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Abstract

Many optimization algorithms have been developed by drawing inspiration from swarm in-
telligence (SI). These SI-based algorithms can have some advantages over traditional algorithms.
In this paper, we carry out a critical analysis of these SI-based algorithms by analyzing their
ways to mimic evolutionary operators. We also analyze the ways of achieving exploration and
exploitation in algorithms by using mutation, crossover and selection. In addition, we also look
at algorithms using dynamic systems, self-organization and Markov chain framework. Finally,
we provide some discussions and topics for further research.
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1 Introduction

Swarm intelligence (SI) has received great interests and attention in the literature. In the com-
munities of optimization, computational intelligence and computer science, bio-inspired algorithms,
especially those swarm-intelligence-based algorithms, have become very popular. In fact, these
nature-inspired metaheuristic algorithms are now among the most widely used algorithms for opti-
mization and computational intelligence [18, 25, 26, 49, 16]. SI-based algorithms such as ant and
bee algorithms, particle swarm optimization, cuckoo search and firefly algorithm can have many
advantages over conventional algorithms [10, 25, 50, 55, 17].

An optimization algorithm is an iterative procedure, starting from an initial guess. After a certain
(sufficiently large) number of iterations, it may converge towards to a stable solution, ideally the
optimal solution to the problem of interest. This is essentially a self-organizing system with solutions
as states, and the converged solutions as attractors. Such an iterative, self-organizing system can
evolve, according to a set of rules or mathematical equations. As a result, such a complex system can
interact and self-organize into certain converged states, showing some emergent characteristics of
self-organization. In this sense, the proper design of an efficient optimization algorithm is equivalent
to finding efficient ways to mimic the evolution of a self-organizing system [1, 24].

Alternatively, we can view an algorithm as Markov chains, and the behaviour of an algorithm
is controlled by its solution states and transition moves. Indeed, different views can help to ana-
lyze algorithms from different perspectives. We can also analyze an algorithm in terms of its key
components such as exploration and exploitation or the ways that generate solutions using evolu-
tionary operators. In this paper, we will review and discuss swarm intelligence based algorithms
from different perspectives.

Therefore, the paper is organized as follows. Section 2 provides a brief critical analysis of an
optimization algorithm, identifying its key components. Section 3 provides a detailed review of a
few swarm intelligence based algorithms and analyze their key components. Section 4 highlights the
key issues in performance measures for comparing algorithms, and then Section 5 discusses some
trends and observations. Finally, Section 6 draws conclusions briefly.
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2 Critical Analysis of Optimization Algorithms

An optimization algorithm can be analyzed from different perspectives. In this section, we will
analyze it as an iterative procedure, a self-organization system, two conflicting components, and
three evolutionary operators.

2.1 Algorithm as an Iterative Process

Mathematical speaking, an algorithm A is an iterative process, which aims to generate a new and
better solution xt+1 to a given problem from the current solution xt at iteration or time t. For
example, the Newton-Raphson method to find the optimal value of f(x) is equivalent to finding the
critical points or roots of f ′(x) = 0 in a d-dimensional space [47, 40]. That is,

xt+1 = xt − f ′(xt)

f ′′(xt)
= A(xt). (1)

Obviously, the convergence rate may become very slow near the optimal point where f ′(x) → 0.
Sometimes, the true convergence rate may not be as quick as it should be. A simple way to improve
the convergence is to modify the above formula slightly by introducing a parameter p as follows:

xt+1 = xt − p
f ′(xt)

f ′′(xt)
, p =

1

1−A′(x∗)
. (2)

Here, x∗ is the optimal solution, or a fixed point of the iterative formula. It is worth pointing out
that the optimal convergence of Newton-Raphson’s method leads to an optimal parameter setting p
which depends on the iterative formula and the optimality x∗ of the objective f(x) to be optimized.

In general, we can write the above iterative equation as

xt+1 = A(xt, p). (3)

The above iterative formula is valid for a deterministic method; however, in modern metaheuristic
algorithms, randomization is often used in algorithms, and in many cases, randomization appears in
the form of a set of m random variables ε = (ε1, ..., εm) in an algorithm. For example, in simulated
annealing, there is one random variable, while in particle swarm optimization [25], there are two
random variables.

In addition, there are often a set of k parameters in an algorithm. For example, in particle
swarm optimization, there are 4 parameters (two learning parameters, one inertia weight, and the
population size). In general, we can have a vector of parameters p = (p1, ..., pk). Mathematically
speaking, we can write an algorithm with k parameters and m random variables as

xt+1 = A
(

xt,p(t), ε(t)
)

, (4)

where A is a nonlinear mapping from a given solution (a d-dimensional vector xt) to a new solution
vector xt+1.

It is worth pointing out that the above formula (4) is for a trajectory-based, single agent system.
For population-based algorithms with a swarm of n agents or solutions, we can extend the above
iterative formula to the following formula
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where p1, ..., pk are k algorithm-dependent parameters and ǫ1, ..., ǫm are m random variables.
This view of algorithm (4) is mainly dynamical or functional. It considers the functional (4) as

a dynamical system, which will evolve towards its equilibrium or attractor states. In principle, the
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behavoiur of the system can be described by the eigenvalues of A and its parameters in terms of
linear and/or weakly nonlinear dynamical system theories. However, this does not provide sufficient
insight into the diversity and complex characteristics. Self-organization may provide better insight
as we can see below.

2.2 Self-Organization in Nature

Self-organization occurs in nature in a diverse range of physical, chemical and biological systems.
For example, the formation of Rayleigh-Bénard convection cells, Belousov-Zhabotinsky oscillator,
and zebra and tiger skin patterns can all be considered as self-organization. A complex, nonlinear,
non-equilibrium system will self-organize under the right conditions. However, as different systems
can behave differently, and the conditions and route to self-organization may be difficult to define.
Simple systems such as a swing pendulum will self-organize towards an equilibrium state, but such a
state is usually simple and uninteresting. On the other hand, highly nonlinear complex systems such
as biological systems can have huge diversity in terms of self-organized states, but it is impossible
to describe them in a unified theoretical framework.

From the extensive studies of self-organization, it can be summarized that there are certain
conditions that are commonly in most systems for self-organization to occur [1, 24]. For example,
the size of the system should be sufficiently large with a sufficiently high number of degrees of
freedom or possible states S. In addition, the system must allow to evolve for a long time from
noise and far from equilibrium states. Most importantly, a selection mechanism must be in place to
ensure self-organization is possible [1, 24]. That is, the conditions for self-organization in a complex
system are:

• The system size is large with a sufficient number of degrees of freedom or states.

• There is enough diversity in the system such as perturbations, noise, edge of chaos, or far from
equilibrium.

• The system is allowed to evolve for a long time.

• A selection mechanism, or an unchanging law, acts in the system.

In other words, a system with states S will evolve towards the self-organized state S∗ driven by
a mechanism α(t) with a set of parameters α. That is

S
α(t)−→ S∗. (6)

2.3 Algorithms as Self-Organization

From the self-organization point of view, algorithm (4) is a self-organization system, starting from
many possible states xt and trying to converge to the optimal solution/state x∗, driven by the
algorithm A in the following schematic representation:

f(xt)
A−→ fmin(x∗). (7)

By comparing the conditions for self-organization and characteristics of algorithms, their simi-
larities and differences are summarized in Table 1.

However, there are some significant differences between a self-organizing system and an algorithm.
For self-organization, the avenues to the self-organized states may not be clear, and time is not an
important factor. On the other hand, for an algorithm, the way that makes an algorithm converge
is very important, and the speed of convergence is crucial so that the minimum computational cost
can be achieved to reach truly global optimality.
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Table 1: Similarity between self-organization and an optimization algorithm.
Self-organization Features Algorithm Characteristics
Noise, perturbations diversity Randomization escape local optima
selection mechanism structure selection convergence
re-organization change of states evolution solutions

2.4 Exploration and Exploitation

Nature-inspired optimization algorithms can also be analyzed from the ways they explore the search
space. In essence, all algorithms should have two key components: exploitation and exploration,
which are also referred to as intensification and diversification [5, 49].

Exploitation uses any information obtained from the problem of interest so as to help to generate
new solutions that are better than existing solutions. However, this process is typically local, and
information (such as gradient) is also local. Therefore, it is for local search. For example, hill-
climbing is a method that uses derivative information to guide the search procedure. In fact, new
steps always try to climb up the local gradient. The advantage of exploitation is that it usually
leads to very high convergence rates, but its disadvantage is that it can get stuck in a local optimum
because the final solution point largely depends on the starting point.

On the other hand, exploration makes it possible to explore the search space more efficiently,
and it can generate solutions with enough diversity and far from the current solutions. Therefore,
the search is typically on a global scale. The advantage of exploration is that it is less likely to get
stuck in a local mode, and the global optimality can be more accessible. However, its disadvantages
are slow convergence and waste of lot computational efforts because many new solutions can be far
from global optimality.

Therefore, a final balance is required so that an algorithm can achieve good performance. Too
much exploitation and too little exploration means the system may converge more quickly, but the
probability of finding the true global optimality may be low. On the other hand, too little exploitation
and too much exploration can cause the search path wonder around with very slow convergence.
The optimal balance should mean the right amount of exploration and exploitation, which may lead
to the optimal performance of an algorithm. Therefore, balance is crucially important [5].

However, how to achieve such balance is still an open problem. In fact, no algorithm can claim
to have achieved such balance in the current literature. In essence, the balance itself is a hyper-
optimization problem, because it is the optimization of an optimization algorithm. In addition, such
balance may depend on many factors such as the working mechanism of an algorithm, its setting
of parameters, tuning and control of these parameters and even the problem to be considered.
Furthermore, such balance may not universally exist, and it may vary from problem to problem.
This is consistent with the so-called “no-free-lunch (NFL)” theorems [45].

The NFL theorems indicated that for any two algorithms A and B, if A performs better than
B for some problems, there must be some problems on which that B will perform better than A.
That is, if measured over all possible problems, the average performance of both algorithms are
essentially equivalent. In other words, there is no universally better algorithm that can be efficient
for all problems. Though theoretically solid, NFL theorem may have limited impact in practice
because we do not need to solve all problems and we do not need the average performance either.
One of the main aims of problem-solving in practice is to try to find the optimal or high-quality
feasible solution in a short, acceptable timescale. For a given type of problem, some algorithms can
indeed perform better than others. For example, for convex problems, algorithms that use problem-
specific convexity information will perform better than black-box type algorithms. However, some
studies suggest that free lunches can exist for some types of problems, especially for co-evolutionary
approaches [46].

These unresolved problems and mystery can motivate more research in this area, and it can be
expected relevant literature will increase in the near future.
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2.5 Evolutionary Operators

By directly looking at the operations of an algorithm, it is also helpful to see how it works. Let
us take genetic algorithms as an example. Genetic algorithms (GA) are a class of algorithms based
on the abstraction of Darwin’s evolution of biological systems, pioneered by J. Holland and his
collaborators in the 1960s and 1970s. Genetic algorithms use genetic operators such as crossover
and recombination, mutation, and selection [21]. It has been shown that genetic algorithms have
many advantages over traditional algorithms. Three advantages are distinct: gradient-free, highly
explorative, and parallelism. No gradient/derivative information is needed in GA, and thus GA
can deal with complex, discontinuous problems. The stochastic nature of crossover and mutation
make GA explore the search space more effectively and the global optimality is more likely to be
reached. In addition, genetic algorithms are population-based with multiple chromosomes, and thus
it is possible to implement in a parallel manner [48, 49].

The three key evolutionary operators in genetic algorithms can be summarized as follows:

• Crossover: the recombination of two parent chromosomes (solutions) by exchanging part of one
chromosome with a corresponding part of another so as to produce offsprings (new solutions).

• Mutation: the change of part of a chromosome (a bit or several bits) to generate new genetic
characteristics. In binary string encoding, mutation can be simply achieved by flipping between
0 and 1. Mutation can occur at a single site or multiple sites simultaneously.

• Selection: the survival of the fittest, which means the highest quality chromosomes and/characteristics
will stay within the population. This often takes some form of elitism, and the simplest form
is to let the best genes to pass onto the next generations in the population.

Mathematically speaking, crossover is a mixing process in a subspace [3, 4]. This can be seen
by an example. For a problem with 8 dimensions with a total search space Ω = ℜ8, the parents
solutions are drawn from x1 = [aaaaaabb], x2 = [aaaaaaaa] where a and b can be binary digits or a
real value for ith component/dimension of a solution to a problem. Whatever the crossover may be,
the offsprings will be one of the 4 possible combinations: [aaaaaaba], [aaaaaaab], [aaaaaaaa] and
[aaaaaabb]. In any case, the first 6 variables are always [aaaaaa]. This means that the crossover
or recombination will lead to a solution in a subspace where only the 7th and 8th variables are
different. No solution will be in the subspace that the first 6 variables will be different. In other
words, the crossover operator will only create solutions within a subspace S = [aaaaaa]∪ℜ2 ⊂ Ω in
the present case. Therefore, crossover can be a local search operator. However, crossover can also be
global if their parents are significantly different and the subspace is huge. In fact, the subspace for
crossover can be extremely large, and thus crossover in a large subspace can be practically global.
For example, if the parent population is sampled from the whole search space and if the subspace is
almost the entire search space, the crossover acts a global operator. Therefore, care should be taken
when we say a global operator or a local operator, as their boundaries can be rather vague.

On the other hand, mutation provides a mechanism for potential global exploration. In the above
example, if we mutate one of the solution in the first dimension, it will generate a solution not in
the subspace. For example, for a solution x1 = [aaaaaabb] ∈ S, if its first a becomes b, then it
generates a new solution xq = [baaaaabb] /∈ S. In fact, xq can be very difficult from the existing
solutions, and can thus jump out of any previous subspace. For this reason, mutation operator can
be considered as an operator with a global search capability. However, it is worth pointing out
again that all this depends on the step size and rate of mutation. If the mutation rate is very low,
and the solutions generated are not far away (either limited by low frequency mutation or few sites
mutation), mutation may form a local random walk. In this case, mutation can be essentially local.
Again, whether mutation is global or local, it depends on its frequency and the diversity of the new
solutions.

Both crossover and mutation will provide the diversity for new solutions. However, crossover
provides good mixing, and its diversity is mainly limited in the subspace. Mutation can provide
better diversity, though far-away solutions may drive the population away from converged/evolved
characteristics.
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It is worth pointing out that selection is a special operator which has a dual role: to choose
the best solutions in a subspace and to provide a driving force for self-organization or convergence.
Without selection, there is no driving force to choose what is the best for the system, and therefore
selection enables a system to evolve with a goal. With a proper selection mechanism, only the
fittest solutions and desired stages may be allowed to gradually pass on, while unfit solutions in the
population will gradually die out. Selection can be as simple as a high degree of elitism, and only
the best is selected. Obviously, other forms of selection mechanisms such as fitness-proportional
crossover can be used.

The role and main functions of three evolutionary operators can be categorized as follows:

• Crossover is mainly for mixing within a subspace (that can be huge). It will help to make the
system converge.

• Mutation provides a main mechanism for escaping local modes, and it can be generalized as a
randomization technique.

• Selection provides a driving force for the system to evolve towards the desired states. It is
essentially an intensive exploitative action.

Mutation can also take different forms, and one way is to simply use stochastic moves or ran-
domization. For example, the traditional Hooke-Jeeves pattern search (PS) is also a gradient-free
method, which has inspired many new algorithms. The key step in pattern search is the consecutive
increment of one dimension followed by the increment along the other dimensions. The steps will
be tried and shrank when necessary [15].

Nowadays, the pattern search idea can be generated by the following equation:

xi = xi + δxi = xi + (xnewmove − xi), i = 1, 2, ..., d. (8)

This can be written as a vector equation

x = x+ δx = x+ (xnewmove − x). (9)

As we can see here, δx acts as a mutation operator in 2d directions in a d-dimensional space.
Differential evolution (DE) was developed by R. Storn and K. Price by their seminal papers in

1996 and 1997 [37, 38]. In fact, modern differential evolution (DE) has strong similarity to the
traditional pattern search mutation operator. In fact, the mutation in DE can be viewed as the
generalized pattern search in any random direction (xp − xq) by

xi = xr + F (xp − xq), (10)

where F is the differential weight in the range of [0, 2]. Here, r, p, q, i are four different integers
generated by random permutation.

In addition, DE also has a crossover operator which is controlled by a crossover probability
Cr ∈ [0, 1] and the actual crossover can be carried out in two ways: binomial and exponential.
Selection is essentially the same as that used in genetic algorithms. It is to select the most fittest,
and for the minimization problem, the minimum objective value. Therefore, we have

xt+1
i =







ut+1
i if f(ut+1

i ) ≤ f(xt
i),

xt
i otherwise.

(11)

Most studies have focused on the choice of F , Cr, and n as well as the modification of the mutation
scheme. In addition, it can be clearly seen that selection is also used when the condition in the
above equation is checked. Various variants of DE all use crossover, mutation and selection, and
the main differences are in the steps of mutation and crossover. For example, DE/Rand/1/Bin use
three vectors for mutation and binomial crossover [34].
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2.6 Role of the Current Best Solution

The role of current best solution can be two-fold. One the one hand, it seems that the use of the
current global best g∗ found so far during the iterative search process can speed up the convergence as
it exploits the information during the search process; however, both observations and mathematical
analysis suggest that the use of the current best solution may somehow lead to premature convergence
because the converged current best is not necessarily the true global optimal solution to the problem
under consideration. Therefore, the current best solution may act as a double-edged sword; it can
work well once properly used, but it can also lead to prematured local solutions.

On the other hand, the current best solution can be considered as a (narrow) type of elitism,
which will increase the local selection or evolution pressure, and can thus help the system to converge.
However, too much pressure can lead to the inability to adapt to rapidly changing environments,
limiting the diversity of the population.

Therefore, mathematical analysis and practical observations seem to suggest that the use of the
current can speed up convergence under the right conditions, but it will inhibit the ability and
probability of finding the global optimality. Algorithms that use g∗ may not have guaranteed global
convergence. Consequently, it is no surprise that metaheuristic algorithms such as particle swarm
optimization and others do not have guaranteed global convergence. However, algorithms do not use
g∗ may have global convergence. In fact, simulated annealing and cuckoo search have guaranteed
global convergence.

3 Analysis of Swarm Intelligence Based Algorithms

In the rest of this paper, we will first briefly introduce the key steps of a few SI-based algorithms and
then analyze them in terms of evolutionary operators and the ways for exploration and exploitation.

3.1 Ant and Bee Algorithms

Ant algorithms, especially the ant colony optimization developed by M. Dorigo [10, 11], mimic the
foraging behavior of social ants. Primarily, all ant algorithms use pheromone as a chemical messenger
and the pheromone concentration as the indicator of quality solutions to a problem of interest. From
the implementation point of view, solutions are related to the pheromone concentration, leading to
routes and paths marked by the higher pheromone concentrations as better solutions, which can be
suitable for some problems such as discrete combinatorial problems.

Looking at ant colony optimization closely, random route generation is primarily mutation, while
pheromone-based selection provides a mechanism for selecting shorter routes. There is no explicit
crossover in ant algorithms. However, mutation is not simple action as flipping digits as in genetic
algorithms, new solutions are essentially generated by fitness-proportional mutation. For example,
the probability of ants in a network problem at a particular node i to choose the route from node i
to node j is given by

pij =
φα
ijd

β
ij

∑n
i,j=1 φ

α
ijd

β
ij

, (12)

where α > 0 and β > 0 are the influence parameters, and φij is the pheromone concentration on
the route between i and j. Here, dij is the desirability of the same route. The selection is subtly
related to some a priori knowledge about the route such as the distance sij that is often used so
that dij ∝ 1/sij .

On the other hand, bee algorithms do not usually use pheromone [29]. For example, in the
artificial bee colony (ABC) optimization algorithm [23], the bees in a colony are divided into three
groups: employed bees (forager bees), onlooker bees (observer bees), and scouts. Randomization is
carried out by scout bees and employed bees, and both are mainly mutation. Selection is related to
the honey or objective. Again, there is no explicit crossover.

Both ACO and ABC only use mutation and fitness-related selection, they can have good global
search ability. In general, they can explore the search space relatively effectively, but convergence
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may be slow because it lacks crossover, and thus the subspace exploitation ability is very limited.
In fact, the lack of crossover is very common in many metaheuristic algorithms.

In terms of exploration and exploitation, both ant and bee algorithms have strong exploration
ability, but their exploitation ability is comparatively low. This may explain why they can perform
reasonably well for some tough optimization, but the computational effort such as the number of
function evaluations is typically high.

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995 [25], based
on the swarming behaviour such as fish and bird schooling in nature. In essence, the position and
velocity of a particle, xi and vi, respectively, can be updated as follows:

vt+1
i = vt

i + αǫ1[g
∗ − xt

i] + βǫ2[x
∗

i − xt
i], (13)

xt+1
i = xt

i + vt+1
i , (14)

where ǫ1 and ǫ2 are two random vectors, and each entry can take the values between 0 and 1. The
parameters α and β are the learning parameters or acceleration constants, which can typically be
taken as, say, α ≈ β ≈ 2.

By comparing the above equations with the pattern search in Section 2.3, we can see that the new
position is generated by pattern-search-type mutation, while selection is implicitly done by using
the current global best solution g∗ found so far, and also through the individual best x∗

i . However,
the role of individual best is not quite clear, though the current global best seems very important
for selection, as this is shown in the accelerated particle swarm optimization [25, 48, 54].

Therefore, PSO consists of mainly mutation and selection. There is no crossover in PSO, which
means that PSO can have a high mobility in particles with a high degree of exploration. However,
the use of g∗ seems strongly selective, which may be like a double-edge sword. Its advantage is that
it helps to speed up the convergence by drawing towards the current best g∗, while at the same time
it may lead to premature convergence even though this may not be the true optimal solution of the
problem of interest.

3.3 Firefly Algorithm

Firefly Algorithm (FA) was developed by Xin-She Yang in 2008 [48, 50, 51], which was based on the
flashing patterns and behaviour of tropical fireflies. FA is simple, flexible and easy to implement.

The movement of a firefly i is attracted to another more attractive (brighter) firefly j is deter-
mined by

xt+1
i = xt

i + β0e
−γr2ij(xt

j − xt
i) + α ǫti, (15)

where the second term is due to the attraction, and β0 is the attractiveness at r = 0. The third term
is randomization with α being the randomization parameter, and ǫti is a vector of random numbers
drawn from a Gaussian distribution at time t. Other studies also use the randomization in terms of
ǫti that can easily be extended to other distributions such as Lévy flights [50, 51]. A comprehensive
review of firefly algorithm and its variants has been carried out by Fister et al. [14].

From the above equation, we can see that mutation is used for both local and global search.
When ǫti is drawn from a Gaussian distribution and Lévy flights, it produces mutation on a larger
scale. On the other hand, if α is chosen to be a very small value, then mutation can be very small,
and thus limited to a local subspace. Interestingly, there is no explicit selection in the formula as g∗

is not used in FA. However, during the update step in the loops in FA, ranking as well as selection
is used.

One novel feature of FA is that attraction is used, and this is the first of its kind in any SI-based
algorithms. Since local attraction is stronger than long-distance attraction, the population in FA
can automatically subdivide into multiple subgroups, and each group can potentially swarm around
a local mode. Among all the local mode, there is always a global best solution which is the true
optimality of the problem. Thus, FA can deal with multimodal problems naturally and efficiently.
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From Eq. (15), we can see that FA degenerates into a variant of differential evolution when γ = 0
and α = 0. In addition, when β0 = 0, it degenerates into simulated annealing (SA). Further, when
xt
j is replaced by g∗, FA also becomes the accelerated PSO. Therefore, DE, APSO and SA are

special cases of the firefly algorithm, and thus FA can have the advantages of these algorithms. It
is no surprise that FA can be versatile and efficient, and perform better than other algorithms such
as GA and PSO.

As a result, the firefly algorithm and its variants have been applied in a diverse range of appli-
cations [2, 13, 19, 20, 22, 30, 32], including hard problems and multiobjective problems [22, 35, 36,
39, 62, 63].

3.4 Cuckoo Search

Cuckoo search (CS) was developed in 2009 by Xin-She Yang and Suash Deb [56]. CS is based on
the brood parasitism of some cuckoo species. In addition, this algorithm is enhanced by the so-
called Lévy flights [33], rather than by simple isotropic random walks. Recent studies show that
CS is potentially far more efficient than PSO and genetic algorithms [57, 58, 42, 6, 7, 8, 9]. In
fact, CS and its variants have applied in almost every area of engineering design and applications
[27, 28, 31, 39, 41, 61].

CS uses a balanced combination of a local random walk and the global explorative random walk,
controlled by a switching parameter pa. The local random walk can be written as

xt+1
i = xt

i + αs⊗H(pa − ǫ)⊗ (xt
j − xt

k), (16)

where xt
j and xt

k are two different solutions selected randomly by random permutation, H(u) is a
Heaviside function, ǫ is a random number drawn from a uniform distribution, and s is the step size.
Here, ⊗ is an entry-wise multiplication.

On the other hand, the global random walk is carried out by using Lévy flights

xt+1
i = xt

i + αL(s, λ), (17)

where

L(s, λ) =
λΓ(λ) sin(πλ/2)

π

1

s1+λ
, (s ≫ s0 > 0). (18)

Here α > 0 is the step size scaling factor, which should be related to the scales of the problem of
interest.

CS has two distinct advantages over other algorithms such as GA and SA, and these advantages
are: efficient random walks and balanced mixing. Since Lévy flights are usually far more efficient
than any other random-walk-based randomization techniques, CS can be efficient in global search.
In fact, recent studies show that CS can have guaranteed global convergence [43]. In addition, the
similarity between eggs can produce better new solutions, which is essentially fitness-proportional
generation with a good mixing ability. In other words, CS has varying mutation realized by Lévy
flights, and the fitness-proportional generation of new solutions based on similarity provides a subtle
form of crossover. In addition, selection is carried out by using pa where the good solutions are passed
onto the next generation, while not so good solutions are replaced by new solutions. Furthermore,
simulations also show that CS can have auto-zooming ability in the sense that new solutions can
automatically zoom into the region where the promising global optimality is located.

In addition, equation (17) is essentially simulated annealing in the framework of Markov chains.
In Eq. (16), if pa = 1 and αs ∈ [0, 1], CS can degenerate into a variant of differential evolution.
Furthermore, if we replace xt

j by the current best solution g∗, then (16) can further degenerate
into accelerated particle swarm optimization (APSO) [54]. This means that SA, DE and APSO are
special cases of CS, and that is one of the reasons why CS is so efficient.

It is worth pointing out that both CS and FA can capture the main characteristics of SA, DE
and APSO, but there are some significant difference between FA and CS. One major difference
between FA and CS is that FA uses the distance-based, landscape-modulated attraction. As local
attraction is stronger than long-distance attraction, FA can subdivide the whole population into
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such populations, while CS does not. In addition, FA uses random walks and ranking, while CS uses
Lévy flights and random permutation, which will result in different behaviour. These differences
make both FA and CS unique.

3.5 Bat Algorithm

The metaheuristic bat algorithm (BA) was developed by Xin-She Yang in 2010 [52]. It was inspired
by the echolocation behavior of microbats. It is the first algorithm of its kind to use frequency
tuning. Each bat is associated with a velocity vt

i and a location xt
i, at iteration t, in a d-dimensional

search or solution space. Among all the bats, there exists a current best solution x∗. Therefore, the
above three rules can be translated into the updating equations for xt

i and velocities vt
i:

fi = fmin + (fmax − fmin)β, (19)

vt
i = vt−1

i + (xt−1
i − x∗)fi, (20)

xt
i = xt−1

i + vt
i, (21)

where β ∈ [0, 1] is a random vector drawn from a uniform distribution.
The loudness and pulse emission rates are regulated by the following equations:

At+1
i = αAt

i, (22)

and
rt+1
i = r0i [1− exp(−γt)], (23)

where 0 < α < 1 and γ > 0 are constants. In essence, here α is similar to the cooling factor of a
cooling schedule in simulated annealing.

BA has been extended to multiobjective bat algorithm (MOBA) by Yang [53, 55], and preliminary
results suggested that it is very efficient.

In BA, frequency tuning essentially acts as mutation, while selection pressure is relatively con-
stant via the use of the current best solution x∗ found so far. There is no explicit crossover; however,
mutation varies due to the variations of loudness and pulse emission. In addition, the variations of
loudness and pulse emission rates also provide an autozooming ability so that exploitation becomes
intensive as the search is approaching global optimality.

In principle, we can use the same procedure to analyze the key components and evolutionary
operators in all other algorithms such as the most recent flower pollination algorithm [59]. Due to the
length limit, we will not analyze other algorithms here. Instead, we will highlight more important
issues such as performance measures and some open problems.

4 Performance Measures

Despite the huge number of studies about various metaheuristic algorithms, it still lacks a good
performance measure for comparing different algorithms. In general, there are two major ways to
compare any two algorithms [49].

One way is to compare the accuracy of two algorithms to solve the same problem for a fixed
number of function evaluations. In most case, the problem to be solved is usually a test function
whose minimum value is often zero by proper formulation. For example, if algorithm A obtains 0.001
for, say, N = 1000 function evaluations, while algorithm B obtains 0.002 in a run, one tends to say
A obtained a better value than B. However, care should be taken when making a statement. Due
to the stochastic nature, multiple runs should be carried out so that meaningful statistical measures
can be obtained. Suppose, we run each algorithm 100 times, and we can get a mean function value
and its standard deviation. For example, if we run algorithm A for 100 independent runs, we get a
mean µA = 0.001 and a standard deviation σA = 0.01. We can write the results as

fA = µA ± σA = 0.001± 0.01. (24)
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Similarly, if we run B 100 times, and we get

fB = µB ± σB = 0.001± 0.02. (25)

As the standard deviation σB is large number than σA, and their means are the same, we can still
say algorithm A obtain better results because it has smaller or narrower range of confidence interval,
though such improvement of A over B is marginal.

Another way is to compare the numbers of function evaluations required by two different al-
gorithms for a given accuracy. Suppose, the accuracy δ = 10−3 is fixed, if algorithm A requires
about 1000 function evaluations, while algorithm B requires 1400 function evaluations, we may say
A is better than B. Again, care should be taken when drawing such conclusions. Multiple runs
are needed to ensure meaningful statistical measures. Suppose, we run each algorithm 100 times
independently, we get a mean 1000 and a corresponding standard deviation of 300. We can write
the results as

NA = 1000± 300. (26)

Similarly, for algorithm B, we may get

NB = 1400± 300. (27)

In this case, we may draw the conclusion that A is better than B with some statistical confidence.
A third way is to compare the execution times for two algorithms. However, this approach is

not recommended because it has many drawbacks. Firstly, one has to ensure each algorithm is
implemented correctly and efficiently. Even two algorithms are equally efficient, but the ways of
implementing the calculations can affect the execution time. Secondly, different computers may
have different configurations, and one has to ensure the computation is carried out on the same
computer. Thirdly, even the same computer is used, the hidden processes (especially true for the
Windows operating system) can consume a lot of computing power at different times, even the
computer is virus free. Finally, even all the above has ensured that the results are good, such
execution times are usually not repeatable by other users.

A fourth way is to use normalize results for comparison, and this approach is misleading and can
produce wrong conclusions [44]. The idea is to choose an algorithm as the basis of comparison, and
normalize the results by others to produce a ratio. For example, if we use the results by B as the
basis, we have to normalize A to produce

µA

µB
= 1.00. (28)

We can say both A and B are seemingly equally efficient. However, extreme care must be taken
when doing this because we have to consider uncertainty propagations carefully.

As we know for a function of A/B when A and B has no correlation (i.e., their correlation
coefficient is zero), the overall or combined standard deviation is given by

σA/B =
A

B

√

σ2
A

A2
+

σ2
B

B
. (29)

For the results given in Eqs.(24) and (25), we have

µA = 0.001, µB = 0.001, σA = 0.01, σB = 0.02, (30)

which gives

σA/B =
0.001

0.001

√

0.012

0.0012
+

0.022

0.0012
≈ 22.3607. (31)

Therefore, we have the performance of A relative to B

µA/B ± σA/B = 1.00± 22.36, (32)
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which gives the impression that A is worse than B because of the large standard deviation. This
conclusion contradicts with the earlier results. Even for the special case when µA = µB = 0.001
and σA = σB = 0.02, we may have 1.00 ± 20

√
2 = 1.00 ± 28.284, which gives an impression of

an even worse solution, though in reality both algorithm perform almost equally well. This clearly
demonstrate the danger of this approach. Obviously, results should never be normalized in this ways
for comparison [44]. Otherwise, such misleading comparison can render the results invalid.

As we have seen, statistically robust performance measures are yet to be developed, and we hope
this review can inspire more research in this area.

5 Discussions

Many optimization algorithms are based on swarm intelligence, and use population-based approaches.
Most will use some sort of three key evolutionary operators: crossover, mutation and selection; how-
ever, almost all algorithms use mutation and selection, while crossover may appear in some subtle
way in some algorithms. Crossover is efficiently in exploitation and can often provide good conver-
gence in a subspace. If this subspace is where the global optimality lies, then crossover with elitism
can almost guarantee to achieve global optimality. However, if the subspace of crossover is not in
the region where the global optimality lies, there is a danger for premature convergence.

The extensive use of mutation and selection can typically enable a stochastic algorithm to have
a high ability of exploration. As the exploitation is relatively low, the convergence rate is usually
low, compared with that of traditional methods such as Newton-Raphson’s methods. As a result,
most metaheuristic algorithms can usually perform well for nonlinear problems, including relatively
tough optimization. However, the number of function evaluations can be very high.

The role of crossover and mutation in exploration is rather subtle, while selection as an exploita-
tion mechanism can be simple and yet effective. However, it is still not clear how the combination of
crossover, mutation and selection can directly link to the balance of exploration and exploitation. In
fact, this is still an open question. For example, in genetic algorithms, the probability of crossover
can be as high as 0.95, while the mutation can be typically low in the range of 0.01 to 0.05. In com-
parison with other algorithms, the exploration seems low, but genetic algorithms have been proved
to be very effective. On the other hand, mutation-related Lévy flights in cuckoo search can have a
high exploration ability, and yet cuckoo search can converge very quickly. At the same time, it is
not clear what percentage of the search is in exploration in the standard firefly algorithm, and yet
it has been show that firefly algorithm is very effective in dealing with multimodal, highly nonlinear
problems.

Even in the standard particle swarm optimization, it is not clear what percentage of the search
iterations is in the exploration. The use of the current global best can be advantageous and disad-
vantageous as well. The current global best may help to speed up the convergence, but it may also
lead to the wrong optimality if the current global best is obtained from a biased set of samples drawn
from a subspace where a local optimum (not the global optimum) is located. All these suggest that
it is still unknown how to achieve the optimal balance of exploration and exploitation by tuning the
combination of evolutionary operators.

In fact, a fine balance cannot be achieved by putting together all evolutionary operators in a
good way without tuning parameters. From experience, we know that the setting or values of any
algorithm-dependent parameters can affect the performance of an algorithm significantly. In order
to get good performance, we need to find the right values for parameters. In other words, parameters
need to be fine-tuned so that the algorithm can perform to the best degree. Parameter tuning is still
an active area of research [12]. An interesting development is a unified framework for self-tuning
optimization algorithms [60].

Despite the importance of the above problems, little progress has been made. On the contrary,
there is some diversion in research efforts away from important problems. Nature has evolved into
millions of diverse species with a diverse range of characteristics, but this does not mean that re-
searchers should develop millions of different algorithms, such as the grass algorithm, leave algorithm,
beatles algorithm, sky algorithm, universe algorithm, or even hooligan algorithm. Emphasis should
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focus on solving important problems.
However, this does not mean new algorithms should not be developed at all. The research

community should encourage truly novel and efficient algorithms in terms of better evolutionary
operators and a better balance of exploration and exploitation.

6 Conclusion

Optimization algorithms based on swarm intelligence can have some distinct advantages over tradi-
tional methods. By using theories of dynamical systems and self-organization as well as the frame-
work of Markov chains, we have provided a critical analysis of some recent SI-based algorithms. The
analysis has focus on the way of achieving exploration and exploitation, and the basic components
of evolutionary operators such as crossover, mutation and selection of the fittest.

Through analysis, it has been found that most SI-based algorithms use mutation and selection
to achieve exploration and exploitation. Some algorithms use crossover as well, while most do not.
Mutation enables an algorithm to escape any local modes, while crossover provides good mixing to
explore a subspace more effectively, and thus more likely to lead to convergence. Selection provides
a driving mechanism to select the promising states or solutions.

The analysis also implies that there is room for improvement. Some algorithms such as PSO may
lack mixing and crossover, and therefore, hybridization may be useful to enhance its performance.

It is worth pointing out that the above analysis is based on the system behaviour for continuous
optimization problems, and it can be expected that these results are still valid for combinatorial
optimization problems. However, care should be taken for combinatorial problems where neigh-
bourhood may have different meaning, and, therefore, the subspace concept may also be different.
Further analysis and future studies may help to provide more elaborate insight.
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A.; Terrazas, G), Studies in Computational Intelligence Vol. 284, Springer Berlin, pp. 65–74.

[53] Yang, X.S., Bat algorithm for multi-objective optimisation, Int. J. Bio-Inspired Computation,
3 (5), 267-274 (2011).

[54] Yang, X. S., Deb, S., and Fong, S., (2011). Accelerated particle swarm optimization and
support vector machine for business optimization and applications, in: Networked Digital
Technologies 2011, Communications in Computer and Information Science, 136, pp. 53–66.

[55] Yang, X. S., Gandomi, A. H., (2012). Bat algorithm: a novel approach for global engineering
optimization, Engineering Computations, 29(5), 1–18.

[56] Yang, X. S. and Deb, S., (2009). Cuckoo search via Lévy flights, Proceeings of World Congress
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