Skip to main content
Log in

A movable damped wave algorithm for solving global optimization problems

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a new optimization methodology called movable damped wave algorithm for solving global optimization problems. The proposed methodology mimics mathematically the behavior of waveform induced by oscillating phenomena. It starts by creating multiple initial random solutions which are updated through introducing a mathematical model based on a damped wave function. In the proposed methodology, the updating mechanisms of solutions are based on designing a mathematical relation for the movable wave with the aim to effectively achieve robust solutions. Therefore, this methodology can be more robust, statistically sound, and convergent quickly to the optimal global solution. The performance of the proposed is validated by carrying out on 23 benchmark problems and three engineering design problems. The results show vividly that the proposed is a reliable algorithm and outperforms the comparative algorithms in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gaoji S, Ruiqing Z, Yanfei L (2016) Joint operations algorithm for large-scale global optimization. Appl Soft Comput 38:1025–1039

    Article  Google Scholar 

  2. Rao SS (2009) Engineering optimization: theory and practice. Wiley, New York

    Book  Google Scholar 

  3. X. S. Yang. Engineering optimisation: an introduction with metaheuristic applications. Wiley, New York, 2010

  4. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72

    Article  Google Scholar 

  5. Das S, Suganthan P (2011) Differential evolution: a survey of the state of-the-art. IEEE Trans Evol Comput 15:4–31

    Article  Google Scholar 

  6. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, pp. 39–43

  7. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life, pp 134–42

  8. Rizk-Allah RM, Zaki EM, El-Sawy AA (2013) Hybridizing ant colony optimization with firefly algorithm for unconstrained optimization problems. Appl Math Comput 224:473–483

    MathSciNet  MATH  Google Scholar 

  9. Rizk M. Rizk-Allah RA, El-Sehiemy S, Deb G-G, Wang (2017) A novel fruit fly framework for multi-objective shape design of tubular linear synchronous motor. J Supercomput 73(3):1235–1256

    Article  Google Scholar 

  10. Rizk-Allah RM, Hassanien AE (2017) New binary bat algorithm for solving 0–1 knapsack problem. Syst Complex Intell. https://doi.org/10.1007/s40747-017-0050-z

    Article  Google Scholar 

  11. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: NaBIC2009, World congress on Nature and biologically inspired computing, pp 210–214,

  12. Hassanien AE, RizkAllah RM, Elhosen M (2018) A hybrid crow search algorithm based on rough searching scheme for solving engineering optimization problems, J Ambient Intell Humaniz Comput https://doi.org/10.1007/s12652-018-0924-y

    Article  Google Scholar 

  13. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  14. Seyedali Mirjalili SCA (2016) A sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  15. Seyedali Mirjalili A, Lewis (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  16. Seyedali, Mirjalili (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  17. Mousa AA, Waiel F, Abd El-Wahed RM, Rizk-Allah (2011) A hybrid ant colony optimization approach based local search scheme for multiobjective design optimizations. Electr Power Syst Res 81:1014–1023

    Article  Google Scholar 

  18. El-Sawy AA, Zaki EM, Rizk-Allah RM, (2013) A novel hybrid ant colony optimization and firefly algorithm for solving constrained engineering design problems. J Nat Sci Math 6(1):1–22

    Google Scholar 

  19. El-Sawy AA, Zaki EM, Rizk-Allah RM (2013) novel hybrid ant colony optimization and firefly algorithm for multi-objective optimization problems. Int J Math Arch 4(1):152–161

    MATH  Google Scholar 

  20. Rizk-Allah RM (2014) A novel multi-ant colony optimization for multi-objective resource allocation problems. Int J Math Arch 5:183–192

    Google Scholar 

  21. Rizk-Allah RM (2016) Hybridization of fruit fly optimization algorithm and firefly algorithm for solving nonlinear programming problems. Int J Swarm Intel Evol Comput 5:1–10

    Article  Google Scholar 

  22. Rizk M. Rizk-Allah RagabAEl-Sehiemy, Wang G-G (2018) A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. Appl Soft Comput 63:206–222

    Article  Google Scholar 

  23. Rizk M. Rizk-Allah AE, Hassanien M, Elhoseny M, Gunasekaran (2018) A new binary salp swarm algorithm: development and application for optimization tasks. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3613-z

    Article  Google Scholar 

  24. Rizk-Allah RM (2018) An improved sine–cosine algorithm based on orthogonal parallelinformation for global optimization. Soft Comput. https://doi.org/10.1007/s00500-018-3355-y

    Article  Google Scholar 

  25. Kaveh A, Mohammad A, Motie Share M, Moslehi (2013) Magnetic charged system search: a new meta-heuristic algorithm for optimization. Acta Mech 224(1):85–107

    Article  MATH  Google Scholar 

  26. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  27. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70

    Article  Google Scholar 

  28. Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout and size optimization with frequency constraints. Comput Struct 130:10–21

    Article  Google Scholar 

  29. Kaveh A, Bakhshpoori T (2016) A new metaheuristic for continuous structural optimization: water evaporation optimization. Struct Multidispl Optim Issue 1:54 23–43.

    Google Scholar 

  30. Kaveh A, Ilchi M, Ghazaan (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75

    Article  MATH  Google Scholar 

  31. Kaveh A, Ghazaan MI (2017) Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints. Acta Mech 1:307–322 228(

    Article  MathSciNet  Google Scholar 

  32. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans on Evol Comput Vol 1:67–82

    Article  Google Scholar 

  33. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  34. Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to solve nonlinearly constrained optimization problems with GA’s. In Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, pp 579–584

  35. Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization. J Heuristics 15:617–644

    Article  MATH  Google Scholar 

  36. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  37. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solving structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  38. Chickermane H, Gea H (1996) Structural optimization using a new local approximation method. Int J Numer Meth Eng 39:829–846

    Article  MathSciNet  MATH  Google Scholar 

  39. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36):3902–3933

    Article  MATH  Google Scholar 

  40. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29(11):2013–2015

    Article  Google Scholar 

  41. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2):311–338

    Article  MATH  Google Scholar 

  42. Garg H (2014) Solving structural engineering design optimization problems using an artificial bee colony algorithm. J Ind Manag Optim 10(3):777–794

    Article  MathSciNet  MATH  Google Scholar 

  43. Hwang SF, He RS (2006) A hybrid real-parameter genetic algorithm for function optimization. Adv Eng Inf 20(1):7–21

    Article  Google Scholar 

  44. Mehta VK, Dasgupta B (2012) A constrained optimization algorithm based on the simplex search method. Eng Optim 44(5):537–550

    Article  MathSciNet  Google Scholar 

  45. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396

    Article  Google Scholar 

  46. Singh A, Deep K (2017) Hybridizing gravitational search algorithm with real coded genetic algorithms for structural engineering design problem. OPSEARCH. https://doi.org/10.1007/s12597-016-0291-4

    Article  MathSciNet  MATH  Google Scholar 

  47. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  48. Deb K (1997) GeneAS: a robust optimal design technique for mechanical component design. In: Dasgupta D, Michalewicz Z (eds) Evolutionary algorithms in engineering applications. Springer, Berlin, pp 497–514

    Chapter  Google Scholar 

  49. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for con-strained engineering design problems. Eng Appl Artif Intell 20:89–99

    Article  Google Scholar 

  50. Cagnina LC, Esquivel SC, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32:319–326

    MATH  Google Scholar 

  51. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27:155–182

    Article  MATH  Google Scholar 

  52. Kaveh A, Talatahari S (2009) Engineering optimization with hybrid particle swarm and ant colony optimization. Asian J Civ Eng (Build Hous.) 10:611–628

    Google Scholar 

  53. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform vol 16:193–203

    Article  Google Scholar 

  54. Coelho LS (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37:1676–1683

    Article  Google Scholar 

  55. Montes EM, Coello CAC, Reyes JV, Davila LM (2007) Multiple trial vectors in differential evolution for engineering design. Eng Optim 39:567–589

    Article  MathSciNet  Google Scholar 

  56. Montes EM, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37:443–473

    Article  MathSciNet  MATH  Google Scholar 

  57. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboul Ella Hassanien.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rizk M. Rizk-Allah and Aboul Ella Hassanien: Scientific Research Group in Egypt, http://www.egyptscience.net.

Appendix

Appendix

See Tables 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21.

Table 12 Unimodal test functions
Table 13 2 Multimodal test functions
Table 14 Multimodal test functions with fix dimension
Table 15 \({a_{ij}}\)in \({F_{14}}\)
Table 16 \({a_i}\,,{b_i}\) in \({F_{15}}\)
Table 17 \({a_{ij}}\,,{c_i}\) in \({F_{19}}\)
Table 18 \({p_{ij}}\)in \({F_{19}}\)
Table 19 \({a_{ij}}\,,{c_i}\)in \({F_{20}}\)
Table 20 \({p_{ij}}\)in \({F_{20}}\)
Table 21 \({a_{ij}}\,,{c_i}\) in \({F_{21}},{F_{22}}\) and \({F_{23}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizk-Allah, R.M., Hassanien, A.E. A movable damped wave algorithm for solving global optimization problems. Evol. Intel. 12, 49–72 (2019). https://doi.org/10.1007/s12065-018-0187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-018-0187-8

Keywords

Navigation