
Vol.:(0123456789)1 3

Evolutionary Intelligence (2020) 13:649–661
https://doi.org/10.1007/s12065-020-00379-8

RESEARCH PAPER

Pruning of genetic programming trees using permutation tests

Peter Rockett1

Received: 14 October 2019 / Revised: 18 February 2020 / Accepted: 25 February 2020 / Published online: 20 April 2020
© The Author(s) 2020

Abstract
We present a novel approach based on statistical permutation tests for pruning redundant subtrees from genetic programming
(GP) trees that allows us to explore the extent of effective redundancy . We observe that over a range of regression problems,
median tree sizes are reduced by around 20% largely independent of test function, and that while some large subtrees are
removed, the median pruned subtree comprises just three nodes; most take the form of an exact algebraic simplification.
Our statistically-based pruning technique has allowed us to explore the hypothesis that a given subtree can be replaced with
a constant if this substitution results in no statistical change to the behavior of the parent tree—what we term approximate
simplification. In the eventuality, we infer that more than 95% of the accepted pruning proposals are the result of algebraic
simplifications, which provides some practical insight into the scope of removing redundancies in GP trees.

Keywords  Genetic programming · Permutation testing · Tree pruning

It has long been accepted that genetic programming (GP)
produces trees that contain substantial amounts of redun-
dancy [2, 3, 10, 15, 30]. The objections to this are well
rehearsed: the tree evaluation time is increased, and the
redundant subtrees may obscure human interpretation of the
evolved solution. It is therefore desirable to remove as much
of this redundant material as possible. Although manual tree
simplification has been used in the past [14], automated tree
simplification is much preferred but is very challenging [31];
Naoki et al. [18] point out that canonical simplification is not
Turing computable. Work on the simplification of GP trees
has been reviewed by Kinzett et al. [13].

Nordin et al. [20] have defined a taxonomy of introns—
broadly, the redundant code fragments that make no contri-
bution to the tree’s overall fitness; some of these are noted
to depend on particular test cases [10, 20]. Jackson [10] has
addressed removal of a subset of introns, dormant nodes,
that are never executed.

Zhang and co-workers [30, 31] have explored the use of
hashing to simplify trees both at the end of a run as well as
during the evolutionary run. These authors found, unsur-
prisingly, that simplification reduced tree sizes although

the effect on test performance was not examined with any
formal statistical procedure and does appear to have been
resolved. Interestingly, Zhang and co-workers concluded that
their initial hypothesis that frequent simplification would
reduce genetic diversity and therefore hinder search proved
unfounded; they did, however, find evidence against apply-
ing simplification at every generation.

In addition to exploring a hash table based approach to
algebraic simplification, Zhang and co-workers [12, 25] have
also examined approximate numerical simplification meth-
ods based on the local effect of a subtree. Kinzett et al. [12]
replaced a subtree by the average of its output over the train-
ing set if the range of its outputs fell below a user-defined
threshold. Song et al. [25] pruned trees by comparing the
output of a binary node with its two inputs and replacing
that node with either child if it gave the same value as the
binary output within a threshold. The drawbacks with both
these contributions are that: (i) they involve local operations
that ignore the effect of an edit higher in the tree, and (ii)
both rely on setting user-defined thresholds for which there
appears to be no principled method other than trial-and-
error. The shortcoming of ignoring the propagated effects
of changes higher in the tree was examined by Johnston
et al. [11] although they too used a two-stage process that
relies on a user-defined threshold to gauge the acceptability
(or otherwise) of a proposed simplification. Further, these

 *	 Peter Rockett
	 p.rockett@sheffield.ac.uk

1	 Department of Electronic and Electrical Engineering,
University of Sheffield, Mappin Street, Sheffield S1 3JD, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00379-8&domain=pdf

650	 Evolutionary Intelligence (2020) 13:649–661

1 3

authors only considered the propagated influence of a pro-
posed simplification one or two levels up the tree.

Naoki et al. [18] have applied two simplification methods
in tandem: one based on a set of rewriting rules derived
from normal algebra (e.g. x × 1 → x ), and a second using an
approximate numerical method that compares the output of
every subtree in a parent with the outputs of a small library
of simple trees; if a library tree provides an ‘equivalent’
output to the subtree under examination and is simpler, the
library tree is substituted. This second method was found
to be particularly effective in reducing tree size, but suffers
from a number of drawbacks: (i) the method again relies on a
user-defined threshold to gauge similarity, and (ii) definition
of the comparison library is domain-specific and potentially
sensitive to the exact problem at hand.

Although the hash table based algebraic simplification of
Zhang and co-workers and other rule-based approaches are
interesting and illuminating contributions, they too suffer
from a number of drawbacks. Principally, algebraic simpli-
fication is limited in scope and does not consider ‘effec-
tive’ redundancy [11]. For example, consider the expression
x + � where x is of the order of unity and � is, say, 10−32 . To
all intents and purposes, the result of this addition opera-
tion is x since it is highly unlikely that including the factor
of 10−32 will make any significant difference to the tree’s
prediction. Algebraic simplification, however, would fail to
recognize the x + � fragment as redundant because—in strict
algebraic terms—it is not, and this has led researchers to
employ approximate numerical methods. Many numerical
simplification approaches have the over-riding disadvantage
of requiring user-defined thresholds to gauge whether a can-
didate subtree has ‘no’ effect and can thus be pruned. In fact,
the combined approach of Johnston et al. [11] requires the
setting of six user-defined thresholds. In practice, it is dif-
ficult to see how to set these optimally other than by exhaus-
tive grid search over the 6-dimensional parameter space; this
grid search would need to be repeated anew for every new
problem. Further, it is not clear how to gauge the optimal
amount of tree simplification/performance degradation in
order to terminate such a grid search.

In this paper we adopt an approach akin to numerical
simplification [12]: we regard a subtree as redundant if its
removal results in no statistically significant change in the
output of the parent tree: our approach thus provides a prin-
cipled method for accepting/rejecting a pruning proposal and
avoids the need for user-defined thresholds. We explore the
use of statistical permutation tests to determine if a selected
subtree can be replaced with a constant of value equal to the
mean of the subtree’s output over the data set; replacement
by a constant node has also been followed by [12]. Other
types of redundancy can be readily addressed by our scheme,
but for the first report of this novel application of permu-
tation testing to GP tree pruning, we restrict attention to

exploring this cause of tree redundancy. Additionally—and
unlike rule-based approaches—our method does not need
tuning to the function set employed.

The key contribution over previous work on simplifica-
tion is: Whether or not to accept a pruning proposal is judged
statistically on the probability that a given pruning opera-
tion will change the output of the tree. This gives principled
grounds for pruning decisions based on the probability of
erroneous pruning. We thus avoid arbitrary, user-defined
thresholds.

In particular, compared to earlier work on numerical sim-
plification [13], the present approach:

1.	 Removes the restriction of locality [13]. Previous work
was restricted to considering the possible removal of
single nodes, or the effect of redundancy one or two
nodes higher in the tree [11]. The present approach, on
the other hand, considers the possible redundancy of
arbitrary subtrees of any size.

2.	 Previous work [11, 13] employed user-defined thresh-
olds; no principled method exists for setting these other
than trial-and-error. (We argue that intuitions based
on noise floor in the dataset [13] are fundamentally
flawed—any threshold based on dataset noise variance
that is ‘optimal’ at the leaves of a tree will be less and
less appropriate as we approach the root due to the way
noise variance propagates through compositions of func-
tions.) The present approach based on probability, how-
ever, is principled and has the same interpretation at all
tree depths.

3.	 The work in [11, 13] uses the range of node’s output
(i.e. max–min) to make the pruning decision. This
approach is very sensitive to outliers in the dataset. The
present approach, since it estimates probability by count-
ing satisfied inequalities of the form a > b , will not be
catastrophically affected by an outlier, and is therefore
robust.

Due to space constraints, we restrict this initial report to
pruning the ‘best’ final tree produced by a conventional GP
run rather than embedding tree simplification within the evo-
lutionary dynamics. We thus critically re-examine the com-
monly held view that GP trees contain significant amounts
of redundant material. Embedding permutation-based sim-
plification within the evolutionary process is possible, but
will require a much larger study to elucidate the various fac-
tors—we therefore defer that work to a future paper although
we discuss possible approaches later in the paper. Further,
since we consider here only pruning after evolution, the pre-
sent work does not (currently) aim to control ‘bloat’ in the
sense of avoiding unproductive code growth during evolu-
tion although that is obviously a future direction. In Sect. 1,
we describe our GP tree pruning approach, and in Sect. 2 we

651Evolutionary Intelligence (2020) 13:649–661	

1 3

outline the necessary background on permutation tests. The
experimental methodology employed is described in Sect. 3
and results are presented in Sect. 4. We conclude the paper
with a discussion and areas for future work in Sects. 5 and 6.

1 � The pruning approach

Considering the simple example tree representation in Fig. 1
which implements the quite general mapping y = f (�) where
the vector � = (x1 x2)

T . This tree can be evaluated for a given
� by recursively visiting each node in turn starting from the
root node [21].

We consider the case of a subtree that produces the
mapping g(�) and denote c = ⟨g(�)⟩ where〈 〉denotes
the expectation taken over a dataset. If replacing the given
subtree by a constant node returning c does not produce a
statistically significant change in the output of the parent tree
then we can effect a simplification of the tree. We refer to
this type of pruning as constant subtree (CST) pruning since
the replaced subtree is effectively a constant.

In order to implement the constant subtree pruning strat-
egy described in this work, the basic tree structure in Fig. 1
together with its recursive evaluation have to be modified.
Firstly, we add an internal state variable to every node type.
T h u s : NodeState ∈ {Untested, Testing, Failed, Pruned}
where the different state values have the following
interpretations:

•	 ‘Untested’ denotes that the subtree rooted at that node
has not yet been considered for pruning.

•	 ‘Testing’ denotes that a node is currently in the process
of being evaluated for pruning.

•	 ‘Failed’ indicates that the subtree rooted at this node has
been considered for pruning, but this pruning proposal
has been rejected.

•	 ‘Pruned’ indicates that a node and its subtree have previ-
ously been considered for pruning, and the pruning was
judged to make no statistical difference to the tree output;
in other words, the node and its subtree are redundant and
can be replaced by the expectation of the subtree output
over the dataset.

In order to implement the pruning approach proposed here,
the tree evaluation function described above has to be modi-
fied to respect the node state. When the recursive evalua-
tion of the tree encounters a node state of either ‘Testing’or
‘Pruned’ it immediately returns the (precomputed) mean
value of the subtree; otherwise, the recursive evaluation
continues conventionally.

The pruning process proceeds in the following sequence:

1.	 S ince the t ree implements the mapping
yi = f (�

�
) ∀i ∈ [1…N] , the response of the unpruned

tree to each of the N records is cached in an indexed
array Du , where the ‘u’ subscript denotes ‘unpruned’.
This stage is performed to speed up subsequent permuta-
tion testing.

2.	 All node states in the tree are initially set to ‘Untested’
denoting that at this stage none of the subtrees has been
considered for pruning.

3.	 (a)	 The state of every (non-constant) node
in the GP tree is set, one-at-a-time, to the ‘Test-
ing’ state, and the tree evaluated over the N data
records using a recursive tree evaluation proce-
dure that respects node states. To facilitate rapid
permutation testing, the responses of the (tenta-
tively pruned) tree or each � value are cached in an
array Dp , where the ‘p’ subscript denotes pruned.

(b)	 A permutation test—see Sect. 2—is carried out
using the arrays Du and Dp to explore the null
hypothesis that the tentative pruning does not sta-
tistically change the behavior of the GP tree. If
the null hypothesis is accepted, or the tentatively
pruned tree produces a lower error, we can infer
that the subtree rooted at the node whose state
has been set to ‘Testing’ is redundant, and can
be replaced with its mean value; its node state is
then set to ‘Pruned’. On the other hand, if the per-
mutation test implies that the tentatively pruned
tree produces a statistically worse error than the
unpruned tree this subtree cannot be pruned and
the node state is set to ‘Failed’.

Full implementation details of the pruning process are
described in [23].

Note there is a subtlety here in the interpretation of the
permutation test. The outcome of the test is either to reject

Fig. 1   Example of a simple GP tree. The node numbers are shown in
the top left corners of the nodes

652	 Evolutionary Intelligence (2020) 13:649–661

1 3

or accept the null hypothesis that the two subjects—the data
in arrays Du and Dp—do not differ. Rejection of the null
hypothesis means that the original and modified trees are
(statistically) different and so the subtree under consideration
cannot be replaced with a constant node without changing
the tree’s output. Similarly, acceptance of the null hypoth-
esis means that the subtree in question may be replaced by
a constant of a value equal to the average subtree output.

Returning to Fig. 1, the pruning process can be illus-
trated in the following way. Initially, all node states are set
to ‘Untested’. First, the state of node ‘1’ is set to ‘Testing’
to explore the hypothesis that the whole tree can be replaced
by a single constant equal to the average of the tree output
over the dataset. If, say, this hypothesis is rejected by the
permutation test then the node’s state is changed from ‘Test-
ing’ → ‘Failed’. The next hypothesis to be examined is to set
state of ‘2’ to ‘Testing’ which explores the possibility that
the subtree formed by nodes ‘2’, ‘3’and ‘4’ can be replaced
by a constant with the value of the average output of ‘2’. If
the ensuing permutation test rejects the hypothesis then the
state of ‘2’ is set to ‘Failed’ and the procedure continues. If,
on the other hand, the hypothesis that the subtree comprising
nodes ‘2’,‘3’ and ‘4’ can be replaced by a single, constant
node, then the state of ‘2’ is set to ‘Pruned’.

In practice, we examine the proposal to remove all pos-
sible (non-constant) nodes in the tree. In principle, we could
examine a tree top-down and as soon as we identify a subtree
that can be pruned, strictly there is no point in examining
pruning proposals lower down in that subtree. In terms of
implementation, however, the permutation testing procedure
(Sect. 2), and in particular, its multiple comparison proce-
dures, require that we know the total number of hypothesis
tests before making a prune/no prune decision. Top-down
pruning would thus be paradoxical. Nonetheless, the tree
evaluation procedure after pruning does terminate recursive
evaluation soon as it encounters a ‘Pruned’ subtree; we con-
sequently do take advantage of the first pruning encountered
in the recursive tree traversal thereby maximizing the degree
of a tree’s simplification.

For the sake of statistical validity, conventional machine
learning prescribes the use of three disjoint datasets: a train-
ing set, a validation set, and a test set—see [8, p.222], for
example. The training set is used for parameter adjustment
and yields the so-called substitution error that is usually a
wildly optimistic estimate of generalization performance,
and is of little significance beyond model training. Given
some number of competing trained models, the validation
set is used to select one model for adoption—formally, a
model selection stage. Performance over the validation set
is generally an optimistic estimate of the chosen model’s
generalization error since the model has been selected based
on its performance over the (finite) validation set. Finally,
an estimate of the model’s generalization performance is

obtained from the test set although since this too is finite, the
estimate is uncertain but hopefully unbiased. In the context
of tree pruning, we are performing a model selection proce-
dure: that is, given a choice between two models—the origi-
nal, as-evolved tree and the pruned tree, we accept a given
pruning proposal if the two model responses are ‘identical’
since, by definition, the pruned model is simpler and there-
fore to be preferred. In summary, we employ the validation
set for tree pruning since this is a model selection process.

2 � Permutation testing

Permutation tests were originally devised by the English
statistician Ronald Fisher in the 1930s as a means of illus-
trating hypothesis tests. Given two groups of subjects A
and B , both of size n, with two values of some statistic
T, T(A) and T(B) computed over each group, respectively,
and an observed difference �A,B = T(A) − T(B) where
�A,B ∈ ΔA,B . The null hypothesis H0 assumes that groups
A and B are drawn from the same population so the expec-
tation value of �A,B , should be identically zero. If the null
hypothesis is true then we are at liberty to randomly allocate
the 2n data in A ∪B to either one of two test groups, say, C
and D , allocating n data to each, and computing a new value
of test statistic �C,D . If we repeat this random allocation to C
or D a large number of times, each time obtaining a different
value of �C,D , we can obtain a distribution of ΔC,D , the so-
called permutation distribution. Under the null hypothesis ⟨
�C,D

⟩
= 0.

By computing the probability that the observed difference
�A,B could have been drawn from the permutation distribu-
tion, we have three potential outcomes for the permutation
test:

1.	 A and B are (statistically) identical and so the given
pruning proposal can be accepted.

2.	 The performance of group A is better than that of B .
If A is from the pruned tree we can accept the pruning
proposal since improving the performance of the tree is
(probably) beneficial.

3.	 The performance of A is worse than B ; if again, A are
the pruned responses then we wish to reject that pruning
proposal.

Since we are concerned with rejecting a pruning proposal
only if it produces a worse outcome, we adopt a one-sided
hypothesis test. Permutation tests are described in greater
detail in [4, 7, 16].

(We should at this point note a difference in terminol-
ogy in the literature. Fisher’s original thought experiment
to illustrate hypothesis testing involved assembling a per-
mutation distribution with all n! exhaustive permutations

653Evolutionary Intelligence (2020) 13:649–661	

1 3

of the data. For even modest values on n, of course, this
exact approach becomes infeasible, and practitioners typi-
cally approximate the permutation distribution using resa-
mpling—as described above—leading to the alternative
name of a randomization test. Here we adopt the commonly-
used terminology of “permutation test” for the resampling
procedure.)

In the context of GP tree pruning in a regression problem,
we can consider the two groups of squared errors for each of
the n data records in the validation set as the two groups A
and B . One is obtained from the original, as-evolved tree
and the other with replacing a given subtree with a constant,
as described in Sect. 1.

Two key technical points need to be considered at this
point: firstly, whether pruning affects the generalization abil-
ity of the model. The procedure being implemented here
is model selection. (It is for that reason we use the vali-
dation set for the permutation test rather than the training
set or a test set—generalization error is estimated over a
separate test set.) To select between two models—pruned
and unpruned—we pose the question: does the unpruned
tree exhibit the (statistically) same error over the valida-
tion set? If this question is answered in the affirmative then
we prefer the the simpler tree according to Occam’s razor.
In reality, this question only makes any sense with respect
to the validation set. If more data were available then we
could use them both to improve the training and to reduce
the variance on the model selection decision. Consequently,
questions about generalization should be unconnected to the
pruning decisions. We hypothesize that accepting a pruning
proposal on the basis of comparing validation set errors will
have no systematic effect on the test (generalization) error.
In essence, if we have an (obvious) redundancy of the form,
say, y = f (x) + x − x then simplifying this to y = f (x) will not
affect the generalization error of the model. Thus we con-
jecture that due to sampling effects pruning will sometimes
reduce test error and sometimes increase it, but overall, will
have no statistically significant effect; this point is addressed
further in Sect. 4.3.

In terms of implementation, the quantities we are per-
muting are the two groups of n squared residuals obtained
with and without a pruning proposal. Consequently, it is
only necessary to calculate these once at the start of a sub-
tree pruning process and cache them (in arrays Du and Dp ).
The computational demands of a given permutation test are
thus modest. Further, we are interested in the decision about
whether pruning some given subtree results in (statistically)
the same tree semantics as the original, as-evolved tree ( Du ),
and not the last pruned tree. Consequently, our ‘reference’
responses from the as-evolved, unpruned tree do not change
during the sequence of pruning decisions for the whole tree.

The second technical issue concerns multiple compari-
son procedures (MCPs) [9]. In this work, we are computing

multiple test statistics, and there is a well-known issue with
such comparisons tending to increase the error rate over
families of tests [9]. (We think it self-evident that the set
of tests we employ do comprise a family [9].) The concept
of MCPs is well-known to the GP community albeit in the
guise of the post hoc corrections that usually follow Fried-
man tests of group homogeneity [6]. In hypothesis testing
there are two sorts of error: Type I error, which occurs with
probability � , is the situation where a null hypothesis is erro-
neously rejected. Complementary to this, a Type II error,
which occurs with probability � , is the mistaken rejection of
the alternative hypothesis; the quantity (1 − �) is denoted the
power of the test. When � increases, � decreases, and vice
versa although the exact functional form is hard to specify
in general. In the context of the present work, a Type I error
will lead to the rejection of a (perfectly good) pruning pro-
posal and is benign (except that a possible opportunity to
simplify the tree has been missed). A Type II error, on the
other hand, leads to accepting a pruning proposal that should
really have been rejected. Consequently, controlling Type II
error is of greater importance in this work. Most multiple
comparison procedures, however, have been focused on con-
trolling Type I error although the false discovery rate (FDR)
procedure of Benjamini and Hochberg [1] has been shown
to maintain test power and is therefore appropriate here. We
have therefore adopted the FDR procedure here.

3 � Experimental methodology

We have employed a fairly standard generational GP search
in this work [21]. The parameters of the algorithm are sum-
marized in Table 1. We have used 10% elitism and there-
fore generated the remainder of the child population by
always applying crossover and mutation to ensure popula-
tion diversity. If a breeding operation generated a tree larger
than the pre-specified hard node count limit, one of the par-
ent trees was randomly selected for copying into the child
population [21].

We have employed a set of ten univariate regression test
functions that have previously been used in the GP litera-
ture—see Table 2. The first four of these functions are, in
principle, representable exactly with the internal nodes
used in the GP. The remaining functions require appropriate
approximation. We have used training sets of 20 data ran-
domly sampled over the domain, and validation sets of the
same size; the test sets comprised 1000 data in order to obtain
reliable estimates of generalization error. The rather small
size of 20 training/validation data was quite deliberate and is
related to the challenge presented by various test functions
for GP, which has received some attention [17]. In particu-
lar, the difficulty associated with learning high-dimensional
problems stems from the exponentially-decreasing density of

654	 Evolutionary Intelligence (2020) 13:649–661

1 3

data with increasing problem dimensionality—the so-called
‘curse of dimensionality’. At the same time, we wanted to
focus on univariate problems to facilitate more straightfor-
ward analysis of the pruned subtrees (although, in the event,
this proved optimistic). Hence the choice of 20 training data
so as to pose a set of fairly ill-conditioned and therefore chal-
lenging learning problems; a 50:50 split between training and
validation sets is commonplace in machine learning practice
leading to a choice of validation sets of 20 data.

We have standardized on the range of hard node limits
of [16… 256] , which corresponds, under the assumption of
all binary internal nodes, to tree depths of [4… 8] , a range
typically employed to solve problems such as the test func-
tions used here.

Throughout this work, we have use the commonly-
accepted significance level of 5% for permutation testing.
In other words, a 1-in-20 chance that the observed statistic
could have been obtained fortuitously. We have used 10,000
samples for the permutation testing, a figure arrived at sim-
ply by increasing the number of trials from a low starting
point until the estimators stabilized. Both the 5% accept-
ance probability and the number of permutation test samples
strictly comprise parameters for the algorithm, but the for-
mer has the advantage of being unambiguously interpretable
(as opposed to an arbitrary threshold). Although we have
not employed it here, Gandy [5] has shown it is possible to
terminate the permutation testing as soon as the uncertainty
on the computed p value has fallen below a limit.

4 � Results

After evolving a final population of GP regression trees, we
selected the individual with the smallest training error for
subsequent pruning. We have applied our permutation-test-
based pruning procedure to establish the influence of these
statistical modifications. Further, we have explored the effect
of pruning on the generalization errors in Sect. 4.3.

4.1 � Pruned tree sizes

The typical distributions of tree node counts for the French
curve test function for a range of hard node count limits is
shown in Fig. 2; these have been accumulated over 1000
repetitions, each with independent initial populations. (All
results have incorporated the Benjamini & Hochberg multi-
ple comparison procedures.) In fact, the corresponding plots
for all the test functions look remarkably similar.1

Table 1   Parameters used for
generational GP evolution Population size 100

Population initialization Random tree sizes between one and node count limit
Elitism 10%
No. of tree evaluations 20,000
Internal nodes Add, subtract, multiplication, analytic quotient [19]
Terminal nodes Independent variable, constant ∈ {0.1, 0.2,… , 0.9, 1.0}

Crossover Point crossover with 90% probability of selecting
internal node [21]

Crossover probability 1.0
Mutation Point mutation [21]
Mutation probability 1.0
Mutation tree depth 4
Hard node count limit [16… 256]

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

N
um

be
r o

f t
re

e
no

de
s

Hard node count limit

Fig. 2   Distributions of tree node counts versus hard node count limit
for the French curve test function. No pruning

1  A complete set of results for this and other sections is presented
in [23]. For brevity, we show only representative results.

655Evolutionary Intelligence (2020) 13:649–661	

1 3

Figure 2 shows the node counts for the final evolved
individuals with the smallest training errors before prun-
ing. We only compare distributions over trees for which
subsequent pruning was possible, and ignored (the small
minority of) trees were no pruning occurred. It is clear
from this figure that for a given hard node count, the GP
evolution tended to produce trees almost exactly this size
and with small interquartile ranges although some smaller
trees were generated as evidenced by the lower whiskers
on the box plots.

The node count distributions after pruning are shown
in Fig. 3. There appears to be a roughly 20% consistent
reduction in median tree size (independent of test function)
although comparing with the corresponding boxplots before
pruning, there is a noticeable increase in the interquartile

ranges. From the upper whiskers of the box plots, it is clear
that in an appreciable number of cases the trees have been
reduced in size only marginally.

Figure 4 shows the typical relationships between
unpruned and pruned individuals for the French curve test
function and a hard node count limit of 128. Points on the
two parallel axes show the unpruned tree sizes (left) and
pruned tree sizes (right) for the same individuals before and
after pruning. For comparison, the two distributions of indi-
viduals are shown as boxplots for unpruned (left) and pruned
(right) populations. It is clear from this figure that unpruned
individuals with an interquartile range of [123… 127] are
being pruned to a wide range of tree sizes with a correspond-
ing interquartile range of [88… 105] . The median size is
reduced from 126 to 97. Although some small unpruned
individuals are being reduced by only modest extents, there
are also large individuals ( ∼ 110–128 nodes) being pruned
down to between 60 and 80 nodes. A few are being pruned
to ∼ 40 nodes.

4.2 � Distributions of pruned tree sizes

The results in the previous section are for trees to which all
possible pruning proposals have been applied, and are there-
fore reduced to their minimum size. We have, however, also
carefully analyzed the individually-accepted pruning propos-
als. Figure 5 shows the typical distributions of the sizes of
pruned subtrees for the French curve functions; again there
is comparatively little variation with test function/hard node
count limit. The noteworthy features of these distributions
are (i) their small interquartile ranges, and (ii) most of the
pruned trees tend to be rather small in size although a few
subtrees in excess of one hundred nodes can also be removed
by pruning. The median value of pruned tree size is three
independent of test function and node count limit. It thus
seems highly likely that the most commonly pruned tree
comprises a binary node and either two terminals or two
constants.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

N
um

be
r o

f t
re

e
no

de
s

Hard node count limit

Fig. 3   Distributions of tree node counts versus hard node count limit
for the French curve test function. Pruned

Table 2   Test functions used in
this work

Function Equation Domain

Cubic polynomial [26] y = x
3 + x

2 + x [−1…+ 1]

Quartic polynomial [26] y = x
4 + x

3 + x
2 + x [−1…+ 1]

Quintic polynomial [26] y = x
5 + x

4 + x
3 + x

2 + x [−1…+ 1]

Sextic polynomial [26] y = x
6 + x

5 + x
4 + x

3 + x
2 + x [−1…+ 1]

French curve [29] y = 4.26 exp−x −4 exp−2x +3 exp−3x [0… 3.25]

Uy_5 [26] y = sin(x2) × cos(x) + 1 [−1…+ 1]

Uy_6 [26] y = sin(x) + sin(x + x
2) [−1…+ 1]

Uy_7 [26] y = log(x + 1) + log(1 + x
2) [0… 2]

Uy_8 [26] y =
√
x [0… 4]

Salustowicz [24] y = x
3 exp−x cos(x) sin(x)[sin2(x) cos(x) − 1] [0… 10]

656	 Evolutionary Intelligence (2020) 13:649–661

1 3

We have examined the distributions of pruned tree sizes
in detail paying particular attention to accepted pruning pro-
posals of three nodes, and this analysis is shown in Table 3.
(Yet again, there is little variation with test function.)

The row “# pruning events” shows the absolute number
of successful pruning events over 1000 repetitions of tree

evolution—this unsurprisingly increases with increasing
node count limit as larger trees offer more opportunities for
pruning. Of these pruning events, the percentage involving
3-node trees is indicated by “% 3-node trees”—it is clear that
this covers around 40-50% of the individual pruning events.
Within these 40-50% of overall 3-node tree prunings, the
table also shows the percentages that are a binary operations
with two constant children (“% constant⊛ constant”), the
percentage of (x − x) operations (“% (x − x) ”) together with
a summary of the 3-node prunings that are algebraic sim-
plifications (“% 3-node algebraic”). Thus, in this particular
case, between 93.94% and 82.39% of the 3-node prunings
are algebraic simplifications. A small percentage of 3-node
prunings are other binary-rooted subtrees (“% other binary”)
and these comprise subtrees implementing ‘ x⊛ const ’ (or
‘ const⊛ x’); only a very small percentage of these ‘other
binary’ operations are ‘ x − 0 → x ’ or x × 1 → x simpli-
fications. Finally, around 5–10% (across all functions) of
pruned 3-node trees are algebraic simplifications of the form
−(−x) or −(−constant) (‘% 3-node unary’), that is, a subtree
comprising two cancelling unary minus operations and a
terminal.

From the above results (and others [23]), it thus seems
clear that around ∼ 80–95% of the 3-node prunings repre-
sent algebraic simplifications being carried out—by defini-
tion—at the peripheries of trees. It is important to re-empha-
sise, however, that these 3-node simplifications, however,
account for only around half of the total number of pruning
events. Some of the pruned trees larger than three nodes
may well be producing algebraic simplification, but this is
difficult to verify due to the increasing number of ways an
equivalent expression may be written. Some more insight,
however, may be gained by examining what fraction of the
permutation tests returned a precisely zero probability of
rejecting the null hypothesis. We infer that such a result can
only be delivered when the two trees responses—with vs.
without pruning—are absolutely identical implying that the
pruning being considered represents an algebraic simplifica-
tion. These percentages are shown in Table 4 for each test
function and hard node limit, and for 3-node trees as well
as pruned trees larger than three nodes. It is clear that, in
general, at least the high nineties of percent of pruning prob-
abilities are zero implying that these represent algebraic sim-
plification.2 A slightly smaller percentage of trees larger than
three nodes returns zero probability than the corresponding
figure for 3-node trees although this is reasonable given that
there is greater scope for larger trees to be approximately
rather than algebraically equivalent.

Fig. 4   Parallel axis plot for the French curve test function and hard
node limit of 128 showing the co-relations between unpruned and
pruned individuals. The boxplots show the distributions of tree sizes
before and after pruning for 1000 independently-initialized runs

Fig. 5   Distributions of the sizes of pruned subtrees for the French
curve test function

Table 3   Distribution of pruned 3-node subtrees: French curve. ⊛ rep-
resents an arbitrary binary operation

Node limit 16 32 64 128 256

Pruning events 1411 3275 7494 17,353 37,845
% 3-Node trees 50.32 47.11 44.88 41.87 38.56
% Const⊛ const 91.27 80.62 73.48 69.29 66.44
% (x − x) 2.68 10.89 14.36 15.14 15.95
% 3-Node algebraic 93.94 91.51 87.84 84.43 82.39
% Other binary 0.14 2.53 5.08 7.85 9.15
% 3-Node unary 5.77 4.93 5.32 4.78 5.13

2  The Salustowicz function, as with many experiments, returns
results outside the clear trend; we discuss this in Sect. 5.

657Evolutionary Intelligence (2020) 13:649–661	

1 3

4.3 � Effect of pruning on the generalization error

If pruning makes no difference to the model selection deci-
sion (i.e. validation set error) other than producing a smaller
tree, we conjectured that pruning can have no effect on the
average generalization error of the tree. We have explored
this hypothesis by generating a (third) test set [8, p.222]
of 1000 data independent of both the training and valida-
tion sets to estimate the generalization errors of 1000 trees
generated from independent GP runs. We return here to
comparing trees both before pruning, and after all possible
pruning proposals have been applied and the tree reduced to
its minimum overall size. We removed from this experiment
the few % of trees that remained unpruned since we were
interested only in the effects of pruning, not its frequency
of occurrence. If pruning does not affect generalization per-
formance—which is, by definition, the average error over
test sets—then by chance we would expect exactly half the
(pruned) trees to exhibit an improved test error after pruning
and half to have a higher test error after pruning.

We have explored with a series of statistical tests the
hypothesis that pruning (on average) either improves
or degrades the generalization error; the results are

summarized in Table 5 for a representative selection of
test functions. For each of the 1000 pruned trees examined,
the generalization error was either unchanged, increased
by pruning or decreased by it. Between 58 and 100% of
the generalization errors were unchanged by pruning and
we followed the usual statistical practice of distributing
these zero before-and-after differences equally between the
counts for improved and degraded test errors; we explored
the one-sided hypothesis for whichever count (improve-
ment/degradation) was larger. Which test has been applied
is shown in the table with either a down-arrow ( ↓ ) for a
reduction (improvement) in test error , or an up-arrow ( ↑ )
for an increase (degradation).

From Table 5 for trees trained with 20 data (suffix of
“-20”), it is clear that most of the null hypotheses need to
be accepted (= ‘no change’ in test error) although for a hard
node count limit of 256, the generalization error statistically
worsens. (Complete data can be found in [23] from which
a less clear trend emerges: mostly, test error is unchanged,
sometimes it improves, sometimes it degrades.) This picture
of unclear effects on test error has also been reported in [30,
31].

Table 4   Percentages of zero
probability values return by the
permutation tests for pruned
subtrees = 3 nodes, and > 3
nodes, by hard node count limit,
and for different test functions.
Data over 1000 repetitions

Node limit 16 32 64 128 256

= 3 > 3 = 3 > 3 = 3 > 3 = 3 > 3 = 3 > 3

Cubic 97.38 96.08 99.59 98.86 99.44 98.65 99.11 97.90 98.44 96.63
Quartic 99.07 99.08 98.94 98.03 99.14 97.88 99.00 97.82 98.45 96.66
Quintic 97.19 98.04 99.58 98.72 99.17 97.68 99.33 98.01 98.13 96.19
Sextic 99.81 99.86 99.73 98.67 99.26 98.37 99.06 97.70 98.45 96.62
French curve 98.59 98.43 98.12 95.03 96.13 90.87 95.31 88.97 95.33 89.78
Uy_5 98.92 98.17 99.46 98.90 99.44 98.70 98.72 97.20 98.11 96.21
Uy_6 99.68 100.00 99.76 99.56 99.29 98.63 99.26 98.05 98.40 96.37
Uy_7 98.31 96.65 97.98 94.21 98.54 95.58 98.66 96.15 97.91 95.13
Uy_8 98.82 98.80 98.18 96.19 97.98 94.21 97.22 93.47 96.77 92.07
Salustowicz 77.06 52.03 86.56 64.94 92.81 75.34 95.65 85.53 96.27 90.02

Table 5   One-sided hypothesis tests for 20 or 100 training data and 20 validation data

For each hard node limit value, Z-value shows the value of the Z statistic, p the p value of the test, and the third columns shows whether the one-
sided test is for a degradation ( ↑ ) or an improvement(↓ ) in the generalization error. Statistically-significant tests at the 5% confidence level are
shown in bold face

Node limit 16 32 64 128 256

Z-value p Z-value p Z-value p Z-value p Z-value p

Quartic-20 0.1265 0.8580 ↓ 0.6957 0.3252 ↓ 0.9171 0.1947 ↓ 0.2530 0.7205 ↑ 0.0949 0.8933 ↑

Quartic-100 0.1265 0.8580 ↓ 1.5495 0.0284 ↓ 2.0871 0.0032 ↓ 3.4469 <0.0001 ↓ 3.9528 <0.0001 ↓

French-20 0.0949 0.8933 ↓ 0.0316 0.9643 ↓ 0.5376 0.4471 ↑ 0.2846 0.6873 ↑ 1.5495 0.0284 ↑

French-100 0.1581 0.8231 ↓ 0.3795 0.5915 ↓ 1.0436 0.1400 ↓ 2.2452 0.0015 ↓ 1.4863 0.0356 ↓

Uy_5-20 0.3162 0.6547 ↓ 0.4743 0.5023 ↓ 0.3162 0.6547 ↓ 0.0949 0.8933 ↓ 2.5298 0.0003 ↑

Uy_5-100 0.3479 0.6228 ↓ 1.2017 0.0892 ↓ 1.5811 0.0253 ↓ 2.7512 0.0001 ↓ 3.9528 <0.0001 ↓

658	 Evolutionary Intelligence (2020) 13:649–661

1 3

Training the GP trees with 100 data but retaining a valida-
tion set size (that was used for pruning) of 20 data, however,
does produce a consistent pattern. The trees in this series of
experiments should thus be better trained before pruning.
The results of this second series of experiments are shown
in Table 5 (suffix of “-100”) where all hypothesis tests are
against improvements in test error. That is, tree prunings
always yielded net reductions in test error. This can be
understood since improved training means that the GP func-
tion better approximates the target function; pruning here
is always referenced to the performance of the as-evolved
tree and if this is deficiently trained then pruning will find
simpler approximations to this deficient approximation. It
is also apparent from this table that statistically-significant
reductions tend to be greater for larger tree node limits. This
is sensible since larger node limits tend to produce larger
trees that are more likely to contain redundant subtrees.

5 � Discussion and future work

From the results presented in this paper it is apparent that the
proposed permutation-based pruning procedure is effective
in reducing median tree sizes by about 20% independent of
test function and hard node count limit. Whereas the distri-
butions of as-evolved tree sizes clustered near to the hard
node count limit, after pruning the variability of the tree
sizes increased noticeably. It should also be noted that some
(large) trees were pruned down to quite small sizes.

The results from the Salustowicz function stand alone
across a number of comparisons. We have noted above the
probable challenge of reliably learning a function with such
a large number of extrema from just 20 data; Vladislavleva
et al. [28] have previously remarked that this function is
challenging for GP. Some of the trees attempting to approxi-
mate the Salustowicz function have been pruned down to
single nodes implying that GP could find no better approxi-
mation than a constant, presumably close to the mean value
of the function. Clearly, the results from the Salustowicz
function underline that the the interplay between pruning
and the adequacy of training warrants further research.

As regards the composition of the subtrees being pruned,
around half are 3-node, binary-rooted trees having the forms:
constant ⊛ constant, x − x or x × 1 , where ‘ ⊛ ’ is an arbitrary
binary operation. These are clearly being pruned from the
peripheries of trees. Within the context of the statistically-
founded method presented here, a permutation test p value of
identically zero implies (though, of course, does not prove)
that a pruned subtree removal represents an algebraic simpli-
fication as opposed to an approximate simplification. (That
said, it is difficult to think of another plausible explanation
for zero probability values.) The inference overall is that the
overwhelming majority ( ≳95%) of accepted prunings are

algebraic simplifications. Clearly a corollary is that only few
percent of prunings are approximate simplifications. This
was an unexpected finding since it was originally anticipated
that a far higher percentage of approximate prunings would
be observed.

The implications for the change in generalization error
caused by pruning are interesting. A majority ( ≳58%) but
by no means all prunings produced no change in generaliza-
tion performance for individual trees. If ≳95% of all prun-
ings are algebraic simplifications—which, by definition,
cannot change the approximating function and therefore
the generalization—then those changes in generalization
that do occur must be caused by a relatively small number
of pruning events. Although we have shown that pruning
either leaves generalization unchanged or reduces it on aver-
age, assuming the tree is sufficiently well trained, instances
where test error is reduced are obviously counterbalanced
by instances where the test error increases. In this situa-
tion, approximate prunings might be viewed as risky due
to their potentially adverse effects, and so a more conserva-
tive approach would be to only accept prunings with zero p
values, that is, prunings that can be inferred to be algebraic
simplifications. (Notwithstanding, the original motivation of
the work to explore approximate simplifications has allowed
us to quantify this effect.)

Although pruning mostly leaves test error unchanged and
occasionally degrades it, there are clearly many occasions
when pruning actually improves the test error. A similar
phenomenon has been observed in the induction of conven-
tional decision trees (DTs) where, typically, a DT is trained
to the point of overfitting and then heuristically pruned to
improve generalization [22]; this phenomenon can be easily
interpreted in terms of advantageously shifting the balance
between goodness-of-fit and model complexity [8]. Pruning
obviously reducing the latter quantity.

One aspect of this work does require justification, and
was indeed raised by one of the anonymous reviewers of
this paper: the absence of a direct comparison with previous
approaches to approximate simplification, such as [13]. To
be of any value, any comparison has to a be a fair compari-
son. Since, as pointed out in the introduction, a fundamental
shortcoming of previous work is its reliance on user-defined
thresholds for which there are no principled selection meth-
ods, the question arises as to how to select a ‘fair’ threshold
for comparison? Selecting such an arbitrary value is open
to all sorts of potential abuses with investigator bias—for
example, it would be possible to adopt some value that
purports to show the spectacular superiority of the present
method, but such a comparison would be barely worthy of
the name. Making comparison across a range of threshold
values is similarly unsatisfactory in that progressively lower-
ing the decision threshold will increase the degree of prun-
ing but will also degrade the test error as increasing numbers

659Evolutionary Intelligence (2020) 13:649–661	

1 3

of increasingly inappropriate prunings were accepted. How
to judge which is the ‘correct’ degree of tree simplification?
In the light of these difficulties, we have taken the deliberate
decision to omit controversy-laden attempts at comparison
with previous work.

Although this paper reports the development of a princi-
pled, statistically-founded method based on repeated sam-
pling, incorporation of the necessary multiple comparison
procedures has meant we need to explore all potential prun-
ings. The computational complexity for a tree of depth d
can be upper-bounded by considering a tree comprised only
binary nodes. At each level i in the tree we have 2i subtrees
so the total number of pruning proposals that need to be
considered is:

It would, however, be misleading to to infer that this is a
computationally intractable algorithm. Tree depth d is
typically small ( ≤ 8 − 10 ), and it is well-known that many
NP-hard problems are eminently solvable for small prob-
lem sizes. Pruning the single, best-trained individual from
the evolved population increased the CPU time by around
25% in the present work, a fairly modest increase although
this could be reduced by employing the ‘early jump out’
approach in [5]. Extending this approach directly to prun-
ing trees during evolution will clearly result in a significant
increase in runtime. It would, nonetheless, be interesting
to see how approximate tree simplification affects the evo-
lutionary dynamics as a one-off experiment both for the
single-objective GP formulation considered here as well as
multi-objective GP that incorporates syntactic bloat control
in a different way. It is moot, however, whether the inevitably
large increase in computing time would impact workaday GP
practice. We return to this theme in the following paragraph.

Overall, the scope for reducing tree size appears to stem
almost exclusively from algebraic simplification; scope for
approximate simplification appears comparatively rare and
carries the risk of degrading the model generalization but
also the possible benefit of improving it. This paper has
quantified the scope for approximate simplification of GP
trees using a principled, statistically-founded method that
avoids the need for arbitrary, user-tuned decision thresholds.
The rather surprising conclusion is that ≥95% of the possible
tree simplifications are purely algebraic, the practical impli-
cations of which are profound. This suggests that almost all
the benefits of tree size reduction can be achieved by alge-
braic simplification while avoiding the risks of degrading
the generalization performance that approximate simplifi-
cations bring. However, rather than suggesting the use of
rule-based simplifications of tree syntax [30, 31] that need
to be handcrafted to the function set, and, like all complex

d∑

i=0

2i = 2d+1 − 1

rule sets, are challenging to construct, a simpler, semantic-
based approach based on the present work suggests itself.
Algebraic simplification for a tree of arbitrary complex-
ity can be inferred by comparing the elements of the two
cached arrays of tree responses Du and Dp (see Sect. 1). If
Du[i] ≊ Dp[i] ∀i ∈ [1…N] where N is the size of the data
set and “ ≊ ” denotes equality within floating-point rounding
error, we can infer algebraic equivalence and prune the can-
didate subtree without changing the tree’s semantics. Such as
scheme retains the benefits of the permutation test but with-
out the need for repeated sampling leading to a large saving
in computing time. Applying this non-sampling approach to
tree simplification both during evolution and on members of
the final evolved population is an area of future work.

Although ‘bloat’ has long been recognized as an issue
in genetic programming, its handling has in the past been
rather informal [27]. The present work offers a possible
route to a more rigorous definition in that it identifies sub-
trees that make no significant contribution to the program’s
output, serving only to increase the size of the tree. We
have presented a method of judging (to within some sta-
tistical bound) whether or not a tree fragment is redundant.
Although we have been concerned here exclusively with post
hoc tree pruning, it is clearly an area of future work to focus
explicitly on bloat.

Although we have considered only unary and binary
nodes here, extension to ternary (if-then-else) nodes [21] is
straightforward. Typically, the first subtree is used to evalu-
ate the conditional predicate; if this predicate evaluates to
‘true’, then the value of the second subtree is returned, oth-
erwise the value of the third subtree is returned to the node’s
parent. It is straightforward to extend the above pruning
strategies to evaluate the hypotheses that the ternary node
could be replaced by either the second (‘true’) subtree or the
third (‘false’) subtree implying that the conditional predicate
is (effectively) a constant value and that the branching struc-
ture is redundant.

Clearly future work needs to examine more complex
regression functions, such as those suggested in [17]; these
more ‘complex’ mappings should produce more complex
trees that may change the nature of pruning. Although the
work reported in this paper is restricted to regression prob-
lems, extension to classification and indeed time series
is straightforward, and will be addressed in forthcoming
research.

Finally, and in terms of future work on simplification,
consider the expression comprising two binary nodes:
z = (x + y) − y , which, of course, algebraically simplifies
trivially to z = x . This expression cannot, in general, be
simplified by setting any of the variables to a constant.
(The reader is invited to draw this expression as a tree and
consider the two outcomes—pruned and unpruned—if the
subtree rooted at the ‘−’ node is replaced by the average

660	 Evolutionary Intelligence (2020) 13:649–661

1 3

over, say, two data records (x1, y1) and (x2, y2) .) Reductions
of subtrees such as this are likely to remain a challeng-
ing task, especially if x, y are not terminal quantities but
are themselves computed by (possibly large) subtrees and
where y is computed by two subtrees of markedly different
morphologies. Even constructing simplification rules for
this case remains challenging; to account for the ‘cance-
ling’ factor—here y—lying lower and lower in the left
hand subtree requires an exponentially increasing number
of rules. There thus seems a large amount of work remain-
ing to simplify GP trees to their truly minimal form.

6 � Conclusions

In this paper, we have presented a novel approach based on
statistical permutation tests for pruning redundant subtrees
from genetic programming (GP) trees. This has the advan-
tage of being simple to implement while not requiring the
setting of arbitrary, user-defined thresholds.

We have observed that over a range of ten regression
problems, median tree sizes are reduced by around 20%,
largely independent of regression function and the hard
node count limit used to restrict tree bloat. Although some
large subtrees (over a hundred nodes) are removed, the
median pruned subtree comprises three nodes and over-
whelmingly takes the form of an exact algebraic simplifi-
cation. That is, either a binary operation on two constants,
a subtraction operation on two variable nodes, a multipli-
cation of a variable by unity, or two consecutive unary
minus operators and a terminal node.

The basis of our statistically-based pruning technique
is that a given subtree can be replaced with a constant
if this substitution results in no statistical change to the
behavior of the parent tree. This has allowed us to examine
approximate redundancies where replacing a subtree with
a constant produces some change, but that that change
is not statistically significant. In the eventuality, we infer
that ≳95% of the pruned subtrees are the result of alge-
braic simplifications since this fraction of hypothesis tests
yielded precisely zero p values. These observations sug-
gest the scope for reducing the complexity of GP trees
is overwhelmingly limited to algebraic simplification and
that instances of removing approximate equivalences are
comparatively rare.

The further implication of the rarity of approximate
simplification prunings is that most pruning events do not
change the generalization error of the parent tree. The small
number of approximate prunings that do occur, however, can
have effects—both positive and negative—on generalization.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Benjamini Y, Hochberg Y (1995) Controlling the false discovery
rate: a practical and powerful approach to multiple testing. J R Stat
Soc B Methodol 57(1):289–300

	 2.	 Blickle T, Thiele L (1994) Genetic programming and redundancy.
In: Workshop on genetic algorithms within the framework of evo-
lutionary computation, Saarbrücken, Germany, pp 33–38

	 3.	 Dick G (2017) Sensitivity-like analysis for feature selection in
genetic programming. In: Genetic and evolutionary computation
conference (GECCO 2017), Berlin, Germany, pp 401–408. https​
://doi.org/10.1145/30711​78.30713​38

	 4.	 Ernst MD (2004) Permutation methods: a basis for exact infer-
ence. Stat Sci 19(4):676–685. https​://doi.org/10.1214/08834​23040​
00000​396

	 5.	 Gandy A (2009) Sequential implementation of Monte Carlo
tests with uniformly bounded resampling risk. J Am Stat Assoc
104(488):1504–1511. https​://doi.org/10.1198/jasa.2009.tm083​68

	 6.	 García S, Fernández A, Luengo J, Herrera F (2010) Advanced
nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: exper-
imental analysis of power. Inf Sci 180(10):2044–2064. https​://doi.
org/10.1016/j.ins.2009.12.010

	 7.	 Good PI (1994) Permutation tests: a practical guide to resampling
methods for testing hypotheses. Springer, New York

	 8.	 Hastie T, Tibshirani R, Friedman J (2009) The elements of sta-
tistical learning: data mining, inference, and prediction, 2nd edn.
Springer, New York

	 9.	 Hochberg Y, Tamhane AC (1987) Multiple comparison proce-
dures. Wiley, New York

	10.	 Jackson D (2010) The identification and exploitation of dor-
mancy in genetic programming. Genet Program Evolvable Mach
11(1):89–121. https​://doi.org/10.1007/s1071​0-009-9086-1

	11.	 Johnston M, Liddle T, Zhang M (2010) A relaxed approach to
simplification in genetic programming. In: 13th European confer-
ence on genetic programming (EuroGP’10), Istanbul, Turkey, pp
110–121. https​://doi.org/10.1007/978-3-642-12148​-7_10

	12.	 Kinzett D, Johnston M, Zhang M (2009) Numerical simplifica-
tion for bloat control and analysis of building blocks in genetic
programming. Evol Intell 2(4):151–168. https​://doi.org/10.1007/
s1206​5-009-0029-9

	13.	 Kinzett D, Zhang M, Johnston M (2010) Investigation of simplifi-
cation threshold and noise level of input data in numerical simpli-
fication of genetic programs. In: IEEE congress on evolutionary
computation, (CEC2010), Barcelona, Spain, pp 1–8. https​://doi.
org/10.1109/CEC.2010.55861​81

	14.	 Koza JR (1992) Genetic programming: on the programming of
computers by means of natural selection. MIT Press, Cambridge,
MA

	15.	 Langdon WB (2017) Long-term evolution of genetic program-
ming populations. In: Genetic and evolutionary computation

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3071178.3071338
https://doi.org/10.1145/3071178.3071338
https://doi.org/10.1214/088342304000000396
https://doi.org/10.1214/088342304000000396
https://doi.org/10.1198/jasa.2009.tm08368
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1007/s10710-009-9086-1
https://doi.org/10.1007/978-3-642-12148-7_10
https://doi.org/10.1007/s12065-009-0029-9
https://doi.org/10.1007/s12065-009-0029-9
https://doi.org/10.1109/CEC.2010.5586181
https://doi.org/10.1109/CEC.2010.5586181

661Evolutionary Intelligence (2020) 13:649–661	

1 3

conference companion, Berlin, Germany, pp 235–236. https​://
doi.org/10.1145/30676​95.30759​65

	16.	 Manly BFJ (1997) Randomization, bootstrap and Monte Carlo
methods in biology, 2nd edn. Chapman & Hall, London

	17.	 McDermott J, White DR, Luke S, Manzoni L, Castelli M,
Vanneschi L, Jaskowski W, Krawiec K, Harper R, De Jong K,
O’Reilly UM (2012) Genetic programming needs better bench-
marks. In: Genetic and evolutionary computation conference
(GECCO 2012). Philadelphia, PA, pp 791–798. https​://doi.
org/10.1145/23301​63.23302​73

	18.	 Naoki M, McKay B, Hoai NX, Essam D, Takeuchi S (2009) A
new method for simplifying algebraic expressions in genetic pro-
gramming called equivalent decision simplification. In: 10th Inter-
national work-conference on artificial neural networks, (IWANN)
workshops on distributed computing, artificial intelligence, bio-
informatics, soft computing, and ambient assisted living, Sala-
manca, Spain, pp 171–178. https​://doi.org/10.1007/978-3-642-
02481​-824

	19.	 Ni J, Drieberg RH, Rockett PI (2013) The use of an analytic quo-
tient operator in genetic programming. IEEE Trans Evol Comput
17(1):146–152. https​://doi.org/10.1109/TEVC.2012.21953​19

	20.	 Nordin P, Francone F, Banzhaf W (1995) Explicitly defined
introns and destructive crossover in genetic programming. In:
Workshop on genetic programming: from theory to real-world
applications, Tahoe City, CA, pp 6–22

	21.	 Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic
programming. Published via http://lulu.com and freely available
at http://www.gp-field​-guide​.org.uk. http://dces.essex​.ac.uk/staff​
/rpoli​/gp-field​-guide​/A_Field​_Guide​_to_Genet​ic_Progr​ammin​
g.pdf. Accessed 14 Sept 2019

	22.	 Quinlan JR (1993) C4.5: programs for machine learning. Morgan
Kaufmann, San Mateo, CA

	23.	 Rockett P (2018) Pruning of genetic programming trees using
permutation tests. Technical report, University of Sheffield

	24.	 Salustowicz R, Schmidhuber J (1997) Probabilistic incremen-
tal program evolution. Evol Comput 5(2):123–141. https​://doi.
org/10.1162/evco.1997.5.2.123

	25.	 Song A, Chen D, Zhang M (2009) Bloat control in genetic pro-
gramming by evaluating contribution of nodes. In: Genetic and
evolutionary computation conference (GECCO 2009), Montreal,
Canada, pp 1893–1894. https​://doi.org/10.1145/15699​01.15702​
21

	26.	 Uy NQ, Hoai NX, O’Neill M, McKay R, Galván-López E (2011)
Semantically-based crossover in genetic programming: applica-
tion to real-valued symbolic regression. Genet Program Evolv-
able Methodol 12(2):91–119. https​://doi.org/10.1007/s1071​
0-010-9121-2

	27.	 Vanneschi L, Castelli M, Silva S (2010) Measuring bloat, over-
fitting and functional complexity in genetic programming. In:
Genetic and evolutionary computation conference (GECCO
’10), Portland, OR, pp 877–884. https​://doi.org/10.1145/18304​
83.18306​43

	28.	 Vladislavleva EJ, Smits GF, den Hertog D (2009) Order of nonlin-
earity as a complexity measure for models generated by symbolic
regression via Pareto genetic programming. IEEE Trans. Evol
Comput 13(2):333–349. https​://doi.org/10.1109/tevc.2008.92648​6

	29.	 Wahba G, Wold S (1975) A completely automatic French curve:
fitting spline functions by cross validation. Commun Stat 4(1):1–
17. https​://doi.org/10.1080/03610​92750​88272​23

	30.	 Wong P, Zhang M (2006) Algebraic simplification of GP pro-
grams during evolution. In: Genetic and evolutionary computation
conference (GECCO 2006), Seattle, WA, pp 927–934. https​://doi.
org/10.1145/11439​97.11441​56

	31.	 Zhang M, Wong P, Qian D (2006) Online program simplifica-
tion in genetic programming. In: 6th international conference on
simulated evolution and learning (SEAL 2006), Hefei, China, pp
592–600. https​://doi.org/10.1007/11903​697_75

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3067695.3075965
https://doi.org/10.1145/3067695.3075965
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1007/978-3-642-02481-824
https://doi.org/10.1007/978-3-642-02481-824
https://doi.org/10.1109/TEVC.2012.2195319
http://lulu.com
http://www.gp-field-guide.org.uk
http://dces.essex.ac.uk/staff/rpoli/gp-field-guide/A_Field_Guide_to_Genetic_Programming.pdf
http://dces.essex.ac.uk/staff/rpoli/gp-field-guide/A_Field_Guide_to_Genetic_Programming.pdf
http://dces.essex.ac.uk/staff/rpoli/gp-field-guide/A_Field_Guide_to_Genetic_Programming.pdf
https://doi.org/10.1162/evco.1997.5.2.123
https://doi.org/10.1162/evco.1997.5.2.123
https://doi.org/10.1145/1569901.1570221
https://doi.org/10.1145/1569901.1570221
https://doi.org/10.1007/s10710-010-9121-2
https://doi.org/10.1007/s10710-010-9121-2
https://doi.org/10.1145/1830483.1830643
https://doi.org/10.1145/1830483.1830643
https://doi.org/10.1109/tevc.2008.926486
https://doi.org/10.1080/03610927508827223
https://doi.org/10.1145/1143997.1144156
https://doi.org/10.1145/1143997.1144156
https://doi.org/10.1007/11903697_75

	Pruning of genetic programming trees using permutation tests
	Abstract
	1 The pruning approach
	2 Permutation testing
	3 Experimental methodology
	4 Results
	4.1 Pruned tree sizes
	4.2 Distributions of pruned tree sizes
	4.3 Effect of pruning on the generalization error

	5 Discussion and future work
	6 Conclusions
	References

