Skip to main content

Advertisement

Log in

An interdisciplinary perspective on artificial immune systems

  • Review Article
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

This review paper attempts to position the area of Artificial Immune Systems (AIS) in a broader context of interdisciplinary research. We review AIS based on an established conceptual framework that encapsulates mathematical and computational modelling of immunology, abstraction and then development of engineered systems. We argue that AIS are much more than engineered systems inspired by the immune system and that there is a great deal for both immunology and engineering to learn from each other through working in an interdisciplinary manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

Similar content being viewed by others

References

  1. Aickelin U, Bentley P, Cayzer S, Kim J, McLeod J (2003) Danger theory: the link between AIS and IDS? In: Timmis J, Bentley P, Hart E (eds) Proceedings of the 2nd International Conference on Artificial Immune Systems (ICARIS 2003), LNCS 2787. Springer, Berlin, pp 147–155

  2. Anderson CC, Matzinger P (2000) Danger: the view from the bottom of the cliff. Semin Immunol 12(3):231–238

    Article  Google Scholar 

  3. Andrews PS, Timmis J (2005) Inspiration for the next generation of artificial immune systems. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin, pp 126–138

  4. Andrews PS, Timmis J (2005) diversity and artificial immune systems: incorporating a diversity operator into aiNet. In: Proceedings of the International Conference on Natural and Artificial Immune Systems (NAIS05), LNCS, vol 391. Springer, Berlin, pp 293–306

  5. Andrews PS, Timmis J (2006) A computational model of degeneracy in a lymph node. LNCS, Springer, Berlin, pp 164–177

  6. Balthrop J, Esponda F, Forrest S, Glickman M (2002) Coverage and generalisation in an artificial immune system. In: Genetic and evolutionary computation, pp 3–10

  7. Bersini H (2002) Self-assertion versus self-recognition: a tribute to Francisco Varela. In: Timmis J, Bentley PJ (eds) Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS 2002). University of Kent Printing Unit, pp 107–112

  8. Bersini H (2006) Immune system modeling: the OO way. In: Bersini H, Carneiro J (eds) Proceedings of the 5th International Conference on Artificial Immune Systems, LNCS, vol 4163. Springer, Berlin, pp 150–163

  9. Bersini H, Carneiro J (eds) (2006) Proceedings of the 5th International Conference on Artificial Immune Systems, LNCS, vol 4163. Springer, Berlin

  10. Bezerra G, Barra T, de Castro LN, Von Zuben F (2005) Adaptive radius immune algorithm for data clustering. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin, pp 290–303

  11. Bretscher P (2000) Contemporary models for peripheral tolerance and the classical ‘historical postulate’. Semin Immunol 12(3):221–229

    Article  Google Scholar 

  12. Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge

  13. de Castro LN, Von Zuben FJ (2000) An evolutionary immune network for data clustering. In: Proceeding of the IEEE Brazilian Symposium on Artificial Neural Networks, pp 84–89

  14. de Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–251

    Article  Google Scholar 

  15. Clark E, Hone A, Timmis J (2005) A markov chain model of the b-cell algorithm. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin, pp 318–330

  16. Coelho G, Von Zuben FJ (2006) Omni-ainet: an immune-inspired approach for omni optimization. In: Bersini H, Carneiro J (eds) Proceedings of the 5th International Conference on Artificial Immune Systems, LNCS, vol 4163. Springer, Berlin, pp 294–308

  17. Cohen IR (2000) Discrimination and dialogue in the immune system. Semin Immunol 12(3):215–219

    Article  Google Scholar 

  18. Cohen IR (2000) Tending Adam’s garden: evolving the cognitive immune self. Elsevier, Amsterdam

  19. Cohen IR (2007) Real and artificial immune systems: computing the state of the body. Imm Rev 7:569–574

    Article  Google Scholar 

  20. Cohen IR, Harel D (2006) Explaining a complex living system: dynamics, multi-scaling and emergence

  21. Coutinho A (1995) The network theory: 21 years later. Scand J Immunol 42:3–8

    Article  Google Scholar 

  22. Cruz Cortes N, Coello Coello C (2003) Multiobjective optimisation using ideas from the clonal selection principle. In: Cantu-Paz E (ed) Genetic and Evolutionary Computation (GECCO), vol 1, pp 158–170

  23. Cutello V, Nicosia G (2004) The clonal selection principle for in silico and in vitro computing. In: de Castro LN, von Zuben FJ (eds) Recent Developments in Biologically Inspired Computing. Idea Group Publishing, Hershey, PA

  24. Cutello V, Nicosia G, Oliveto P, Romeo M (2007) On the convergence of immune algorithms. In: Proc of Foundations of Computational Intelligence, pp 409–416

  25. Dasgupta D (ed) (1999) Artificial immune systems and their applications. Springer, Berlin

  26. Dasgupta D, Krishna Kumar K, Wong D, Berry M (2004) Negative selection algorithm for aircraft fault detection. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Proceedings of the 3rd International Conference on Artificial Immune Systems (ICARIS 2004), LNCS 3239. Springer, Berlin, pp 1–14

  27. Davoudani D, Hart E, Paechter B (2007) An immune-inspired approach to speckled computing. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 288–299

  28. de Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer, Berlin

  29. de Castro LN, Von Zuben FJ (1999) Artificial immune systems: Part I—basic theory and applications. Tech Rep DCA-RT 01/99, School of Computing and Electrical Engineering, State University of Campinas, Brazil

  30. de Castro LN, Von Zuben FJ (2000) Artificial immune systems: Part II—a survey of applications. Tech Rep DCA-RT 02/00, School of Computing and Electrical Engineering, State University of Campinas, Brazil

  31. de Castro LN, Von Zuben FJ, Knidel H (eds) (2007) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 119–130

  32. de Lemos R, Timmis J, Forrest S, Ayara M (2007) Immune-inspired adaptable error detection for automated teller machines. IEEE Trans Syst Man Cybern C Appl Rev 37(5):873–886

    Article  Google Scholar 

  33. Edelstein L, Rosen R (1978) Enzyme-substrate recognition. J Theor Biol 73(1):181–204

    Article  MathSciNet  Google Scholar 

  34. Esponda F (2005) Negative representations of information. Ph.D. thesis, University of New Mexico

  35. Esponda F, Ackley ES, Forrest S, Helman P (2005) On-line negative databases (with experimental results). Int J Unconventional Comput 1(3):201–220

    Google Scholar 

  36. Farmer JD (1990) A rossetta stone for connectionism. Physica D 42:153–187

    Article  MathSciNet  Google Scholar 

  37. Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation, and machine learning. Physica D 22:187–204

    Article  MathSciNet  Google Scholar 

  38. Folwer M (2004) UML Distilled. Addison-Wesley, Reading, MA

  39. Forrest S, Beauchemin C (2007) Computer immunology. Immunol Rev 216(1):176–197

    Google Scholar 

  40. Forrest S, Perelson A, Allen L, Cherukuri R (1994) Self–nonself discrimination in a computer. In: Proceedings of the IEEE Symposium on Research Security and Privacy, pp 202–212

  41. Freitas A, Timmis J (2007) Revisiting the foundations of artificial immune systems for data mining. IEEE Trans Evol Comp 11(4):521–540

    Article  Google Scholar 

  42. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns. Addison-Wesley, Reading, MA

  43. Garrett S (2005) How do we evaluate artificial immune systems? Evol Comput 13(2):145–177

    Article  Google Scholar 

  44. Germain RN (2004) An innately interesting decade of research in immunology. Nat Med 10:1307–1320

    Article  Google Scholar 

  45. Gillespie D (1977) Approximate accelerated stochastic simulation of chemically reacting systems. J Phys Chem 81(25):2340–2361

    Article  Google Scholar 

  46. Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2003) Immunology, 5th edn. W. H. Freeman and Company, San Francisco

  47. González F, Dasgupta D, Gómez J (2003) The effect of binary matching rules in negative selection. In: Genetic and Evolutionary Computation—GECCO-2003, Lecture Notes in Computer Science, vol 2723. Springer, Chicago, pp 195–206

  48. Gonzalez FA, Dasgupta D (2003) Anomaly detection using real-valued negative selection. Genet Program Evolvable Machines 4(4):383–403

    Article  Google Scholar 

  49. Greensmith J, Aickelin U, Cayzer S (2005) Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin

  50. Greensmith J, Aickelin U, Twycross J (2006) Articulation and clarification of the dendritic cell algorithm. In: Bersini H, Carneiro J (eds) Proceedings of the 5th International Conference on Artificial Immune Systems, LNCS, vol 4163. Springer, Berlin, 404–417

  51. Grossman Z, Paul WE (2000) Self-tolerance: context dependent tuning of T cell antigen recognition. Semin Immunol 12(3):197–203

    Article  Google Scholar 

  52. Guzella T, Mota-Santos T, Caminhas W (2007) Towards a novel immune inspired approach to temporal anomaly detection. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 119–130

  53. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8:231–274

    Google Scholar 

  54. Hart E (2005) Not all balls are round: an investigation of alternative recognition-region shapes. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin, pp 29–42

  55. Hart E, Bersini H, Santos F (2006) Tolerance vs intolerance: how affinity defines topology in an idiotypic network. In: Bersini H, Carneiro J (eds) Proceedings of the 5th International Conference on Artificial Immune Systems, LNCS, vol 4163. Springer, Berlin, pp 109–121

  56. Hart E, Ross P (2004) Studies on the implications of shape-space models for idiotypic networks. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Proceedings of the 3rd International Conference on Artificial Immune Systems (ICARIS 2004), LNCS 3239. Springer, Berlin, pp 413–426

  57. Hart E, Santos F, Bersini H (2007) Topological constraints in the evolution of idiotypic networks. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 252–263

  58. Hart E, Timmis J (2005) Application areas of AIS: the past, the present and the future. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin, pp 483–497

  59. Hart E, Timmis J (2007) Application areas of AIS: the past, the present and the future. To appear in Applied Soft Computing. In Press, Corrected Proof, Available online 12 February 2007

  60. Hofmeyr S, Forrest S (2000) Architecture for an artificial immune system. Evol Comput 7(1):1289–1296

    Google Scholar 

  61. Hone A, van den Berg HA (2007) Modelling a cytokine network. In: Proc of IEEE Workshop on Computational Intelligence, pp 389–293

  62. Honorio L, Leite da Silva A, Barbosa D (2007) A gradient-based artificial immune system applied to optimal power flow problems. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 1–12

  63. Jacob C, Pilat M, Bentley P, Timmis J (eds) (2005) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin

  64. Janeway C, Travers P, Walport M, Shlomchik M (2004) Immunobiology: the immune system is health and disease, 6th edn. Garland Science, New York

  65. Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13:11–16

    Article  Google Scholar 

  66. Janeway CA, Travers P, Walport M, Shlomchik M (2001) Immunobiology, 5th edn. Garland Publishing, New York

  67. Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol (Inst Pasteur) 125C:373–389

    Google Scholar 

  68. Ji Z, Dasgupta D (2003) Artificial immune system (AIS) research in the last five years. In: Congress on evolutionary computation, vol 1. IEEE, Canberra, Australia, pp 123–130

  69. Ji Z, Dasgupta D, Yang Z, Teng H (2006) Analysis of dental images using artificial immune systems. In: Proceedings of Congress on evolutionary computation (CEC). IEEE Press, Piscataway, NJ, pp 528–535

  70. Kelsey J, Timmis J (2003) Immune inspired somatic contiguous hypermutation for function optimisation. In: Genetic and evolutionary computation conference—GECCO 2003. Springer, Berlin, pp 207–218

  71. Kim J, Bentley P, Aickelin U, Greensmith J, Tedesco G, Twycross J (2007) Immune system approaches to intrusion detection—a review. Nat Comput (in print)

  72. Langman RE, Cohn M (2000) Editorial summary. Semin Immunol 12(3):343–344

    Article  Google Scholar 

  73. Langman RE, Cohn M (2000) A minimal model for the self–nonself discrimination: a return to basics. Semin Immunol 12(3):189–195

    Article  Google Scholar 

  74. Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23(9):445–449

    Article  Google Scholar 

  75. Matzinger P (1994) Tolerance, danger and the extended family. Ann Rev Immunol 12:991–1045

    Google Scholar 

  76. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  Google Scholar 

  77. May P, Timmis J, Mander K (2007) Immune and evolutionary approaches to software mutation testing. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 336–347

  78. McEwan C, Hart E, Paechter B (2007) Revisiting the central and peripheral immune system. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 240–251

  79. Medzhitov R, Janeway CA (2000) How does the immune system distinguish self from nonself? Semin Immunol 12(3):185–188

    Article  Google Scholar 

  80. Mendao M, Timmis J, Andrews PS, Davies M (2007) The immune system in pieces: computational lessons from degeneracy in the immune system. In: Fogel DB (ed) Proc of foundations of computational intelligence, pp 394–400

  81. Milner R (1999) Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge

  82. Mosmann TR, Livingstone AM (2004) Dendritic cells: the immune information management experts. Science 5(6):564–566

    Google Scholar 

  83. Neal M, Trapnel B (2007) In silico immuonology, chap. Go Dutch: exploit interactions and environments with artificial immune systems. Springer, Berlin, pp 313–330

  84. Newborough R, Stepney S (2005) A generic framework for population based algorithms. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin

  85. Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) (2004) Proceedings of the 3rd International Conference on Artificial Immune Systems (ICARIS 2004), LNCS 3239. Springer, Berlin

  86. Owens N, Timmis J, Greensted A, Tyrrell A (2007) On immune inspired homeostasis for electronic systems. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 216–227

  87. Perelson AS, Oster GF (1979) Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self–non-self discrimination. J Theor Biol 81(4):645–670

    Article  MathSciNet  Google Scholar 

  88. Phillips A, Cardelli L (2007) Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Proceedings of computational methods in systems biology (CMSB’07), vol 4695, pp 184–199

  89. Priami C (1995) Stochastic π-calculus. Comput J 38(7):578–589

    Article  Google Scholar 

  90. Priami C, Regev A, Shapiro E (2001) Application of a stochastic name-passing calculus to representation for biological processes in the stochastic π-calculus. Inform Process Lett 80:25–31

    Article  MATH  MathSciNet  Google Scholar 

  91. Regev A, Silverman W, Shapiro E (2001) Representation and simulation of bio-chemical processes using the pi-calculus process algebra. In: Pacific symposium on biocomputing, vol 6, pp 459–470

  92. Rudolph G (1998) Finite markov chain results in evolutionary computation: a tour d’horizon. Fundam Inf 35(1–4):67–89

    MATH  MathSciNet  Google Scholar 

  93. Secker A, Freitas A (2007) Wairs: improving classification accuracy by weighting attributes in the airs classifier. In: Proceedings of the congress on evolutionary computation, pp 3759–3765

  94. Secker A, Freitas A, Timmis J (2003) A danger theory inspired approach to web mining. In: Timmis J, Bentley P, Hart E (eds) Proceedings of the 2nd International Conference on Artificial Immune Systems (ICARIS 2003), LNCS 2787. Springer, Berlin, pp 156–167

  95. Silverstein AM, Rose NR (2000) There is only one immune system! The view from immunopathology. Semin Immunol 12(3):173–178

    Article  Google Scholar 

  96. Stepney S, Smith R, Timmis J, Tyrrell A, Neal M, Hone A (2006) Conceptual frameworks for artificial immune systems. Int J Unconventional Comput 1(3):315–338

    Google Scholar 

  97. Stepney S, Smith RE, Timmis J, Tyrrell AM (2004) Towards a conceptual framework for artificial immune systems. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Proceedings of the 3rd International Conference on Artificial Immune Systems (ICARIS 2004), LNCS 3239. Springer, Berlin, pp 53–64

  98. Stibor T (2006) On the appropriateness of negative selection for anomaly detection and network intrusion detection. Ph.D. thesis, Darmstadt University of Technology

  99. Stibor T (2007) Phase transition and the computational complexity of generating r-contiguous detectors. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 142–155

  100. Stibor T, Timmis J (2007) An investigation into the compression quality of ainet. In: Fogel D (ed) Proc of foundations of computational intelligence

  101. Stibor T, Timmis J, Eckert C (2006) The link between r-contiguous detectors and k-cnf satisfiability. In: Proceedings of the congress on evolutionary computation, pp 491–498

  102. Tauber AI (2000) Moving beyond the immune self? Semin Immunol 12(3):241–248

    Article  Google Scholar 

  103. Timmis J (2007) Artificial immune systems: today and tomorow. Nat Comput 6(1):1–18

    Article  MATH  MathSciNet  Google Scholar 

  104. Timmis J, Bentley P, Hart E (eds) (2003) Proceedings of the 2nd International Conference on Artificial Immune Systems (ICARIS 2003), LNCS 2787. Springer, Berlin

  105. Timmis J, Bentley PJ (eds) (2002) Proceedings of the 1st International Conference on Artificial Immune Systems (ICARIS 2002). University of Kent Printing Unit

  106. Timmis J, Hone A, Stibor T, Clark E (2007) Theoretical advances in artificial immune systems. J Theor Comput Sci (submitted)

  107. Timmis J, Knight T (2001) Data mining: a heuristic approach, chap. Artificial immune systems: using the immune system as inspiration for data mining. Idea Group, Hershey, PA, pp 209–230

  108. Timmis J, Neal M (2001) A resource limited artificial immune system for data analysis. Knowl Based Syst 14(3–4):121–130

    Article  Google Scholar 

  109. Twycross J, Aickelin U (2005) Towards a conceptual framework for innate immunity. In: Jacob C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th International Conference on Artificial Immune Systems (ICARIS), Lecture Notes in Computer Science, vol 3627. Springer, Berlin, pp 112–125

  110. Varela FJ, Coutinho A (1991) Second generation immune networks. Immunol Today 12(5):159–166

    Google Scholar 

  111. Villalobos-Arias M, Coello CAC, Hernandez-Lerma O (2004) Convergence analysis of a multiobjective artificial immune system algorithm. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Proceedings of the 3rd International Conference on Artificial Immune Systems (ICARIS 2004), LNCS 3239. Springer, Berlin, pp 226–235

  112. Voigt D, Wirth H, Dilger W (2007) A computational models for the cognitive immune system theory based on learning classifier systems. In: de Castro LN, Von Zuben FJ, Knidel H (eds) Proceedings of the 6th International Conference on Artificial Immune Systems, Lecture Notes in Computer Science, vol 4628. Springer, Berlin, pp 264–275

  113. Watkins A, Timmis J, Boggess L (2004) Artificial immune recognition system (AIRS): an immune-inspired supervised learning algorithm. Genet Program Evolvable Machines 5(1):291–317

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank many people in the AIS community who have engaged in many interesting discussions over the years, and in particular at the recent 2007 ICARIS conference who include: Emma Hart, Jorge Carnerio, Hugues Bersini, Rob de Boer, Uwe Aickelin, Julie Greensmith and Leandro de Castro. We would like to thank the reviewers for their many comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Timmis.

Additional information

Paul Andrews is supported by EPSRC grant number EP/E053505/1, Nick Owens is supported by EP/E005187/1 and Ed Clark by EP/D501377/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmis, J., Andrews, P., Owens, N. et al. An interdisciplinary perspective on artificial immune systems. Evol. Intel. 1, 5–26 (2008). https://doi.org/10.1007/s12065-007-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-007-0004-2

Keywords

Navigation