . This is a useful 
property for a measure of collective behavior, in the sense 
that just two or three of something behaving similarly is less 
“collective” than hundreds or thousands. On the other hand 
the H(X) term indicates that this also scales with the mag-
nitude of the individual variability in behavior (Fig. 1, left). 
This is orthogonal to what is typically meant by “collective.” 
A school of fish swimming slowly or quickly through the 
coral of a reef ought to be “collective” to the same degree 
provided their movement decisions depend on one another 
to the same degree, rather than depending additionally on 
the range and variability of individual decisions that could 
be made. To reflect this invariance to the magnitude of indi-
vidual variability, it is useful to consider instead the relative 
redundancy (normalized total correlation), i.e.,

where s is then the proportion of non-redundant, or incom-
pressible, information in the set. Using the same example 

(1)I({Xi}i∈S) =
∑
i∈S

H(Xi) − H({Xi}i∈S),

(2)r =
I({Xi}i∈S)∑
i∈S H(Xi)

= 1 −
H({Xi}i∈S)∑

i∈S H(Xi)
= 1 − s,

1  As noted by Watanabe (1960), its significance as a potential meas-
ure of organization stretches back still further, to at least Rothstein 
(1952).
2  Meaning that they share the same outcome.
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as before, for n identical copies of X, r = 1 −
1

n
 , which is 

invariant to H(X) , while still increasing with n (Fig. 1, right).
In general, the upper bound of relative redundancy for a 

fixed n is invariant to rescaling of the individual entropies, 
but sensitive to variability in the set of entropies. To see this, 
note that H({Xi}i∈S) ≥ maxi∈S H(Xi) , s.t.

for any set of Xi (i.e., not necessarily all identical as in the 
prior example). Then rescaling all H(Xi) by a constant factor 
does not change the upper bound, and the upper bound is 
closest to 1 when all H(Xi) are equal. This last property also 
fits the intuitive definition of “collective,” in the sense that 
elements of a system behaving similarly should have similar 
variability in their individual behaviors.

To summarize, relative redundancy has the following 
properties useful for measuring coordination in collective 
behavior: 

1.	 It increases the more the behavior of any one element in 
the system is informative about the behavior of all the 
other elements in the system.

2.	 Its upper bound increases as the number of individual 
elements in the system increases (yet remains on a zero 
to one scale).

3.	 It increases with increasing similarity in the variability 
of individual behavior.

4.	 It is invariant to the total amount of individual variability 
within the system.

As an example, swarms of gnats forming large mat-
ing groups would likely score low on this measure of 

(3)0 ≤
I({Xi}i∈S)∑
i∈S H(Xi)

≤ 1 −
maxi∈S H(Xi)∑

i∈S H(Xi)
< 1,

collectivity (provided the microscopic property being 
measured is individual movement). While gnats within 
the swarm may have similar levels of variability in their 
velocities, their movements are relatively independent. In 
comparison, large groups of fireflies flashing in unison 
(provided the microscopic property measured is the on / 
off state of the firefly’s bioluminescent abdomen) should 
score high on the relative redundancy scale, regardless of 
species variability in the frequency of flashing. Relative 
redundancy should also give a graded distinction between 
“shoaling” and “schooling” in fish, based on the degree of 
coordinated movement behavior within the group (result-
ing in low and high relative redundancy, respectively).

Practical application

Computing relative redundancy in practice is challeng-
ing. Estimating the mutual information between just two 
variables (equivalently, the n = 2 case for Eq. 1), or the 
entropy of a single variable, runs into sampling problems 
and issues of estimator bias (Paninski 2003). While there 
may be no universal solution, for systems with continuous 
microscopic properties (the quantities of each element of 
the system for which we would like to measure coordi-
nation across the system), we can still make progress by 
maximizing a lower bound on redundancy instead.

First, for continuous random variables that are margin-
ally Gaussian with system-wide correlation matrix PS , the 
Gaussian mutual information,

(4)IG({Xi}i∈S) = −
1

2
log det(PS),

n∑

i

H(Xi)

I(X1, X2, . . . ,Xn)
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Fig. 1   (Left) Schematic description of a system, {Xi}i∈S , by its total 
correlation (y-axis), measuring dependence, and the total marginal 
entropy of its elements (x-axis). The 1–1 line and shaded area above 
are not achievable. Biological system examples may include starling 
flocks or fish schools (dynamic and dependent); whirligig beetle rafts 
(static and dependent); fish schools in a swarm (disordered) state 
(static and independent); and swarms of gnats (dynamic and inde-

pendent). (Right) Feasible (white) and infeasible (shaded) redundan-
cies for systems of a given size, n. The upper bound is given by a 
system in which every element is perfectly dependent on every other 
element (so knowing the state of one element is as good as knowing 
the state of every element in the system). The lower bound is zero, 
which occurs when all elements are independent
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is a lower bound on the total mutual information (Foster and 
Grassberger 2011; Kraskov et al. 2004). Since the marginals 
are continuous and Gaussian, each element has differential 
entropy

where Ki is the covariance matrix of Xi , and ki is the num-
ber of variates of element i. Unfortunately, while IG(⋅) is 
nonnegative, the differential entropy hG(⋅) can be positive 
or negative. Fortunately, for an arbitrarily precise �-bit 
quantization of Xi , its discrete entropy is approximated by 
h(Xi) + � (see Theorem 8.3.1 in Cover and Thomas 2006). 
Since the choice of � is arbitrary, we can choose it such that 
the differential entropies for the system are all positive. The 
choice of quantization cancels out in the numerator and only 
affects the denominator, giving

which is simple to compute in practice. However, since 
the quantization level, � , changes the scaling, when mak-
ing cross-system comparisons one must be sure to compute 
redundancy using the same � across all systems.

In general, when the random variables comprising the 
system are not marginally Gaussian, this lower bound can 
still be helpful. By substituting rank transformed variables 
Gi for Xi in the numerator, for which we enforce that each Gi 
is marginally Gaussian distributed, the numerator remains 
a useful lower bound on the total correlation among the 
Xi (by extension of Foster and Grassberger 2011; Kraskov 
et al. 2004, to the multivariate case). This essentially just 
measures the strength of any monotonic pairwise relation-
ship among the system elements. The Gaussian differential 
entropies in the denominator are also upper bounds on the 
differential entropies of any continuous Xi with the same 
means and (co)variances. Thus redundancy is lower bounded 
by these two quantities for any continuous Xi . Better or pos-
sibly even exact estimates of r may be possible depending 
on the system and microscopic variables at play; in any case, 
Eq. (2) still gives the correct system-independent blueprint 
for measuring coordination.

As a simple numerical application using the above redun-
dancy bound, Fig. 2 explores the Vicsek et al. (1995) model 
of collective motion with alignment only, i.e.,

where �i(t) is the position of individual i at discrete time 
step t, �i(t) is individual i’s velocity at time t given by its 

(5)hG(Xi) =
1

2
log

[
(2�e)ki det(Ki)

]
,

(6)r ≥
IG({Xi}i∈S)

� +
∑

i∈S hG(Xi)
,

(7)𝜃i(t + 1) = 𝜃̄i(t) + 𝜖i(t),

(8)�i(t + 1) = �i(t) + �i(t)Δt,

heading, �i(t) , and a constant, c (fixed at 0.03 to match Vic-
sek et al. 1995), 𝜃̄i(t) is the angular average heading of i and 
all neighbors within a distance d at time t, and �i(t) is drawn 
i.i.d. from a uniform distribution on the interval 

[
−�∕2, �∕2

]
 . 

In this well-studied system, redundancy (Fig. 2, Top left) 
shows the same phase transition from disorder to order when 
varying the noise parameter � , as seen in the system-specific 
order parameter of average alignment (Fig. 2, Bottom left). 
Interestingly, it also shows an apparently discontinuous tran-
sition with a bistable region in the ordered regime, which to 
our knowledge has not been reported before. This appears to 
distinguish between “dynamic order” (in which there are still 
fluctuations in average alignment over time across the group) 
and “coherent order” (in which the group is almost always 
aligned). A detailed investigation of this transition is beyond 
the scope of this study and is left for future work. However, 
based on a visual inspection of the emergent dynamics, it 
seems likely that the observed discontinuous transition may 
be related to the correlation range of the orientation exceed-
ing the finite system size, whereas the bistability emerges 
from different spatial configurations exhibiting either coher-
ent or dynamic order for the same noise values.

Redundancy partitioning for system structure

While relative redundancy (resp. incompressibility) can 
be used to compare the degree of collectivity exhibited by 
very different systems, it can also be used to characterize 
the dependency structure within a given system. Writing the 
relative redundancy as a function of a subset of the system, 
A ⊆ S , we have

What divisions of a system maximize the relative redun-
dancy of each subset?

To make this question concrete, let Ŝ be a set of indices 
for a collection of subsets of S, which we will refer to as the 
components of system S. That is, let Ŝ = {1, 2,… ,m} , where 
typically3 m ≤ n , and introduce a probabilistic assignment 
p(j|i), ∀(i, j) ∈ (S, Ŝ),4 which can be read as the probability 
that element i belongs to component j. Then the expected 
quality of an assignment to a given component is

(9)r(A) = 1 −
H({Xi}i∈A)∑

i∈A H(Xi)
.

(10)�
[
r(A)|j] = ∑

A∈P(S)

r(A)p(A|j),

3  If m > n then some components will necessarily be empty.
4  The use of i and j as elements of S and Ŝ , respectively, will follow 
this convention in the rest of the paper.
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where P(S) is the power set (set of all subsets) of S, and

is the probability of subset A given the assignments of ele-
ments to component j, by a simple counting argument.5 
Treating the quality of each component equally, the expected 
quality over all components is then

Note that the redundancy of any individual element, i.e., 
r({1}) , is equal to zero according to Eq. 9. For continuity, 

(11)p(A|j) = ∏
i∈A

p(j|i)∏
i∈A�

[
1 − p(j|i)],

(12)�[r(A)] =
1

m

∑
j∈Ŝ

�
[
r(A)|j].

we define the redundancy of the empty set, r({}) , to be zero. 
A visual example of dividing a system into different num-
bers of components and measuring component redundancy 
is illustrated in Fig. 3.

Rate‑distortion theory

While this gives us a natural way to evaluate the quality 
of a given assignment, it does not immediately provide us 
with a way to find such an assignment. Instead, we draw 
inspiration from the information-theoretic treatment of com-
pression given by rate-distortion theory (see Shannon 1959; 
Cover and Thomas 2006). Classical rate-distortion theory 
addresses the following problem: given a source (random 
variable) X, a measure of distortion, d, and an allowable level 
of average distortion D, determine the minimum amount of 
information necessary for a compressed description of X 
that introduces an average distortion no more than D. I.e.,

0.001

0.005

0.01

0.05

0.1

0.5

1

re
du

nd
an

cy
,

lo
g 1

0
r

1 2 3 4 5 60.001 0.01 0.1

coherent order

dynamic order

disorder

log10 linear

n = 50
d = 0.2
L = 1

noise η

1 2 3 4 5 60.001 0.01 0.1

0

0.2

0.4

0.6

0.8

1

m
ea

n 
al

ig
nm

en
t

0

0.04

0.08

0.12

0.16

0.2

st
d.

 d
ev

. a
lig

nm
en

t

coherent order r = 0.64
η = 0.001

dynamic order r = 0.026
η = 1

disorder r = 0.0016
η = 2π

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�

�

�

�� ��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 2   Example of redundancy as a measure of coordination in a 
system. (Top left) Redundancy for Vicsek model simulations (black 
dots) with n = 50, d = 0.2,L = 1 , and � (noise in individual headings) 
varying along the x-axis. Simulations were run for 500 iterations to 
reach steady state, then redundancy was computed based on the sub-
sequent 1000 iterations. Estimated mode(s) of simulation redundancy 
distributions at each noise level are shown (purple points); lines con-
nect adjacent modes based on a threshold distance linking criterion. 
The x-axis scale is linear to the right of � = 1 (dashed vertical line), 
and log10 to the left. Qualitative descriptors of the system state, from 

disordered to dynamic order to coherent order are annotated on the 
plot. (Bottom left) Time-averaged mean alignment (red), the typi-
cal order parameter for the Vicsek model, as a function of noise, � . 
The standard deviation in mean alignment over time is also shown in 
blue (corresponding to blue axis at right). (Right) Snapshots of simu-
lated systems in the coherent order (high redundancy), dynamic order 
(intermediate redundancy), and disordered (low redundancy) states. 
Agent positions (black points) and headings (black lines) shown in 
simulated two-dimensional space with periodic boundary conditions

5  Unless stated otherwise, the complement of a set is taken with 
respect to S, i.e., A� = {k ∈ S ∶ k ∉ A}.
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where the rate, R(D), equals the minimum amount of infor-
mation (measured in bits per symbol, hence “rate”) needed 
for average distortion D. In this case, the rate measures the 
information, I(X;X̂) , that the compressed representation, X̂ , 
needs to keep about the source, X, where

is the mutual information between X and X̂ . The lower the 
rate, the better the compression, but (depending on the 
source and the distortion measure) the higher the average 
distortion introduced. Surprisingly, not only can the rate-
distortion curve be characterized numerically in general, the 
minimal compressed representation of X can be found via a 
simple, iterative, alternating minimization algorithm (Blahut 
1972; Arimoto 1972).

Redundancy partitioning

Though there are important differences from rate-distortion 
theory (discussed in “Appendix 1”), we can similarly frame 
the problem of finding structure based on redundancy as a 
compression problem. Here, we wish to find the assignment 
of elements of S to components of Ŝ that achieves an average 
redundancy no less than r∗ , and otherwise preserves as little 
about the original identities of the elements as possible. I.e.,

(13)R(D) = min
p(x̂|x) ∶�d(x,x̂)≤D

I(X;�X),

(14)I(X;�X) =
∑
x,x̂

p(x, x̂) log
p(x, x̂)

p(x)p(x̂)

(15)R(r∗) = min
p(j|i) ∶�[r(A)]≥ r∗

I(S;Ŝ),

where p(j|i) is further required to be nonnegative and sum to 
one. This is not a standard rate-distortion problem, but we 
can use many of the same ideas developed by Blahut (1972) 
and Arimoto (1972) in their original numerical algorithms 
for deriving a practical solution. We give a brief account 
of this derivation here; see “Appendix 1” for a complete 
account.

Introducing Lagrange multipliers to constrain the ∑
j∈Ŝ

p(j�i) = 1 (non-negativity will be enforced by the form 
of the solution), the variational problem becomes

where � , the Lagrange multiplier for the average redundancy 
constraint, absorbs the 1/m term. Taking the derivative with 
respect to a particular j′ and i′ , we have

where

and

where A ⧵ {i} is the relative complement of the singleton set 
{i} with respect to A.

(16)

L
[
p(j|i)] = I(S;Ŝ) − �

∑
j∈Ŝ,A∈P(S)

r(A)p(A|j) +∑
i∈S

�(i)
∑
i∈Ŝ

p(j|i),

(17)

�

�p(j�|i�)L
[
p(j|i)] = p(i�) log

p(j�|i�)
p(j�)

− �
∑

j∈Ŝ,A∈P(S)

r(A)
�p(A|j)
�p(j�|i�) + �(i�),

(18)
�p(A�j)
�p(j��i�) =

⎧⎪⎨⎪⎩

0 if j ≠ j�,

fi� (A�j�) if j = j�, i� ∈ A,

−fi� (A�j�) if j = j�, i� ∈ A�,

(19)fi(A|j) =
∏

k∈A⧵{i}

p(j|k) ∏
k∈A�⧵{i}

[
1 − p(j|i)],

1

Ŝ
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Fig. 3   (Left) Example probabilistic assignments of n = 5 variables 
(i.e., X1,X2,… ,X5 ), to m = 1, 2, and 3 components. Probabilistic 
assignments of i ∈ S to j ∈ Ŝ , written p(j|i), are shown as matrices 
of dimension n rows by m columns. Each cell is shaded according to 
the probability of assignment, ranging from 0 to 1 (white to black), 
with each column summing to 1. The m = 2 case illustrates a “soft 
assignment,” in which there are assignment probabilities between 0 

and 1. The m = 3 case illustrates a “hard assignment,” in which each 
assignment probability is only either 0 or 1. (Right) The “quality” of 
the j-th component is measured in terms of its expected redundancy: 
�
[
r(A)|j] . The expectation is over the distribution of possible sets, 

p(A|j), which is a function of the probabilistic assignments p(j|i) (see 
Eq. 11)
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Then setting �L∕�p(j�|i�) = 0 and splitting the sum over 
P(S) into terms with and without i� ∈ A , we have

Let

and define d
�
(i, j) to be identical except substituting i ∈ A� 

for i ∈ A . Lastly, let Δd(i, j) = d(i, j) − d
�
(i, j) . Then, dividing 

through by p(i�) and substituting, we have,

Finally, substituting log�(i�) = �(i�)∕p(i�) and solving for 
p(j�|i�),

Enforcing the constraint that 
∑

j∈Ŝ
p(j�i�) = 1 and simplifying 

notation, we have

Before moving on, it is worth noting that Δd(i, j) has a sim-
ple and intuitive interpretation. It is the difference in redun-
dancy for component j when i is included versus when it is 
excluded, weighted by the relative importance of i.

Note that p(j) and p(A|j) depend on the choice of p(j|i). 
The final algorithm,

follows a similar alternating minimization scheme to the 
one developed by Blahut and Arimoto and generalized by 
Csiszár and Tsunády (1984), albeit with only local optimal-
ity guarantees similar to Tishby et al. (1999); Banerjee et al. 
(2005). See "Appendix 1" and Fig. 8 for a complete deriva-
tion and description of the algorithm.

One immediate issue is the 2n scaling of the number of 
subsets of S as n (the number of elements of S) increases. 
First, it is worth noting that there are non-trivial collec-
tive systems of empirical interest even for small n. Current 

(20)

p(i�) log
p(j�|i�)
p(j�)

= �
∑

{A∈P(S) ∶ i�∈A}

r(A)fi� (A|j�)

− �
∑

{A∈P(S) ∶ i�∈A�}

r(A)fi� (A|j�)

− �(i�).

(21)d(i, j) =
1

p(i)

∑
{A∈P(S) ∶ i∈A}

r(A)fi(A|j),

(22)log
p(j�|i�)
p(j�)

= �Δd(i�, j�) −
�(i�)

p(i�)
.

(23)p(j�|i�) = p(j�)

�(i�)
e�Δd(i

�,j�).

(24)p(j�i) = p(j)e�Δd(i,j)∑
j�∈Ŝ

p(j�)e�Δd(i,j
�)
.

(25)

⎧⎪⎨⎪⎩

pt(j�i) =
pt(j)e

�Δd(i,j)

∑
j�∈Ŝ

pt(j
�)e�Δd(i,j

� )
,

pt+1(j) =
∑

i∈S pt(j�i)p(i),
pt+1(A�j) =

∏
i∈A pt(j�i)

∏
i∈A�

�
1 − pt(j�i)

�
,

computational hardware may permit exact computation up to 
around n ≈ 15 even on consumer hardware, which would be 
relevant for many experimental systems (as in, e.g., Miller 
and Gerlai 2007; Katz et al. 2011; Jolles et al. 2018). Sec-
ond, for larger systems, Monte Carlo estimation of Δd(i, j) 
can be readily employed, e.g., for K samples,

For large systems in particular initializing near good solu-
tions may be helpful. In many systems we may expect ele-
ments to be spatially or temporally dependent, and use that 
prior knowledge to initialize reasonable clusters. However 
the preliminary results given in the next section do not 
employ any such strategy; we simply run the algorithm many 
times beginning with many different initial conditions and 
select the best solution generated. Finally, although we omit 
the exposition here, in the “hard-partition” limit (as � → ∞ ), 
p(j|i) becomes a delta function, meaning that no sampling 
is necessary and we need only consider adding or drop-
ping each element from each component on each iteration. 
When using the Gaussian bound on redundancy introduced 
in "Practical application" section, this can be accomplished 
in O(n4) (or O(n3) with some decrease in numerical preci-
sion). Our open source implementation of this algorithm is 
available by request or online at https​://githu​b.com/crtwo​
mey/sscs.

Experiments

Simulation experiments

We tested the proposed algorithm on two sets of data: simu-
lations of schooling groups, and empirical data collected 
from the movements of schooling fish in a lab environment. 
The former allow us to control the dependency structure of 
the system, while the latter allows us to demonstrate appli-
cability to empirical systems. Simulations used a simple 
model of coordinated movement based on attraction, align-
ment, and repulsion social forces (based on Romanczuk et al. 
2012; Romanczuk and Schimansky-Geier 2012; a descrip-
tion of the model and additional information on the simula-
tion conditions can be found in Appendix 2). Position and 
velocity data for independent groups of size n = 5, 10, and 
20 were generated for a high (� = 0.2) and low (� = 0.15) 
noise conditions.

(26)

d̂(i, j) =
1

p(i)K

K∑
k=1

r
(
Aij ∪ {i}

)
,

d̂
�
(i, j) =

1

p(i)K

K∑
k=1

r
(
Aij ⧵ {i}

)
, whereAij ∼ fi(⋅|j).

https://github.com/crtwomey/sscs
https://github.com/crtwomey/sscs
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Empirical experiments

Movement data of fish comes from videos originally 
recorded by Katz et al. (2011). In that work, groups of 10, 
30, and 70 golden shiners (Notemigonus crysoleucas) were 
purchased from Anderson Farms (www.ander​sonmi​nnows​
.com) and filmed in a 1.2 × 2.1m tank with an overhead 
camera. Videos were then corrected for lens distortion and 
fish were tracked using the same custom in-house software 
developed by Haishan Wu and used in Rosenthal et  al. 
(2015). The software begins by detecting all individuals in 
each frame, then links individuals across frames to form 
tracks. All tracks were manually corrected to ensure accu-
racy. Individual positions and velocities were estimated from 
these tracks using a 3rd order Savitzky–Golay filter (Savitzky 
and Golay 1964; similar to, e.g., Harpaz et al. 2017) with 
a 7 frame smoothing window (videos were recorded at 30 
fps). Interactions between fish are time-dependent; for the 
results presented here we simply chose a fixed window of 
± 15 s surrounding a given time t to estimate the dependency 
structure of the group. An optimal choice of time window 
is left for future work.

Experimental results

The algorithm outlined in "Redundancy partitioning" section 
requires specifying the number of components and a param-
eter, � , which controls the relative importance of maximiz-
ing the average redundancy of the components as opposed to 
maximally compressing the original set of system elements. 
While it will be interesting to investigate the ‘soft-partition-
ing’ aspect of this approach in future work, here we simply 
consider the hard assignment case, which requires only that 
� is large. Figure 4 (Right) illustrates this point, showing the 

stabilization of average component redundancy for 𝛽 > 5 . 
We found that � = 200 was sufficient to recover hard assign-
ments in all cases tested here.6 Since relative redundancy 
ranges between 0 and 1 for any dataset, these parameter val-
ues should generalize well to other systems, and leaves the 
method free of parameter fine-tuning.

To validate that the Monte Carlo estimate of Δd(i, j) 
employed is effective, we compared its behavior to exact 
computations of Δd(i, j) for small system sizes (simulated 
groups of size 5 and 10). We ran each version of the algo-
rithm for up to 10 components and took the best (maximum) 
average component redundancy achieved over 100 random 
initializations of the assignment matrix p(j|i). Figure 4 (Left) 
shows that the results are in good agreement, and where 
there are discrepancies they tend to favor the Monte Carlo 
method, in that the Monte Carlo method recovers solutions 
with higher average redundancy.

Next, we tested the algorithm on simulated data in which 
the dependency structure of the simulated groups was 
known, using the hard partitioning variant of the algorithm 
for computational efficiency. For each test, we computed 
the maximum average component redundancy recovered 
for up to 10 components, again using 100 random initiali-
zations of the assignment matrix for each computation. In 
all cases partitioning decreases the average redundancy of 
the system with increasing number of components (Fig. 5).7 
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Fig. 4   Algorithm implementation and parameter sensitivity. (Left) 
Comparison of exact and Monte Carlo estimates of Δd(i, j) , for 
groups of size 5 and 10, for low and high noise conditions. Note that 
the number of components can be greater than the number of ele-
ments; in this case some components will be empty, i.e., have no ele-

ments assigned to them. (Right) Impact of the choice of � on the aver-
age redundancy of the recovered components for a simulated group of 
size 10, high noise condition, searching for 5 components. Dotted line 
shows the mean of the solutions for 𝛽 > 5

6  Using the simultaneous updating variant of the algorithm, see 
Appendix 1.
7  This figure corrects an earlier preprint of this manuscript. The early 
draft contained a numerical error in the computation of the log deter-
minant used in the average redundancy bounds, which artificially 
reduced the estimated average redundancy for large systems with 
small numbers of components.

http://www.andersonminnows.com
http://www.andersonminnows.com
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However the magnitude of the change in average redundancy 
(or ‘ Δ average redundancy’) from m to m − 1 components 
is informative of the system’s dependency structure. Small 
values of Δ average redundancy occur when subdividing 
the system has a comparatively minor impact on average 
redundancy, which should be expected when partitioning 
relatively independent parts of the system. In compari-
son, a large increase in the value of Δ average redundancy 
appears to occur when a strongly interacting component is 
split. This can be seen by comparing the Δ average redun-
dancy curves for each group size between instances of a 
single group (Fig. 5 Left) in the system or two independent, 
non-interacting groups in the same system (Fig. 5 Middle). 
The Δ average component redundancies for systems contain-
ing only a single group have either no or only shallow local 

minima followed by at most small increases. In comparison, 
Δ average redundancies for systems with two non-interacting 
groups, in pairs of matched size groups of 5, 10, and 20, 
have comparatively deep local minima first occurring at 
2 components for n = 5 and 10, and at 4 components for 
n = 20 , followed directly by relatively large increases in Δ 
average redundancy. At the point preceding each of these 
transitions from low to high Δ average redundancy, the two 
non-interacting groups are assigned to separate components 
by the algorithm, and in the n = 20 case the two groups are 
further subdivided into two spatially assorted components 
each. Finally, the Δ average redundancies for a system of 
three non-interacting groups of mixed sizes 5, 10, and 20 
were computed, with local minima first occurring at 3 and 4 
components for high and low noise conditions, respectively 
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Fig. 5   Partitioning results for simulations of 1, 2, and 3 independ-
ent (non-interacting) groups. Top row shows average redundancy 
as a function of the number of components (m). Bottom row shows 
the magnitude of the change in average redundancy between m and 
m − 1 components (larger values are larger decreases). (Left) For sin-
gle cohesive groups of size n = 5, 10, or 20, the average redundancy 
(y-axis) of the components decreases approximately monotonically 
as the number of components increases. The n = 10 group has shal-
low local minima in Δ average redundancy at m = 2 and 4. (Center) 

For two non-interacting groups of the same size, the average redun-
dancy approximately plateaus at two components for n = 5 and 10. 
For n = 20 , the first minimum in Δ average redundancy is achieved 
at m = 4 . (Right) A mixed (varying in group size) collection of three 
non-interacting groups, with sizes 5, 10, and 20, first plateau in aver-
age redundancy at three or four components, depending on the noise 
(�) used in the simulation. For comparison, the left two plots show 
results for � = 0.2 (the ‘high’ noise)
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(Fig. 5 Right), followed by large increases in Δ average 
redundancy.8 Taken together, this is evidence that the tran-
sition from low to high Δ average component redundancies 
recovered by the algorithm reflect the dependency structure 
of the underlying system. It suggests that these features may 
be useful in identifying relevant structure in other systems, 
even those with less extreme dependency structures.

Figure 6 illustrates the iterative generation of assignments 
for the algorithm in the mixed three group (high noise) case. 
Assignments change and harden until they converge on a 
(local) maximal average redundancy partition of the sys-
tem’s elements (Left). The assignments generated by the 
algorithm of system elements to components correspond 
one-to-one with the original, non-interacting set of three 
groups (of sizes 5, 10, and 20) comprising the whole system 
(of total size 35). Positions of the elements of the system and 
their velocity vectors are shown for one time point, colored 
by the component they were assigned to (which corresponds 
to their original group), in Fig. 6 (Left). Note that, while the 

Fig. 6   Generation of assignments by the average redundancy par-
titioning algorithm for a mixture of three non-interacting simulated 
groups, based on coordination in individual velocities. (Left) Assign-
ments generated by the proposed sequential algorithm for three 
components after initialization (t = 0) , 1 iteration (t = 1) , and 10 
iterations (t = 10) , at top, middle, and bottom, respectively. The color 
scale indicates the probability of assigning a member of a group (col-
umn) to a particular component (row), where low to high probabil-

ity is coded dark to light (color scale top right). Original groupings 
of the system into its three non-interacting subsets are indicated on 
the x-axis. (Right) Two-dimensional positions (arbitrary units) of 
simulated system at one time point, color-coded by final component 
assignment; velocity vectors indicated by line segments. The algo-
rithm correctly separates each subgroup based on coordination in 
velocities alone, without reference to spatial position
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Fig. 7   Coordinated substructure for empirical fish schools. (Left) 
Average component redundancy as a function of the number of com-
ponents, for fish groups of size n = 10 , 30, and 70. (Middle) Mag-
nitude of the change in average component redundancy between m 
and m − 1 components. The n = 30 school (orange lines) has a local 

minimum at m = 5 components. (Right) Example partitioning of a 
group of size 30 fish into five components (shown as different colors). 
Dots indicate the positions of the fish (swimming freely in a large 
1.2m × 2.1m arena) relative to the school mean position. Line seg-
ments indicate historical positions of each individual 2 s into the past

8  In both noise conditions all three non-interacting groups were split 
into separate components. In the low noise condition, the group of 20 
was further subdivided into two components.



371Theory in Biosciences (2021) 140:361–377	

1 3

snapshot shown in Fig. 6 was chosen to show the three dis-
tinct groups, at many points in the simulation the positions, 
velocities, or both, overlapped between the three groups. The 
algorithm is able to recover the independent groups in the 
system without using spatial position information, based on 
coordination in individual velocities alone.

Finally, we applied the algorithm to empirical data col-
lected on fish schools to validate that the method is able 
to recover sensible results for strongly interacting groups 
and from non-simulated data. Figure 7 shows that for fish, 
groups of size 10 interact strongly enough (in at least the 
one instance tested here) to be considered one coherent unit, 
while groups of size 30 are already large enough to have 
subsets that more strongly interact with one another than the 
rest of the group (e.g., the local minima in Δ average redun-
dancy at m = 5 components; Fig. 7 Middle). The component 
assignments at the m = 5 local minima and positions for the 
school of 30 fish are shown in Fig. 7 (Right) at a single time 
point. The subdivisions of the system show strong spatial 
assortment with a stratification of the group from front to 
back. As in the simulation case, here we use only coordi-
nation in individual velocities to determine partitions, so 
this spatial assortment is a consequence of similar behavior 
as opposed to some criterion based on proximity. Further 
work is needed to investigate the duration of substructure in 
fish schools, as well as the emergence and disappearance of 
components over time.

Discussion

Redundancy as a measure of coordination
Collective behavior is an emergent property of the actions 

and interactions of a system’s constituents. One of its charac-
teristic features is a high degree of coordination among the 
individual elements of a system. In this work, we explored 
an information-theoretic measure of coordination defined by 
relative redundancy, or one minus the ratio of the maximally 
compressed description of a system to its uncompressed 
description. This quantity can be compared between systems 
of any size and total variability, and in this sense it func-
tions as a system-independent measure of coordination. As 
a numerical example, we showed that measuring redundancy 
for a simple model of collective motion exhibited both the 
classic transition from order to disorder in this system as 
the noise in individual headings increases, but interestingly, 
also identified an apparently discontinuous transition from 
“coherent order” to “dynamic order.” While these results 
should be investigated more systematically in future work, 
they demonstrate the practical utility of this measure and 
suggest it may be used to shed new light on even classic 
models of collective behavior.

Still, redundancy as a universal measure of coordination 
is challenging to compute in general. While the Gaussian 
bound introduced in "Practical application" section is useful 
in practice, it has limited applicability. It is not appropriate 
for discrete systems or mixed measurements of continuous 
and discrete individual properties. One potentially promis-
ing direction for future work is to better constrain empirical 
estimates of redundancy by leveraging the rapidly growing 
body of research devoted to inferring and modeling indi-
vidual-level interaction rules in a wide range of natural sys-
tems (see, e.g., Ballerini et al. 2008; Lukeman et al. 2010; 
Nagy et al. 2010; Katz et al. 2011; Herbert-Read et al. 2011; 
Bialek et al. 2012; Strandburg-Peshkin et al. 2013; Rosenthal 
et al. 2015; Harpaz et al. 2017; Torney et al. 2018; Hein et al. 
2018; Sosna et al. 2019). Accurate probabilistic models of 
individual behavior can be used to estimate the time-varying 
relative redundancy of empirically recorded configurations 
of individuals. This could be useful for improving system-
specific estimators of redundancy, which may be of particu-
lar importance when making cross-species comparisons; for 
example, to understand the evolution of collective behavior.

Finally, while coordinated behavior is central to what it 
means to be collective, it is not the only important prop-
erty of collective systems. In the Vicsek model of collective 
motion explored in Fig. 2, coordination is highest in the 
“coherent order” state, in particular when the entire system 
is locked into a single stable heading. Collective behavior in 
living systems can rarely afford to be so rigid; animal groups 
must respond and adapt appropriately to their environment. 
Daniels et al. (2016)’s investigation of amplification, i.e., 
the extent to which individuals within the group can affect 
group-level properties, is of particular interest in this regard.

Redundancy partitioning for system structure
There are a wide range of both general purpose clustering 

algorithms (see Jain 2010; Xu and Tian 2015) and network 
community detection methods (see Forunato 2010), owing to 
a diversity of plausible clustering and community detection 
criteria. The justification for the average relative redundancy 
criterion presented here stems from its principled approach 
to the specific problem of quantifying coordination and its 
demonstrated ability to identify dependent structure in col-
lective systems. It is specific in scope and not intended as a 
drop-in replacement for other clustering methods for arbi-
trary similarity matrices.

This approach to understanding the structure of collec-
tive systems also differs from methods concerned with the 
inference of individual interaction networks. For one, this 
method makes no attempt to construct such a network. Use-
ful information-theoretic methods based on, e.g., estimating 
the transfer entropy (Lizier and Rubinov 2012) or causa-
tion entropy (Lord et al. 2016) between and among system 
elements can be used for this purpose. Similarly, when 
individuals in a group need to each remember their own 
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representation of within-group interactions, as in Macaques, 
biologically plausible interaction representations can be 
inferred based on a sparse coding principle (Daniels et al. 
2012). Instead, this approach attempts to simply identify 
the maximally coordinated components of a system, which 
offers a natural mesoscopic locus of analysis for the full sys-
tem’s behavior. It could then be interesting to study the net-
work of transfer or causation entropy between coordinated 
components, for instance, though this is made potentially 
more challenging by the possibly only short-term persistence 
of any given component.

There are many questions left for future work. First, the 
identification of transitions from low to high Δ average 
redundancy with increasing number of components is only 
a heuristic. In some cases there may be no local minima, 
or there may be multiple, in which case there may be more 
than one useful decomposition of the group. In other cases 
it may be more appropriate to divide the group into a given 
number of components regardless of the existence or posi-
tion of a minimum. Further theoretical work is needed on 
the significance of plateaus in the average redundancy plot; 
we present only empirical evidence of their utility here. Sec-
ond, an investigation of these features as a function of the 
time window chosen for computing the dependency structure 
may be important for understanding how the dependency 
structure of the group scales with time. It might be expected 
that on short time-scales for many systems only very local 
interactions will matter, requiring many components, while 
on longer time scales the system may be best represented as 
a single component.

It may also be important to investigate the algorithm pre-
sented here in the context of generating a soft-partitioning of 
a system’s elements into partially overlapping components. 
Using intermediate values of � may allow the algorithm to 
find better average redundancy solutions ‘in-between’ m and 
m + 1 components, in which assignments may be shared 
among components. At the same time, since optimal sets 
of components are not guaranteed to be unique, it may be 
important to explore the set of equally (or nearly equally) 
optimal solutions as an ensemble of equivalent descriptions 
of a system. Moreover, exploring the range of solutions as 
the number of components varies may reveal whether or 
not the system exhibits some form of hierarchical structure. 
In hierarchical systems we would expect components to 
be successively subdivided as the number of components 
increases.

One practical application of this method could be to 
the principled identification of a “group” in fission-fusion 
systems where this is an amorphous, time-varying con-
cept. Another potential application of the method may be 
to long time-series, where the dependency structure itself 
is dynamic. Characterizing the natural decompositions 
of a system as a function of time may reveal important 

time-dependent mesoscopic features. How does the natural 
number of components of a system fluctuate in time, and 
how long do components persist? How do they interact as 
a function of time? These questions are central to the study 
of collective systems and may benefit from the quantitative 
approach to measuring coordination and identifying group 
structure introduced here.
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1 Algorithm

Here we give an expanded account of the redundancy com-
pression algorithm.

1.1 Rate‑distortion compression

Classical rate-distortion theory treats the following optimi-
zation problem:

(27)

minimize
p(x̂�x) I(X;�X)

subject to �[d(x, x̂)] ≤ D

p(x̂�x) ≥ 0 ∀(x, x̂) ∈ (X, �X)∑
j p(x̂�x) = 1 ∀x ∈ X,

http://creativecommons.org/licenses/by/4.0/
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where

and p(x) is given. The problem as stated is not convex due to 
the form of I(X;X̂) . However, writing the objective as

it is clear that the problem is convex when varying p(x̂|x) or 
p(x̂) separately, holding the other constant. Since the distor-
tion constraint, �[d(x, x̂)] is convex in p(x̂|x) , the problem 
can be restated as a convex double minimization of the form

which is minimized for fixed p(x̂|x) by

and for fixed p(x̂) by

(see Blahut 1972; Arimoto 1972; Cover and Thomas 2006). 
This leads to the classic Blahut-Arimoto algorithm, which, 
by iterative application of these two self-consistent equations 
for a given � , converges to an optimal solution point on the 
rate-distortion curve with tangent slope equal to �.

1.2 Redundancy compression

In this paper, we are interested in a similar problem:

where

and

The fixed 1/m weighting of the marginal importance of each 
component, j, in the redundancy constraint, �

[
r(A, j)

]
 , is a 

minor variation from the classical rate-distortion problem. 

(28)�[d(x, x̂)] =
∑
x̂∈�X

∑
x∈X

p(x̂|x)p(x)d(x, x̂),

(29)

I(X;�X) =
∑
x,x̂

p(x̂|x)p(x) log p(x̂|x) −∑
x,x̂

p(x̂|x)p(x) log p(x̂),

(30)min
p(x̂|x)min

p(x̂)
I(X;�X),

(31)p(x̂) =
∑
x

p(x̂|x)p(x),

(32)p(x̂�x) = p(x̂) exp [−𝛽d(x, x̂)]∑
x̂� p(x̂

�) exp [−𝛽d(x, x̂�)]
,

(33)

minimize
p(j�i) I(S;Ŝ)

subject to �[r(A, j)] ≥ r∗ ∀j ∈ Ŝ

p(j�i) ≥ 0 ∀(i, j) ∈ (S, Ŝ)∑
j p(j�i) = 1 ∀i ∈ S,

(34)�
[
r(A, j)

]
=

1

m

∑
j∈Ŝ

r(A, j)

(35)r(A, j) =
∑

A∈P(S)

rA

∏
i∈A

p(j|i)∏
i∈A�

[
1 − p(j|i)].

The important difference is that the r(A,  j) inequality 
constraint is not convex with respect to p(j|i). However, 
with change of variables bA = log rA , yij = log p(j|i) , and 
ȳij = log

[
1 − p(j|i)] , we can define

where r(A, j) = g(A, j) , with g(A, j) convex with respect to yij 
and ȳij and invariant with respect to p(j|i) or p(j).

This gives the equivalent minimization problem:

Setting aside non-negativity constraints on p(j|i) (these 
will be enforced by the form of the solution), we have the 
functional

We can then restate the original non-convex problem in 
terms of two convex minimizations and one quasiconvex 
minimization,

Note that, similar to Tishby et al. (1999), the problem is not 
jointly convex and thus there is no guarantee of a unique 
global solution as in the rate-distortion case. Nevertheless, 
the marginal (quasi-)convexity admits an efficient iterative 
algorithm for identifying (locally) optimal solutions, similar 
to Tishby et al. (1999).

Taking the derivative of L with respect to p(j|i) and set-
ting equal to zero, we arrive at

(36)g(A, j) =
∑

A∈P(S)

exp

[∑
i∈A

yij +
∑
i∈A�

ȳij + bA

]
,

(37)

minimize
p(j�i) I(S;�S)

subject to �[g(A, j)] ≥ r∗ ∀j ∈ �S

p(j�i) ≥ 0 ∀(i, j) ∈ (S,�S)∑
j p(j�i) = 1 ∀i ∈ S

eyij ≤ p(j�i) ∀(i, j) ∈ (S,�S)

eȳij ≤ 1 − p(j�i) ∀(i, j) ∈ (S,�S).

(38)
L
[
p(j|i);p(j);yij, ȳij

]

=
∑
i,j

p(j|i) log p(j|i)
p(j)

+
∑
i

𝜆(i)
∑
j

p(j|i)

(39)− 𝛽
∑

j,A∈P(S)

exp

[∑
i∈A

yij +
∑
i∈A�

ȳij + bA

]

(40)+
∑
i,j

�(i, j)
[
eyij − p(j|i)]

(41)+
∑
i,j

𝜆̄(i, j)
[
eȳij + p(j|i)].

(42)min
p(j|i) min

p(j)
min
yij,ȳij

L
[
p(j|i);p(j);yij, ȳij

]
.
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where �(i) just normalizes the distribution over j for a given 
i. Taking the derivative of L with respect to yij and setting 
equal to zero, we have

Doing the same for ȳij gives

Subtracting the two equations, we have

which is equivalent to the definition of Δd(i, j) in the main 
text. Substituting into Eq. 43 produces

This gives the minimizing values of L with respect to p(j|i) 
for fixed p(j), yij , and ȳij , as in Blahut (1972); Arimoto 
(1972); Tishby et al. (1999); Banerjee et al. (2005). The 
minimizing values of L with respect to p(j) are the same as 
in classical rate-distortion theory and are given by

The minimizing value of L with respect to yij and ȳij under 
the constraints that eyij ≤ p(j|i) , and eȳij ≤

[
1 − p(j|i)] , is 

simply

since the monotonically decreasing 39 will achieve its mini-
mum for the least negative values of yij and ȳij , which puts 
them up against their constraints.

1.3 Generalization

It is clear from the form of g(A, j) that the only requirement 
of the measured property, bA , of any set, A ∈ S , is that it is 
nonnegative. Thus this same method may be employed for 
measures on sets other than redundancy, in the same way 
that rate-distortion theory treats generic measures of distor-
tion. On the other hand, when the measured property offers 

(43)p(j|i) = p(j)

𝜇(i)
exp

[
p(i)−1

[
𝜆(i, j) − 𝜆̄(i, j)

]]
,

(44)

𝜆(i, j) = 𝛽e−yij
∑

{A∈P(S) ∶ i∈A}

exp

[∑
k∈A

ykj +
∑
k∈A�

ȳkj + bA

]
.

(45)

𝜆̄(i, j) = 𝛽e−ȳij
∑

{A∈P(S) ∶ i∈A�}

exp

[∑
k∈A

ykj +
∑
i∈A�

ȳkj + bA

]
.

(46)𝛽Δd(i, j) = 𝜆(i, j) − 𝜆̄(i, j),

(47)p(j|i) = p(j)

�(i)
exp

[
�

p(i)
Δd(i, j)

]
.

(48)p(j) =
∑
i

p(j|i)p(i).

(49)yij = log p(j|i),

(50)ȳij = log
[
1 − p(j|i)],

certain kinds of additional structure, as in, e.g., the case 
of an average similarity (Slonim et al. 2005) measure, then 
other efficient solutions may be possible.

One variant to the sequential update of p(j|i) as listed 
in Fig. 8 is to modify every p(j|i) in parallel, which may 
be advantageous for some multiprocessor configurations. 
In practice, for convergence with simultaneous updating it 
appears to be important to introduce a slowdown factor, � , 
to control the update of pt(j|i) , i.e., using

where t is the current iteration of the algorithm. The slow-
down operates in a manner analogous to the learning rate in 
gradient descent optimization problems.

Like � , � does not require fine-tuning. It just needs to be 
small enough to allow for convergence, without being too 
small so as to allow the algorithm to converge in a reason-
able number of iterations. While a more systematic investi-
gation may be useful in identifying an efficient � , we found 

(51)pt(j�i) = �
pt(j)e

�Δd(i,j)

∑
j�∈Ŝ

pt(j
�)e�Δd(i,j

�)
+ (1 − �)pt−1(j�i),

Fig. 8   ℕ+ are the positive integers, while ℕ+
0
 , ℝ+

0
 , are the nonnegative 

(positive including zero) integers and real numbers, respectively. For 
hard clustering, � just needs to be large. Parameter tmax needs to be 
large enough for convergence; alternatively, it can be replaced by a 
criterion based on a minimum difference in improvement between 
iterations. Lines 2 and 10 are to be understood as vector operations 
over the set j ∈ Ŝ
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that � = 0.1 and t = 200 iterations was sufficient to ensure 
convergence for all the numerical results presented in the 
main text. In many cases a stable assignment is reached 
much earlier than after 200 iterations, and in general a stop-
ping criteria based on the difference between assignments 
from one iteration to the next could be employed, though we 
did not do so here.

2 Simulation

The agent-based model used in this paper for generating 
schooling motion with known dependency structure is based 
on the three-zone-model introduced by Couzin et al. (2002). 
Each agent moves at a constant speed s0 and responds to 
its conspecifics by changing its direction of motion. The 
interactions between individuals are governed by three basic 
social forces: long-range attraction, short-range repulsion, 
and intermediate-range alignment. However, there are two 
main differences from the original Couzin model: (1) the 
model is formulated in terms of stochastic differential equa-
tions with effective social forces (see Romanczuk et al. 2012; 
Romanczuk and Schimansky-Geier 2012); and (2) instead 
of discrete zones, we use overlapping social forces, whereby 
repulsion dominates at short distances (rij < rrep) , attraction 
dominates at long distances rij < ratt , and the alignment con-
tribution overlaps with attraction and repulsion up to inter-
mediate ranges (rij < ralg) , whereby rrep < ralg < ratt.

2.1 Model formulation

We simulate the movement of a group of n agents via a set of 
2n (stochastic) differential equations. The agents move in a 
quadratic domain of size L × L with periodic boundary condi-
tions. The dynamics of each agent (in 2d) are described by the 
following equations of motion (i = 1,… , n):

Here �i , and �i are the Cartesian position and velocity vectors 
of each agent, with s0 being the (constant) speed of agent i. 
Furthermore, �i,� are Gaussian white noise terms accounting 
for randomness in the turning motion of individuals, and �i,� 
are the projections of the total social forces inducing turning 
behavior, where

The total effective social force is a sum of three components, 
�i = �i,rep + �i,alg + �i,att,

(52)
d�i

dt
= �i(t), with �i(t) =

(
s0 cos(�i(t))

s0 sin(�i(t))

)
,

(53)
d�i

dt
=
1

s0

(
Fi,� + �i,�

)
.

(54)Fi,� = �i ⋅ ��,i = �i

(
−s0 sin�i

s0 cos�i

)
.

Fig. 9   (Left) Schematic of the effective social interactions, with 
repulsion dominating at short distances (red zone), attraction domi-
nating at large distances (green zone) and main contribution of align-

ment at intermediate ranges (blue zone). (Right) The strength of the 
different social forces versus distance for the different interactions
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with 𝐫̂ = 𝐫∕|𝐫| . The strength of the different interactions is 
set by a constant �X and a sigmoid function of distance, 
which goes from 1 to 0, with the transition point at rX and 
steepness aX:

(Fig. 9).
The stochastic differential equations for the direction of 

motion of individual agents are solved by a simple Euler-
Maruyama method:

2.2 Numerical experiments

We simulated independent groups of three different sizes, 
n = 5 , 10, and 15, wherein it was possible for each agent 
to interact with the distance dependent effective forces 
with all other agents within the group. The initial condi-
tions were always a random distribution of agents in the 
simulation domain with random initial direction of motion. 
In order to ensure formation of a single cohesive group 
we set the attraction range to be larger then the domain 
size ratt > L . In all simulation runs considered here, we 

(55)

Attraction 𝐅i,rep =
∑

j∈Neigh

+�attSatt(rji)𝐫̂ji,

Repulsion 𝐅i,rep =
∑

j∈Neigh

−�repSrep(rji)𝐫̂ji,

Alignment 𝐅i,alg =
∑

j∈Neigh

�algSalg(rji)(𝐯j − 𝐯i),

SX(r) =
1

2

(
tanh(−a(r − rX) + 1

)

(56)�(t + 1) =�(t) +
1

s0

(
Fi,�(t)Δt +

√
2D�Δt GRN(t)

)
,

(57)�(t + 1) =�(t) +

(
s0 cos(�i(t))

s0 sin(�i(t))

)
Δt.

obtained for the used parameters (see Tab. 1) a single 
polarized group after a transient time of t < 400 . Thus for 
our analyses we used only data for t > 400.
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