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Abstract—In this paper, we present an evolutionary multiobjective 
learning model achieving positive synergy between the Inference 
System and the Rule Base in order to obtain simpler, more compact 
and still accurate linguistic fuzzy models by learning fuzzy inference 
operators together with Rule Base. The Multiobjective Evolutionary 
Algorithm proposed generates a set of Fuzzy Rule Based Systems 
with different trade-offs between interpretability and accuracy in 
linguistic fuzzy modeling, allowing the designers select the one that 
involves the most adequate equilibrium for the desired application. 

Keywords— Linguistic fuzzy modeling, interpretability-accuracy 
trade-off, Multiobjective genetic algorithms, adaptive Inference 
System, adaptive defuzzification, rule learning.   

1 Introduction
The main objective in system modelling is to develop 
reliable and understandable models. Interpretability and 
accuracy are usually contradictory requirements in the 
design of linguistic fuzzy models (FMs). Recent research 
into genetic fuzzy systems has focused on methods aimed at 
generating Fuzzy Rule-Based Systems (FRBS) with an 
appropriate trade-off between accuracy and interpretability 
[1, 2].   

Two important tasks in the design of a linguistic FM for a 
particular application are the derivation of the linguistic 
Rule Base (RB) and the setup of the Inference System and 
defuzzification method. In the framework of the trade-off 
between interpretability and accuracy in fuzzy modeling, 
adaptive Inference Systems and defuzzification methods 
have acquired greater importance [3, 4]. 

Recently, the use of Multiobjective Evolutionary 
Algorithms (MOEA) has been applied to improve the 
aforementioned trade-off between interpretability and 
accuracy of linguistic fuzzy systems [5, 6, 7, 8, 9, 10, 11]. 
Some of them obtain the complete Pareto (the set of non-
dominated solutions with different trade-offs) by selecting 
or learning the set of rules which best represents the 
example data, i.e., improving the system accuracy and 
decreasing the FRBS complexity. In [7, 8, 11] the authors 
also propose tuning the membership functions together with 
the rule selection to obtain simpler yet still accurate 
linguistic FMs.  

Following these ideas on the advantage of using 
parametric operators and MOEAs to improve the trade-off 
between interpretability and accuracy, in [9] we presented a 

MOEA capable of learning the fuzzy inference operators 
(including inference and defuzzification) and of performing 
rule selection for Mamdani linguistic fuzzy systems. The 
proposed model aimed to achieve a positive synergy, that is, 
cooperation between the fuzzy operators and the RB to 
improve accuracy while at the same time simplifying the RB 
to improve interpretability.  

Our main objective in this work is to include a new and 
highly important element in the learning process, the 
complete RB. Thus, we propose a MOEA capable of 
generating a set of FRBS (each with a high degree of 
cooperation between the RB and the Inference System) with 
varying optimal trade-offs between accuracy and 
complexity, so as to obtain compact and accurate linguistic 
fuzzy models by learning fuzzy operators and RB. 

To do this, Section 2 describes the parametric fuzzy 
operators, Section 3 shows the RB learning used in this 
work, Section 4 is devoted to describing the MOEA 
learning proposal, Section 5 develops an experimental 
study, and finally, Section 6 presents some concluding 
remarks. 

2 Adaptive Fuzzy Operators 
In this section we describe the adaptive Inference System as 
well as the adaptive defuzzification method used in our 
learning proposal. 

2.1 Adaptive Inference System 
Linguistic FRBSs for system modeling use IF - THEN rules 
of the following form: 

Ri : If Xi1 is Ai1 and ... and Xim is Aim then Y is Bi

with i = 1 to N, where N stands for the number of rules of 
the RB, Xi1 to Xim and Y for the input and output variables 
respectively, and Ai1 to Aim and Bi for the involved 
antecedents and consequent labels, respectively. 

The expression of the Compositional Rule of Inference in 
fuzzy modeling with punctual fuzzification is the following: 
�B' (y) = I (C (�A1 (x1) , ... , �Am (xm)), �B (y)), where �B' (·) 
is the membership function of the inferred consequent, I(·) 
is the implication operator, C(·) is the conjunction operator, 
�Ai(xi) are the values of the matching degree of each input 
of the system with the membership functions of the rule 
antecedents, and �B(·) is the consequent of the rule. 
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The two components, the conjunction (C(·)) and the 
implication operator (I(·)) are suitable for parametrization in 
order for the Inference System to be adapted. Our previous 
studies in [3] show that models based on the adaptive 
conjunction is a more valuable option than those based on 
the adaptive implication operator. Hence, we selected the 
adaptive conjunction in this study in order to insert 
parameters in the Inference System. 

Taking into account the aforementioned studies in [3], we 
have selected the Dubois adaptive t-norm with a separate 
connector for every rule, the expression for which is shown 
in (1). 

),y,x(Max
yx),y,x(TDubois �
�

�� ,    (0���1) (1) 

This adaptive t-norm showed the highest accuracy in 
previous studies, compared with Frank and Dombi t-norms 
and is more efficiently computed. The use of an adaptive t-
norm for the antecedent connection seeks better 
performance than traditional t-norms. Dubois t-norm 
performs between minimum (� = 0) and algebraic product 
(� = 1). 
 
2.2 Adaptive Defuzzification Interface 

There are various tendencies in the development of adaptive 
defuzzification methods reported in the literature. These 
employ one or more parameters in their expression for 
modifying the behaviour of the defuzzifier or, in most cases, 
to achieve higher accuracy.  

Following the studies developed in [13], in this work we 
consider applying the defuzzification function to the fuzzy 
set inferred by each rule (getting a characteristic value) and 
computing them by a weighted average operator, because of 
its fine performance, efficiency and easier implementation. 
This way of working is named FITA (First Infer, Then 
Aggregate) [12].  

We also consider the use of a product functional term of 
the matching degree between the input variables and the 
rule antecedent fuzzy sets (hi), iii hh ���)(f where �i 
corresponds to one parameter for each rule Ri, i=1 to N, in 
the RB, as it is more efficiently computed and obtains 
similar results to other functions [13]. The adaptive 
defuzzification formula selected is shown in (2). 
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where Vi represents a characteristic value of the fuzzy set 
inferred from rule Ri, the Maximum Value or the Gravity 
Center (GC), the latter being the one selected in this paper. 

The product functional term with a different parameter 
for each rule has the effect of weighted rules. This value 
associated with the rule indicates the importance of that rule 
for the inference process.  

3 Rule Base Learning 
The linguistic RB learning used in this work is based on the 
ad-hoc data driven methodology named COR [14]. This 
methodology manages a set of consequent label sets (one 
per rule). Instead of  selecting the consequent with the best 
performance in each subspace as usual (Wang and Mendel 
[15]), the COR methodology considers the possibility of 
using another consequent, different from the best, which 
allows the FRBS to be more accurate thanks to having a RB 
with best cooperation. For this purpose, COR performs a 
combinatorial search among the candidate rules looking for 
the set of consequents which globally achieves the best 
accuracy. 

COR consists of two stages: 

1) Construction of the search space—This obtains a set of 
candidate consequents for each rule. 

2) Selection of the most cooperative fuzzy rule set—This 
performs a combinatorial search among these sets seeking 
the combination of consequents with the best global 
accuracy. 

In order to perform this combinatorial search, an explicit 
enumeration or an approximate search technique can be 
considered.  In this work, we use a search technique because 
it is effective and quick.  

4 Rule Base and Inference System 
Cooperative Learning with Multiobjective 

Algorithms
This Section describes the evolutionary multiobjective 
model proposed in this work. As was previously mentioned, 
our objective is to obtain a set of fuzzy systems with 
different trade-offs between accuracy and interpretability, 
using adaptive inference and defuzzification, and Rule Base 
learning (including rule selection).  To do this, we exploit 
two specific MOEAs considering a threefold coding scheme 
(coding of rules and coding of the parameters of the 
Inference Systems and Defuzzification). We adopted two of 
the most representative second generation MOEAs, SPEA2 
[16] and NSGA-II [17], as two general purpose MOEAs for 
performing the cooperative adaptation of the fuzzy 
operators and fuzzy rule learning.    

4.1 SPEA2 and NSGA-II 

The SPEA2 algorithm [16] (Strength Pareto Evolutionary 
Algorithm for Multiobjective Optimization) is one of the 
most well-known techniques for solving multiobjective 
problems. It is characterized by the following two aspects: a 
fitness assignment strategy, which takes into account both 
dominating and dominated solutions for each individual, 
and a density function, estimated by employing the nearest 
neighbourhood, which guides the search more efficiently. 

NSGA-II algorithm [17] is another of the most well-
known and frequently-used MOEAs for general multi-
objective optimization in the literature. It is a parameterless 
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approach with several interesting principles: a binary 
tournament selection based on fast non-dominated sorting, 
an elitist strategy and a crowding distance method to 
estimate the diversity of a solution. 

4.2  Questions related to the MOEAs. 

The evolutionary model uses a chromosome with threefold 
coding scheme (CC+CD+CR) where: 

� CC encodes the �i parameters of the conjunction 
connective. They are N real coded parameters (genes), 
one for each rule, Ri ,of the linguistic RB. Each gene can 
take any value in the interval [0, 1], that is, between the 
minimum and the algebraic product. This is represented 
by the CC part of the chromosome shown in Figure 1.  

� CD encodes the �i parameters of the defuzzification. They 
are N real coded parameters, one for each rule, of the 
linguistic RB. Each gene can take any value in the 
interval [0, 10]. This interval has been selected according 
to the study developed in [13]. It allows attenuation as 
well as enhancement of the matching degree. This is 
represented by the real part CD shown in Figure 1.  

� CR encodes the learning Rule Base. It is an integer string 
of N genes, each one representing a candidate rule 
consequent of the initial RB. Furthermore, depending on 
whether a rule is selected or not, the value ‘-1’ is 
assigned to the corresponding gene. This is represented 
by the integer part of the chromosome shown in Figure 1. 

 The initial population is randomly initialized in the fuzzy 
operators part with the exception of a single chromosome: 

� CC with the N genes is initiated to 0 in order to make 
Dubois t-norm equivalent to Minimum t-norm initially.  

� CD also with the N genes is initiated to 1 with the 
objective of beginning like the standard WCOA method. 

 

The initial population in the fuzzy rule part, CR, is 
initialized following these two exceptions: 

� A single chromosome with the N rules obtained by the 
WM-method [15], that is, with all the genes initialized to 
correspondent consequent. 

� Default chromosomes randomly initiated with all rules 
activated. In this case, in order to achieve solutions with 
a high accuracy we should not lose rules that could 
present a positive cooperation once their FM parameters 
have been evolved. The best way to do this is to start 
with solutions that select all the possible rules. This 
favors a progressive extraction of bad rules (those that do 
not improve with the tuning of parameters). 

The crossover operator employed by the fuzzy operators 
part is BLX-0.5 [18] while the one used for the rule learning 
part is HUX [19]. 

Finally, four offspring are generated by combining the 
two from the CR part with the two from the operators part 
(the two best replace their parents). The mutation operator 
changes a gene value at random in the CR and operators part 
(one in each part) with probability 0.2. 

In this work, to obtain an optimal set of FRBS with 
different trade-offs, the fitness, based on the interpretability 
(using the number of rules) and the accuracy (using the 
error measure), must be minimized. 

 

 

 

 

Fig. 1. Coding scheme for the MOEA with N rules 
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5 Experimental Study 
 
In order to analyse the practical behaviour of the proposed 
methods, we built several FMs in a real-world problem [20] 
of four input variables consisting in estimating the 
maintenance costs of medium voltage lines in a town. 
Methods considered for the experiments are briefly 
described in Table 1, where WM and COR methods are 
considered as reference. S denotes the methods that perform 
rule selection. If rule selection is performed after another 
method we give it a “+” denotation (eg. COR+S). However, 
if rule selection is performed jointly with another method 
we denote this in subscript (eg. CORS). S–C–D means rule 
selection and fuzzy operators learning together. SPEA2S-C-D, 
and NSGA-IIS-C-D are the methods that learn the fuzzy 
operators and the rule selection together, while SPEA2CORS-C-

D and NSGA-IICORS-C-D are methods that also learn the RB as 
previously mentioned. 

Table 1. Methods considered for comparisson 

Ref. Method Description 
[15] WM Wang & Mendel algorithm 
[21] WM + S Wang & Mendel and then Rule 

Selection  
[9] WM + S–C–D Wang & Mendel and then Rule 

Selection and Adaptive Fuzzy 
Operators 

[14] COR COR 
 COR + S COR and then Rule Selection 

 CORS COR with Rule Selection 
 CORS–C–D COR with Rule Selection and 

Adaptive Fuzzy Operators 
[9] SPEA2S-C-D SPEA2 algorithm with Rule 

Selection and Adaptive Fuzzy 
Operators 

- SPEA2CORS-C-D SPEA2 algorithm with COR with 
Rule Selection and Adaptive Fuzzy 
Operators 

[9] NSGA-IIS-C-D NSGA-II algorithm with Rule 
Selection and Adaptive Fuzzy 
Operators 

- NSGA-IICORS-C-D NSGA-II algorithm with COR with 
Rule Selection and Adaptive Fuzzy 
Operators 

 
5.1 Application Selected and Comparison Methodology 
 

The application selected to test the evolutionary model is the 
aforementioned electrical distribution problem [20] that has 
a data set of 1059 cities with four input variables and a 
single output. The RB is composed of 65 linguistic rules 
achieved with the Wang and Mendel method [15]. The 
fuzzy partition used for inputs and output has 5 labels. 

We considered a 5-fold cross-validation model, i.e., 5 
random partitions of the data each with 20% (4 of them with 
211 examples, and one of them with 212 examples), using  
the combination of 4 of them (80%) as training, and the 
remaining one as a test. We achieved a total of 30 trials for 
each evolutionary process, as the learning methods were run 
6 times for each one of the data partitions. We show the 

average values of the medium square error (MSE) as a usual 
performance measure, computed considering the most 
accurate solution from each Pareto obtained with the 
multiobjective algorithm. This method of working was also 
employed in [9] in order to compare the single objective 
methods with the multiobjective ones based on considering 
the accuracy objective only, letting us see that the Pareto 
fronts are not only wide but also optimal, so similar 
solutions obtained with the WM + S–C–D or CORS–C–D must 
appear in the final Pareto. The MSE is computed with 
expression (3), 

� �
P

) ) - FM (x ( y  
2
1

  = FMMSE  

P

1k=

2
kk

B

�
 

 

(3) 

where FM denotes the fuzzy model the Inference System of 
which uses the Dubois t-norm as conjunction operator 
showed in expression (1), the inference operator is 
minimum t-norm, and the adaptive defuzzificación method 
is the one shown in expression (2). This measure uses a set 
of system evaluation data formed by P pairs of numerical 
data Zk =(xk,yk), k=1,..,P, with xk being the values of the 
input variables, and yk being the corresponding values of the 
associated output variables. The MOEAs population size 
was fixed at 200. The external population size of the 
SPEA2S-C-D and SPEA2CORS-C-D was 61.  

5.2 Results and Analysis 

To compare the results obtained we also used non-
parametric tests, according to the recommendations made in 
[22]. The results obtained are shown in Table 2, where #R is 
the average number of rules, MSEtra and MSEtst are the 
average MSE for training and test respectively, and 
Wilcoxon-test is the result of applying a Wilcoxon signed-
ranks test [23] (with 95% confidence), with the following 
interpretation: * represents the best average result (control 
algorithm); + means that the best result has better 
performance than that of the corresponding row, while sign 
(=) means it is similar to the best result. As we have 
mentioned, Demšar [20] recommends a set of simple, safe 
and robust non-parametric tests for statistical comparisons 
of algorithms, one of which is the Wilcoxon signed-ranks 
test [23]. This is analogous to the paired t-test in non-
parametrical statistical procedures. 
 

Table 2 only shows the best result for each MOEAs for 
accuracy. Analysing the results we can highlight the two 
following points: 
 
� The learning of the RB allows remarkable improvement 

in accuracy: Looking at Table 2, we can observe that 
SPEA2CORS-C-D improves the accuracy of SPEA2S-C-D and 
NSGA-IICORS-C-D improves NSGA-IIS-C-D. In spite of the 
fact that the number of rules shown in Table 2 is 
slightly larger, it must be taken into account that the 
results shown are the ones with the highest accuracy 
along the Pareto front. Looking at Table 3, we can 
observe similar values for accuracy in solutions with a 
lower number of rules from 40 to 32, so NSGA-IICORS-C-

D truly obtains better fuzzy systems (for accuracy and 
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interpretability) than NSGA-IIS-C-D. Thus, the 
cooperation between the rules and the fuzzy operators 
improves the results of the evolutionary multiobjective 
proposal without rule learning.

� The solution with the best accuracy obtained with 
NSGA-IICORS-C-D and SPEA2CORS-C-D shows a similar 
accuracy to the single objective evolutionary model 
CORS–C–D (as shown in the non-parametric test) with a 
significant reduction in the number of rules, particularly 
for NSGA-IICORS-C-D. Consequently, the proposed 
method achieves more interpretable models with similar 
accuracy. We also notice that the best accuracy in Table 
2 is obtained by the single objective model CORS–C–D. 
The difference is small, but we can deduce that the 

evolutionary multiobjective methods are not achieving 
the most accurate solution. This fact suggested in [9] 
the design of more specific multiobjective algorithms in 
order to get even better solutions than the generic 
MOEAs SPEA2 and NSGA-II.  Figure 2 shows the 
Pareto progress for each evolutionary algorithm 
(SPEA2CORS-C-D and NSGA-IICORS-C-D) where we can 
observe the Pareto movement for each generation. 
Because to the adaptive fuzzy operators search space is 
large, we consider it may be necessary to focus the 
search process on the Pareto zone with highest 
accuracy, so that the same accuracy can be achieved as 
with single objective evolutionary algorithms based on 
accuracy.  

Table 2. Results obtained 

Method #R MSEtra Wilcoxon-test MSEtest Wilcoxon-test 

WM 65 56135.75 + 56359.42 + 
WM + S 40.9 41517.01 + 44064.67 + 
WM + S–C–D 52.8 22640.95 + 26444.43 + 
COR 65 50710.80 + 54584.76 + 
COR + S 44.7 40763.48 + 43228.38 + 
CORS 43 39530.19 + 41060.99 + 
CORS–C–D 50 20123.39 * 23323.72 * 
SPEA2S-C-D 38,60 24021,41 + 29333,72 + 

SPEA2CORS-C-D 41,10 21254,70 + 24079,32 = 

NSGA-IIS-C-D 38,90 23364,63 + 28174,76 + 

NSGA-IICORS-C-D 40,27 20689,86 = 23346,34 = 

Table 3. A Pareto front example obtained from NSGA-IICORS-C-D 

#R MSEtra MSEtest #R MSEtra MSEtest #R MSEtra MSEtest 
40 20036,37 22771,09 32 22354,40 24819,15 25 30133,70 42029,38 

39 20198,77 22768,15 31 23266,76 25226,77 24 32481,97 43640,18 

38 20388,66 22675,47 30 24347,59 27510,49 23 35058,65 43578,74 

37 20783,97 23251,03 29 24994,05 26904,67 22 39128,61 53587,74 

36 20999,33 23435,43 28 26190,94 29391,74 21 43276,59 58873,29 

34 21719,71 24057,71 27 27445,85 30597,32 20 47428,26 69762,81 

33 21901,55 24051,67 26 28706,22 33035,11 20 47428,26 69762,81 
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Fig. 2. Example of the Pareto front for NSGA-IICORS-C-D and SPEA2CORS-C-D 
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6 Conclusions
In the framework of the trade-off between accuracy and 
interpretability, the use of MOEAs gives a set of solutions 
with different levels of conciliation between both features. 
In this work we have proposed a multiobjective 
evolutionary learning model where the adaptive fuzzy 
operator parameters are learnt together with the RB. This 
fact allows both elements to cooperate, improving the 
accuracy as well as the interpretability.  
 

The results obtained have shown that the use of MOEAs 
can represent a way to obtain a set of FRBSs in a single run 
with optimal trade-off between accuracy and 
interpretability. In terms of future work, some 
improvements may be developed in order to guide the 
search towards the desired Pareto zone with higher accuracy 
(right and central zone) where the FRBSs obtained are 
perhaps more interesting in more applications. 

By focusing the search process we can reduce the effort 
of the search, and a better precision in the non-dominated 
solutions can be obtained, because the search effort is 
concentrated on a reduced zone of the Pareto, such that the 
density of the obtained solutions is higher. An improvement 
could be a change in the MOEAs used or a change in the  
non-dominated definitions in order to give more weight to 
the objective of  accuracy.  
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