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Abstract
We present a novel approach based on statistical permutation tests for pruning redundant subtrees from genetic programming 
(GP) trees that allows us to explore the extent of effective redundancy . We observe that over a range of regression problems, 
median tree sizes are reduced by around 20% largely independent of test function, and that while some large subtrees are 
removed, the median pruned subtree comprises just three nodes; most take the form of an exact algebraic simplification. 
Our statistically-based pruning technique has allowed us to explore the hypothesis that a given subtree can be replaced with 
a constant if this substitution results in no statistical change to the behavior of the parent tree—what we term approximate 
simplification. In the eventuality, we infer that more than 95% of the accepted pruning proposals are the result of algebraic 
simplifications, which provides some practical insight into the scope of removing redundancies in GP trees.

Keywords  Genetic programming · Permutation testing · Tree pruning

It has long been accepted that genetic programming (GP) 
produces trees that contain substantial amounts of redun-
dancy [2, 3, 10, 15, 30]. The objections to this are well 
rehearsed: the tree evaluation time is increased, and the 
redundant subtrees may obscure human interpretation of the 
evolved solution. It is therefore desirable to remove as much 
of this redundant material as possible. Although manual tree 
simplification has been used in the past [14], automated tree 
simplification is much preferred but is very challenging [31]; 
Naoki et al. [18] point out that canonical simplification is not 
Turing computable. Work on the simplification of GP trees 
has been reviewed by Kinzett et al. [13].

Nordin et al. [20] have defined a taxonomy of introns—
broadly, the redundant code fragments that make no contri-
bution to the tree’s overall fitness; some of these are noted 
to depend on particular test cases [10, 20]. Jackson [10] has 
addressed removal of a subset of introns, dormant nodes, 
that are never executed.

Zhang and co-workers [30, 31] have explored the use of 
hashing to simplify trees both at the end of a run as well as 
during the evolutionary run. These authors found, unsur-
prisingly, that simplification reduced tree sizes although 

the effect on test performance was not examined with any 
formal statistical procedure and does appear to have been 
resolved. Interestingly, Zhang and co-workers concluded that 
their initial hypothesis that frequent simplification would 
reduce genetic diversity and therefore hinder search proved 
unfounded; they did, however, find evidence against apply-
ing simplification at every generation.

In addition to exploring a hash table based approach to 
algebraic simplification, Zhang and co-workers [12, 25] have 
also examined approximate numerical simplification meth-
ods based on the local effect of a subtree. Kinzett et al. [12] 
replaced a subtree by the average of its output over the train-
ing set if the range of its outputs fell below a user-defined 
threshold. Song et al. [25] pruned trees by comparing the 
output of a binary node with its two inputs and replacing 
that node with either child if it gave the same value as the 
binary output within a threshold. The drawbacks with both 
these contributions are that: (i) they involve local operations 
that ignore the effect of an edit higher in the tree, and (ii) 
both rely on setting user-defined thresholds for which there 
appears to be no principled method other than trial-and-
error. The shortcoming of ignoring the propagated effects 
of changes higher in the tree was examined by Johnston 
et al. [11] although they too used a two-stage process that 
relies on a user-defined threshold to gauge the acceptability 
(or otherwise) of a proposed simplification. Further, these 
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authors only considered the propagated influence of a pro-
posed simplification one or two levels up the tree.

Naoki et al. [18] have applied two simplification methods 
in tandem: one based on a set of rewriting rules derived 
from normal algebra (e.g. x × 1 → x ), and a second using an 
approximate numerical method that compares the output of 
every subtree in a parent with the outputs of a small library 
of simple trees; if a library tree provides an ‘equivalent’ 
output to the subtree under examination and is simpler, the 
library tree is substituted. This second method was found 
to be particularly effective in reducing tree size, but suffers 
from a number of drawbacks: (i) the method again relies on a 
user-defined threshold to gauge similarity, and (ii) definition 
of the comparison library is domain-specific and potentially 
sensitive to the exact problem at hand.

Although the hash table based algebraic simplification of 
Zhang and co-workers and other rule-based approaches are 
interesting and illuminating contributions, they too suffer 
from a number of drawbacks. Principally, algebraic simpli-
fication is limited in scope and does not consider ‘effec-
tive’ redundancy [11]. For example, consider the expression 
x + � where x is of the order of unity and � is, say, 10−32 . To 
all intents and purposes, the result of this addition opera-
tion is x since it is highly unlikely that including the factor 
of 10−32 will make any significant difference to the tree’s 
prediction. Algebraic simplification, however, would fail to 
recognize the x + � fragment as redundant because—in strict 
algebraic terms—it is not, and this has led researchers to 
employ approximate numerical methods. Many numerical 
simplification approaches have the over-riding disadvantage 
of requiring user-defined thresholds to gauge whether a can-
didate subtree has ‘no’ effect and can thus be pruned. In fact, 
the combined approach of Johnston et al. [11] requires the 
setting of six user-defined thresholds. In practice, it is dif-
ficult to see how to set these optimally other than by exhaus-
tive grid search over the 6-dimensional parameter space; this 
grid search would need to be repeated anew for every new 
problem. Further, it is not clear how to gauge the optimal 
amount of tree simplification/performance degradation in 
order to terminate such a grid search.

In this paper we adopt an approach akin to numerical 
simplification [12]: we regard a subtree as redundant if its 
removal results in no statistically significant change in the 
output of the parent tree: our approach thus provides a prin-
cipled method for accepting/rejecting a pruning proposal and 
avoids the need for user-defined thresholds. We explore the 
use of statistical permutation tests to determine if a selected 
subtree can be replaced with a constant of value equal to the 
mean of the subtree’s output over the data set; replacement 
by a constant node has also been followed by [12]. Other 
types of redundancy can be readily addressed by our scheme, 
but for the first report of this novel application of permu-
tation testing to GP tree pruning, we restrict attention to 

exploring this cause of tree redundancy. Additionally—and 
unlike rule-based approaches—our method does not need 
tuning to the function set employed.

The key contribution over previous work on simplifica-
tion is: Whether or not to accept a pruning proposal is judged 
statistically on the probability that a given pruning opera-
tion will change the output of the tree. This gives principled 
grounds for pruning decisions based on the probability of 
erroneous pruning. We thus avoid arbitrary, user-defined 
thresholds.

In particular, compared to earlier work on numerical sim-
plification [13], the present approach: 

1.	 Removes the restriction of locality [13]. Previous work 
was restricted to considering the possible removal of 
single nodes, or the effect of redundancy one or two 
nodes higher in the tree [11]. The present approach, on 
the other hand, considers the possible redundancy of 
arbitrary subtrees of any size.

2.	 Previous work [11, 13] employed user-defined thresh-
olds; no principled method exists for setting these other 
than trial-and-error. (We argue that intuitions based 
on noise floor in the dataset  [13] are fundamentally 
flawed—any threshold based on dataset noise variance 
that is ‘optimal’ at the leaves of a tree will be less and 
less appropriate as we approach the root due to the way 
noise variance propagates through compositions of func-
tions.) The present approach based on probability, how-
ever, is principled and has the same interpretation at all 
tree depths.

3.	 The work in [11, 13] uses the range of node’s output 
(i.e. max–min) to make the pruning decision. This 
approach is very sensitive to outliers in the dataset. The 
present approach, since it estimates probability by count-
ing satisfied inequalities of the form a > b , will not be 
catastrophically affected by an outlier, and is therefore 
robust.

Due to space constraints, we restrict this initial report to 
pruning the ‘best’ final tree produced by a conventional GP 
run rather than embedding tree simplification within the evo-
lutionary dynamics. We thus critically re-examine the com-
monly held view that GP trees contain significant amounts 
of redundant material. Embedding permutation-based sim-
plification within the evolutionary process is possible, but 
will require a much larger study to elucidate the various fac-
tors—we therefore defer that work to a future paper although 
we discuss possible approaches later in the paper. Further, 
since we consider here only pruning after evolution, the pre-
sent work does not (currently) aim to control ‘bloat’ in the 
sense of avoiding unproductive code growth during evolu-
tion although that is obviously a future direction. In Sect. 1, 
we describe our GP tree pruning approach, and in Sect. 2 we 
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outline the necessary background on permutation tests. The 
experimental methodology employed is described in Sect. 3 
and results are presented in Sect. 4. We conclude the paper 
with a discussion and areas for future work in Sects. 5 and 6.

1 � The pruning approach

Considering the simple example tree representation in Fig. 1 
which implements the quite general mapping y = f (�) where 
the vector � = (x1 x2)

T . This tree can be evaluated for a given 
� by recursively visiting each node in turn starting from the 
root node [21].

We consider the case of a subtree that produces the 
mapping g(�) and denote c = ⟨g(�)⟩ where〈 〉denotes 
the expectation taken over a dataset. If replacing the given 
subtree by a constant node returning c does not produce a 
statistically significant change in the output of the parent tree 
then we can effect a simplification of the tree. We refer to 
this type of pruning as constant subtree (CST) pruning since 
the replaced subtree is effectively a constant.

In order to implement the constant subtree pruning strat-
egy described in this work, the basic tree structure in Fig. 1 
together with its recursive evaluation have to be modified. 
Firstly, we add an internal state variable to every node type. 
T h u s :  NodeState ∈ {Untested, Testing, Failed, Pruned} 
where the different state values have the following 
interpretations:

•	 ‘Untested’ denotes that the subtree rooted at that node 
has not yet been considered for pruning.

•	 ‘Testing’ denotes that a node is currently in the process 
of being evaluated for pruning.

•	 ‘Failed’ indicates that the subtree rooted at this node has 
been considered for pruning, but this pruning proposal 
has been rejected.

•	 ‘Pruned’ indicates that a node and its subtree have previ-
ously been considered for pruning, and the pruning was 
judged to make no statistical difference to the tree output; 
in other words, the node and its subtree are redundant and 
can be replaced by the expectation of the subtree output 
over the dataset.

In order to implement the pruning approach proposed here, 
the tree evaluation function described above has to be modi-
fied to respect the node state. When the recursive evalua-
tion of the tree encounters a node state of either ‘Testing’or 
‘Pruned’ it immediately returns the (precomputed) mean 
value of the subtree; otherwise, the recursive evaluation 
continues conventionally.

The pruning process proceeds in the following sequence: 

1.	 S ince  the  t ree  implements  the  mapping 
yi = f (�

�
) ∀i ∈ [1…N] , the response of the unpruned 

tree to each of the N records is cached in an indexed 
array Du , where the ‘u’ subscript denotes ‘unpruned’. 
This stage is performed to speed up subsequent permuta-
tion testing.

2.	 All node states in the tree are initially set to ‘Untested’ 
denoting that at this stage none of the subtrees has been 
considered for pruning.

3.	 (a)	 The state of every (non-constant) node 
in the GP tree is set, one-at-a-time, to the ‘Test-
ing’ state, and the tree evaluated over the N data 
records using a recursive tree evaluation proce-
dure that respects node states. To facilitate rapid 
permutation testing, the responses of the (tenta-
tively pruned) tree or each � value are cached in an 
array Dp , where the ‘p’ subscript denotes pruned.

(b)	 A permutation test—see Sect. 2—is carried out 
using the arrays Du and Dp to explore the null 
hypothesis that the tentative pruning does not sta-
tistically change the behavior of the GP tree. If 
the null hypothesis is accepted, or the tentatively 
pruned tree produces a lower error, we can infer 
that the subtree rooted at the node whose state 
has been set to ‘Testing’ is redundant, and can 
be replaced with its mean value; its node state is 
then set to ‘Pruned’. On the other hand, if the per-
mutation test implies that the tentatively pruned 
tree produces a statistically worse error than the 
unpruned tree this subtree cannot be pruned and 
the node state is set to ‘Failed’.

Full implementation details of the pruning process are 
described in [23].

Note there is a subtlety here in the interpretation of the 
permutation test. The outcome of the test is either to reject 

Fig. 1   Example of a simple GP tree. The node numbers are shown in 
the top left corners of the nodes



652	 Evolutionary Intelligence (2020) 13:649–661

1 3

or accept the null hypothesis that the two subjects—the data 
in arrays Du and Dp—do not differ. Rejection of the null 
hypothesis means that the original and modified trees are 
(statistically) different and so the subtree under consideration 
cannot be replaced with a constant node without changing 
the tree’s output. Similarly, acceptance of the null hypoth-
esis means that the subtree in question may be replaced by 
a constant of a value equal to the average subtree output.

Returning to Fig. 1, the pruning process can be illus-
trated in the following way. Initially, all node states are set 
to ‘Untested’. First, the state of node ‘1’ is set to ‘Testing’ 
to explore the hypothesis that the whole tree can be replaced 
by a single constant equal to the average of the tree output 
over the dataset. If, say, this hypothesis is rejected by the 
permutation test then the node’s state is changed from ‘Test-
ing’ → ‘Failed’. The next hypothesis to be examined is to set 
state of ‘2’ to ‘Testing’ which explores the possibility that 
the subtree formed by nodes ‘2’, ‘3’and ‘4’ can be replaced 
by a constant with the value of the average output of ‘2’. If 
the ensuing permutation test rejects the hypothesis then the 
state of ‘2’ is set to ‘Failed’ and the procedure continues. If, 
on the other hand, the hypothesis that the subtree comprising 
nodes ‘2’,‘3’ and ‘4’ can be replaced by a single, constant 
node, then the state of ‘2’ is set to ‘Pruned’.

In practice, we examine the proposal to remove all pos-
sible (non-constant) nodes in the tree. In principle, we could 
examine a tree top-down and as soon as we identify a subtree 
that can be pruned, strictly there is no point in examining 
pruning proposals lower down in that subtree. In terms of 
implementation, however, the permutation testing procedure 
(Sect. 2), and in particular, its multiple comparison proce-
dures, require that we know the total number of hypothesis 
tests before making a prune/no prune decision. Top-down 
pruning would thus be paradoxical. Nonetheless, the tree 
evaluation procedure after pruning does terminate recursive 
evaluation soon as it encounters a ‘Pruned’ subtree; we con-
sequently do take advantage of the first pruning encountered 
in the recursive tree traversal thereby maximizing the degree 
of a tree’s simplification.

For the sake of statistical validity, conventional machine 
learning prescribes the use of three disjoint datasets: a train-
ing set, a validation set, and a test set—see [8, p.222], for 
example. The training set is used for parameter adjustment 
and yields the so-called substitution error that is usually a 
wildly optimistic estimate of generalization performance, 
and is of little significance beyond model training. Given 
some number of competing trained models, the validation 
set is used to select one model for adoption—formally, a 
model selection stage. Performance over the validation set 
is generally an optimistic estimate of the chosen model’s 
generalization error since the model has been selected based 
on its performance over the (finite) validation set. Finally, 
an estimate of the model’s generalization performance is 

obtained from the test set although since this too is finite, the 
estimate is uncertain but hopefully unbiased. In the context 
of tree pruning, we are performing a model selection proce-
dure: that is, given a choice between two models—the origi-
nal, as-evolved tree and the pruned tree, we accept a given 
pruning proposal if the two model responses are ‘identical’ 
since, by definition, the pruned model is simpler and there-
fore to be preferred. In summary, we employ the validation 
set for tree pruning since this is a model selection process.

2 � Permutation testing

Permutation tests were originally devised by the English 
statistician Ronald Fisher in the 1930s as a means of illus-
trating hypothesis tests. Given two groups of subjects A  
and B , both of size n, with two values of some statistic 
T, T(A) and T(B) computed over each group, respectively, 
and an observed difference �A,B = T(A) − T(B) where 
�A,B ∈ ΔA,B . The null hypothesis H0 assumes that groups 
A  and B are drawn from the same population so the expec-
tation value of �A,B , should be identically zero. If the null 
hypothesis is true then we are at liberty to randomly allocate 
the 2n data in A ∪B to either one of two test groups, say, C  
and D , allocating n data to each, and computing a new value 
of test statistic �C,D . If we repeat this random allocation to C  
or D a large number of times, each time obtaining a different 
value of �C,D , we can obtain a distribution of ΔC,D , the so-
called permutation distribution. Under the null hypothesis ⟨
�C,D

⟩
= 0.

By computing the probability that the observed difference 
�A,B could have been drawn from the permutation distribu-
tion, we have three potential outcomes for the permutation 
test: 

1.	 A  and B are (statistically) identical and so the given 
pruning proposal can be accepted.

2.	 The performance of group A  is better than that of B . 
If A  is from the pruned tree we can accept the pruning 
proposal since improving the performance of the tree is 
(probably) beneficial.

3.	 The performance of A  is worse than B ; if again, A  are 
the pruned responses then we wish to reject that pruning 
proposal.

Since we are concerned with rejecting a pruning proposal 
only if it produces a worse outcome, we adopt a one-sided 
hypothesis test. Permutation tests are described in greater 
detail in [4, 7, 16].

(We should at this point note a difference in terminol-
ogy in the literature. Fisher’s original thought experiment 
to illustrate hypothesis testing involved assembling a per-
mutation distribution with all n! exhaustive permutations 
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of the data. For even modest values on n, of course, this 
exact approach becomes infeasible, and practitioners typi-
cally approximate the permutation distribution using resa-
mpling—as described above—leading to the alternative 
name of a randomization test. Here we adopt the commonly-
used terminology of “permutation test” for the resampling 
procedure.)

In the context of GP tree pruning in a regression problem, 
we can consider the two groups of squared errors for each of 
the n data records in the validation set as the two groups A  
and B . One is obtained from the original, as-evolved tree 
and the other with replacing a given subtree with a constant, 
as described in Sect. 1.

Two key technical points need to be considered at this 
point: firstly, whether pruning affects the generalization abil-
ity of the model. The procedure being implemented here 
is model selection. (It is for that reason we use the vali-
dation set for the permutation test rather than the training 
set or a test set—generalization error is estimated over a 
separate test set.) To select between two models—pruned 
and unpruned—we pose the question: does the unpruned 
tree exhibit the (statistically) same error over the valida-
tion set? If this question is answered in the affirmative then 
we prefer the the simpler tree according to Occam’s razor. 
In reality, this question only makes any sense with respect 
to the validation set. If more data were available then we 
could use them both to improve the training and to reduce 
the variance on the model selection decision. Consequently, 
questions about generalization should be unconnected to the 
pruning decisions. We hypothesize that accepting a pruning 
proposal on the basis of comparing validation set errors will 
have no systematic effect on the test (generalization) error. 
In essence, if we have an (obvious) redundancy of the form, 
say, y = f (x) + x − x then simplifying this to y = f (x) will not 
affect the generalization error of the model. Thus we con-
jecture that due to sampling effects pruning will sometimes 
reduce test error and sometimes increase it, but overall, will 
have no statistically significant effect; this point is addressed 
further in Sect. 4.3.

In terms of implementation, the quantities we are per-
muting are the two groups of n squared residuals obtained 
with and without a pruning proposal. Consequently, it is 
only necessary to calculate these once at the start of a sub-
tree pruning process and cache them (in arrays Du and Dp ). 
The computational demands of a given permutation test are 
thus modest. Further, we are interested in the decision about 
whether pruning some given subtree results in (statistically) 
the same tree semantics as the original, as-evolved tree ( Du ), 
and not the last pruned tree. Consequently, our ‘reference’ 
responses from the as-evolved, unpruned tree do not change 
during the sequence of pruning decisions for the whole tree.

The second technical issue concerns multiple compari-
son procedures (MCPs) [9]. In this work, we are computing 

multiple test statistics, and there is a well-known issue with 
such comparisons tending to increase the error rate over 
families of tests [9]. (We think it self-evident that the set 
of tests we employ do comprise a family [9].) The concept 
of MCPs is well-known to the GP community albeit in the 
guise of the post hoc corrections that usually follow Fried-
man tests of group homogeneity [6]. In hypothesis testing 
there are two sorts of error: Type I error, which occurs with 
probability � , is the situation where a null hypothesis is erro-
neously rejected. Complementary to this, a Type II error, 
which occurs with probability � , is the mistaken rejection of 
the alternative hypothesis; the quantity (1 − �) is denoted the 
power of the test. When � increases, � decreases, and vice 
versa although the exact functional form is hard to specify 
in general. In the context of the present work, a Type I error 
will lead to the rejection of a (perfectly good) pruning pro-
posal and is benign (except that a possible opportunity to 
simplify the tree has been missed). A Type II error, on the 
other hand, leads to accepting a pruning proposal that should 
really have been rejected. Consequently, controlling Type II 
error is of greater importance in this work. Most multiple 
comparison procedures, however, have been focused on con-
trolling Type I error although the false discovery rate (FDR) 
procedure of Benjamini and Hochberg [1] has been shown 
to maintain test power and is therefore appropriate here. We 
have therefore adopted the FDR procedure here.

3 � Experimental methodology

We have employed a fairly standard generational GP search 
in this work [21]. The parameters of the algorithm are sum-
marized in Table 1. We have used 10% elitism and there-
fore generated the remainder of the child population by 
always applying crossover and mutation to ensure popula-
tion diversity. If a breeding operation generated a tree larger 
than the pre-specified hard node count limit, one of the par-
ent trees was randomly selected for copying into the child 
population [21].

We have employed a set of ten univariate regression test 
functions that have previously been used in the GP litera-
ture—see Table 2. The first four of these functions are, in 
principle, representable exactly with the internal nodes 
used in the GP. The remaining functions require appropriate 
approximation. We have used training sets of 20 data ran-
domly sampled over the domain, and validation sets of the 
same size; the test sets comprised 1000 data in order to obtain 
reliable estimates of generalization error. The rather small 
size of 20 training/validation data was quite deliberate and is 
related to the challenge presented by various test functions 
for GP, which has received some attention [17]. In particu-
lar, the difficulty associated with learning high-dimensional 
problems stems from the exponentially-decreasing density of 
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data with increasing problem dimensionality—the so-called 
‘curse of dimensionality’. At the same time, we wanted to 
focus on univariate problems to facilitate more straightfor-
ward analysis of the pruned subtrees (although, in the event, 
this proved optimistic). Hence the choice of 20 training data 
so as to pose a set of fairly ill-conditioned and therefore chal-
lenging learning problems; a 50:50 split between training and 
validation sets is commonplace in machine learning practice 
leading to a choice of validation sets of 20 data.

We have standardized on the range of hard node limits 
of [16… 256] , which corresponds, under the assumption of 
all binary internal nodes, to tree depths of [4… 8] , a range 
typically employed to solve problems such as the test func-
tions used here.

Throughout this work, we have use the commonly-
accepted significance level of 5% for permutation testing. 
In other words, a 1-in-20 chance that the observed statistic 
could have been obtained fortuitously. We have used 10,000 
samples for the permutation testing, a figure arrived at sim-
ply by increasing the number of trials from a low starting 
point until the estimators stabilized. Both the 5% accept-
ance probability and the number of permutation test samples 
strictly comprise parameters for the algorithm, but the for-
mer has the advantage of being unambiguously interpretable 
(as opposed to an arbitrary threshold). Although we have 
not employed it here, Gandy [5] has shown it is possible to 
terminate the permutation testing as soon as the uncertainty 
on the computed p value has fallen below a limit.

4 � Results

After evolving a final population of GP regression trees, we 
selected the individual with the smallest training error for 
subsequent pruning. We have applied our permutation-test-
based pruning procedure to establish the influence of these 
statistical modifications. Further, we have explored the effect 
of pruning on the generalization errors in Sect. 4.3.

4.1 � Pruned tree sizes

The typical distributions of tree node counts for the French 
curve test function for a range of hard node count limits is 
shown in Fig. 2; these have been accumulated over 1000 
repetitions, each with independent initial populations. (All 
results have incorporated the Benjamini & Hochberg multi-
ple comparison procedures.) In fact, the corresponding plots 
for all the test functions look remarkably similar.1

Table 1   Parameters used for 
generational GP evolution Population size 100

Population initialization Random tree sizes between one and node count limit
Elitism 10%
No. of tree evaluations 20,000
Internal nodes Add, subtract, multiplication, analytic quotient [19]
Terminal nodes Independent variable, constant ∈ {0.1, 0.2,… , 0.9, 1.0}

Crossover Point crossover with 90% probability of selecting 
internal node [21]

Crossover probability 1.0
Mutation Point mutation [21]
Mutation probability 1.0
Mutation tree depth 4
Hard node count limit [16… 256]
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Fig. 2   Distributions of tree node counts versus hard node count limit 
for the French curve test function. No pruning

1  A complete set of results for this and other sections is presented 
in [23]. For brevity, we show only representative results.
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Figure 2 shows the node counts for the final evolved 
individuals with the smallest training errors before prun-
ing. We only compare distributions over trees for which 
subsequent pruning was possible, and ignored (the small 
minority of) trees were no pruning occurred. It is clear 
from this figure that for a given hard node count, the GP 
evolution tended to produce trees almost exactly this size 
and with small interquartile ranges although some smaller 
trees were generated as evidenced by the lower whiskers 
on the box plots.

The node count distributions after pruning are shown 
in Fig. 3. There appears to be a roughly 20% consistent 
reduction in median tree size (independent of test function) 
although comparing with the corresponding boxplots before 
pruning, there is a noticeable increase in the interquartile 

ranges. From the upper whiskers of the box plots, it is clear 
that in an appreciable number of cases the trees have been 
reduced in size only marginally.

Figure  4 shows the typical relationships between 
unpruned and pruned individuals for the French curve test 
function and a hard node count limit of 128. Points on the 
two parallel axes show the unpruned tree sizes (left) and 
pruned tree sizes (right) for the same individuals before and 
after pruning. For comparison, the two distributions of indi-
viduals are shown as boxplots for unpruned (left) and pruned 
(right) populations. It is clear from this figure that unpruned 
individuals with an interquartile range of [123… 127] are 
being pruned to a wide range of tree sizes with a correspond-
ing interquartile range of [88… 105] . The median size is 
reduced from 126 to 97. Although some small unpruned 
individuals are being reduced by only modest extents, there 
are also large individuals ( ∼ 110–128 nodes) being pruned 
down to between 60 and 80 nodes. A few are being pruned 
to ∼ 40 nodes.

4.2 � Distributions of pruned tree sizes

The results in the previous section are for trees to which all 
possible pruning proposals have been applied, and are there-
fore reduced to their minimum size. We have, however, also 
carefully analyzed the individually-accepted pruning propos-
als. Figure 5 shows the typical distributions of the sizes of 
pruned subtrees for the French curve functions; again there 
is comparatively little variation with test function/hard node 
count limit. The noteworthy features of these distributions 
are (i) their small interquartile ranges, and (ii) most of the 
pruned trees tend to be rather small in size although a few 
subtrees in excess of one hundred nodes can also be removed 
by pruning. The median value of pruned tree size is three 
independent of test function and node count limit. It thus 
seems highly likely that the most commonly pruned tree 
comprises a binary node and either two terminals or two 
constants.

 0

 50

 100

 150

 200

 250

 0  50  100  150  200  250

N
um

be
r o

f t
re

e 
no

de
s

Hard node count limit

Fig. 3   Distributions of tree node counts versus hard node count limit 
for the French curve test function. Pruned

Table 2   Test functions used in 
this work

Function Equation Domain

Cubic polynomial [26] y = x
3 + x

2 + x [−1…+ 1]

Quartic polynomial [26] y = x
4 + x

3 + x
2 + x [−1…+ 1]

Quintic polynomial [26] y = x
5 + x

4 + x
3 + x

2 + x [−1…+ 1]

Sextic polynomial [26] y = x
6 + x

5 + x
4 + x

3 + x
2 + x [−1…+ 1]

French curve [29] y = 4.26 exp−x −4 exp−2x +3 exp−3x [0… 3.25]

Uy_5 [26] y = sin(x2) × cos(x) + 1 [−1…+ 1]

Uy_6 [26] y = sin(x) + sin(x + x
2) [−1…+ 1]

Uy_7 [26] y = log(x + 1) + log(1 + x
2) [0… 2]

Uy_8 [26] y =
√
x [0… 4]

Salustowicz [24] y = x
3 exp−x cos(x) sin(x)[sin2(x) cos(x) − 1] [0… 10]
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We have examined the distributions of pruned tree sizes 
in detail paying particular attention to accepted pruning pro-
posals of three nodes, and this analysis is shown in Table 3. 
(Yet again, there is little variation with test function.)

The row “# pruning events” shows the absolute number 
of successful pruning events over 1000 repetitions of tree 

evolution—this unsurprisingly increases with increasing 
node count limit as larger trees offer more opportunities for 
pruning. Of these pruning events, the percentage involving 
3-node trees is indicated by “% 3-node trees”—it is clear that 
this covers around 40-50% of the individual pruning events. 
Within these 40-50% of overall 3-node tree prunings, the 
table also shows the percentages that are a binary operations 
with two constant children (“% constant⊛ constant”), the 
percentage of (x − x) operations (“% (x − x) ”) together with 
a summary of the 3-node prunings that are algebraic sim-
plifications (“% 3-node algebraic”). Thus, in this particular 
case, between 93.94% and 82.39% of the 3-node prunings 
are algebraic simplifications. A small percentage of 3-node 
prunings are other binary-rooted subtrees (“% other binary”) 
and these comprise subtrees implementing ‘ x⊛ const ’ (or 
‘ const⊛ x’); only a very small percentage of these ‘other 
binary’ operations are ‘ x − 0 → x ’ or x × 1 → x simpli-
fications. Finally, around 5–10% (across all functions) of 
pruned 3-node trees are algebraic simplifications of the form 
−(−x) or −(−constant) (‘% 3-node unary’), that is, a subtree 
comprising two cancelling unary minus operations and a 
terminal.

From the above results (and others [23]), it thus seems 
clear that around ∼ 80–95% of the 3-node prunings repre-
sent algebraic simplifications being carried out—by defini-
tion—at the peripheries of trees. It is important to re-empha-
sise, however, that these 3-node simplifications, however, 
account for only around half of the total number of pruning 
events. Some of the pruned trees larger than three nodes 
may well be producing algebraic simplification, but this is 
difficult to verify due to the increasing number of ways an 
equivalent expression may be written. Some more insight, 
however, may be gained by examining what fraction of the 
permutation tests returned a precisely zero probability of 
rejecting the null hypothesis. We infer that such a result can 
only be delivered when the two trees responses—with vs. 
without pruning—are absolutely identical implying that the 
pruning being considered represents an algebraic simplifica-
tion. These percentages are shown in Table 4 for each test 
function and hard node limit, and for 3-node trees as well 
as pruned trees larger than three nodes. It is clear that, in 
general, at least the high nineties of percent of pruning prob-
abilities are zero implying that these represent algebraic sim-
plification.2 A slightly smaller percentage of trees larger than 
three nodes returns zero probability than the corresponding 
figure for 3-node trees although this is reasonable given that 
there is greater scope for larger trees to be approximately 
rather than algebraically equivalent.

Fig. 4   Parallel axis plot for the French curve test function and hard 
node limit of 128 showing the co-relations between unpruned and 
pruned individuals. The boxplots show the distributions of tree sizes 
before and after pruning for 1000 independently-initialized runs

Fig. 5   Distributions of the sizes of pruned subtrees for the French 
curve test function

Table 3   Distribution of pruned 3-node subtrees: French curve. ⊛ rep-
resents an arbitrary binary operation

Node limit 16 32 64 128 256

# Pruning events 1411 3275 7494 17,353 37,845
% 3-Node trees 50.32 47.11 44.88 41.87 38.56
% Const⊛ const 91.27 80.62 73.48 69.29 66.44
% (x − x) 2.68 10.89 14.36 15.14 15.95
% 3-Node algebraic 93.94 91.51 87.84 84.43 82.39
% Other binary 0.14 2.53 5.08 7.85 9.15
% 3-Node unary 5.77 4.93 5.32 4.78 5.13

2  The Salustowicz function, as with many experiments, returns 
results outside the clear trend; we discuss this in Sect. 5.
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4.3 � Effect of pruning on the generalization error

If pruning makes no difference to the model selection deci-
sion (i.e. validation set error) other than producing a smaller 
tree, we conjectured that pruning can have no effect on the 
average generalization error of the tree. We have explored 
this hypothesis by generating a (third) test set [8, p.222] 
of 1000 data independent of both the training and valida-
tion sets to estimate the generalization errors of 1000 trees 
generated from independent GP runs. We return here to 
comparing trees both before pruning, and after all possible 
pruning proposals have been applied and the tree reduced to 
its minimum overall size. We removed from this experiment 
the few % of trees that remained unpruned since we were 
interested only in the effects of pruning, not its frequency 
of occurrence. If pruning does not affect generalization per-
formance—which is, by definition, the average error over 
test sets—then by chance we would expect exactly half the 
(pruned) trees to exhibit an improved test error after pruning 
and half to have a higher test error after pruning.

We have explored with a series of statistical tests the 
hypothesis that pruning (on average) either improves 
or degrades the generalization error; the results are 

summarized in Table 5 for a representative selection of 
test functions. For each of the 1000 pruned trees examined, 
the generalization error was either unchanged, increased 
by pruning or decreased by it. Between 58 and 100% of 
the generalization errors were unchanged by pruning and 
we followed the usual statistical practice of distributing 
these zero before-and-after differences equally between the 
counts for improved and degraded test errors; we explored 
the one-sided hypothesis for whichever count (improve-
ment/degradation) was larger. Which test has been applied 
is shown in the table with either a down-arrow ( ↓ ) for a 
reduction (improvement) in test error , or an up-arrow ( ↑ ) 
for an increase (degradation).

From Table 5 for trees trained with 20 data (suffix of 
“-20”), it is clear that most of the null hypotheses need to 
be accepted (= ‘no change’ in test error) although for a hard 
node count limit of 256, the generalization error statistically 
worsens. (Complete data can be found in [23] from which 
a less clear trend emerges: mostly, test error is unchanged, 
sometimes it improves, sometimes it degrades.) This picture 
of unclear effects on test error has also been reported in [30, 
31].

Table 4   Percentages of zero 
probability values return by the 
permutation tests for pruned 
subtrees = 3 nodes, and > 3 
nodes, by hard node count limit, 
and for different test functions. 
Data over 1000 repetitions

Node limit 16 32 64 128 256

= 3 > 3 = 3 > 3 = 3 > 3 = 3 > 3 = 3 > 3

Cubic 97.38 96.08 99.59 98.86 99.44 98.65 99.11 97.90 98.44 96.63
Quartic 99.07 99.08 98.94 98.03 99.14 97.88 99.00 97.82 98.45 96.66
Quintic 97.19 98.04 99.58 98.72 99.17 97.68 99.33 98.01 98.13 96.19
Sextic 99.81 99.86 99.73 98.67 99.26 98.37 99.06 97.70 98.45 96.62
French curve 98.59 98.43 98.12 95.03 96.13 90.87 95.31 88.97 95.33 89.78
Uy_5 98.92 98.17 99.46 98.90 99.44 98.70 98.72 97.20 98.11 96.21
Uy_6 99.68 100.00 99.76 99.56 99.29 98.63 99.26 98.05 98.40 96.37
Uy_7 98.31 96.65 97.98 94.21 98.54 95.58 98.66 96.15 97.91 95.13
Uy_8 98.82 98.80 98.18 96.19 97.98 94.21 97.22 93.47 96.77 92.07
Salustowicz 77.06 52.03 86.56 64.94 92.81 75.34 95.65 85.53 96.27 90.02

Table 5   One-sided hypothesis tests for 20 or 100 training data and 20 validation data

For each hard node limit value, Z-value shows the value of the Z statistic, p the p value of the test, and the third columns shows whether the one-
sided test is for a degradation ( ↑ ) or an improvement(↓ ) in the generalization error. Statistically-significant tests at the 5% confidence level are 
shown in bold face

Node limit 16 32 64 128 256

Z-value p Z-value p Z-value p Z-value p Z-value p

Quartic-20 0.1265 0.8580 ↓ 0.6957 0.3252 ↓ 0.9171 0.1947 ↓ 0.2530 0.7205 ↑ 0.0949 0.8933 ↑

Quartic-100 0.1265 0.8580 ↓ 1.5495 0.0284 ↓ 2.0871 0.0032 ↓ 3.4469 <0.0001 ↓ 3.9528 <0.0001 ↓

French-20 0.0949 0.8933 ↓ 0.0316 0.9643 ↓ 0.5376 0.4471 ↑ 0.2846 0.6873 ↑ 1.5495 0.0284 ↑

French-100 0.1581 0.8231 ↓ 0.3795 0.5915 ↓ 1.0436 0.1400 ↓ 2.2452 0.0015 ↓ 1.4863 0.0356 ↓

Uy_5-20 0.3162 0.6547 ↓ 0.4743 0.5023 ↓ 0.3162 0.6547 ↓ 0.0949 0.8933 ↓ 2.5298 0.0003 ↑

Uy_5-100 0.3479 0.6228 ↓ 1.2017 0.0892 ↓ 1.5811 0.0253 ↓ 2.7512 0.0001 ↓ 3.9528 <0.0001 ↓
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Training the GP trees with 100 data but retaining a valida-
tion set size (that was used for pruning) of 20 data, however, 
does produce a consistent pattern. The trees in this series of 
experiments should thus be better trained before pruning. 
The results of this second series of experiments are shown 
in Table 5 (suffix of “-100”) where all hypothesis tests are 
against improvements in test error. That is, tree prunings 
always yielded net reductions in test error. This can be 
understood since improved training means that the GP func-
tion better approximates the target function; pruning here 
is always referenced to the performance of the as-evolved 
tree and if this is deficiently trained then pruning will find 
simpler approximations to this deficient approximation. It 
is also apparent from this table that statistically-significant 
reductions tend to be greater for larger tree node limits. This 
is sensible since larger node limits tend to produce larger 
trees that are more likely to contain redundant subtrees.

5 � Discussion and future work

From the results presented in this paper it is apparent that the 
proposed permutation-based pruning procedure is effective 
in reducing median tree sizes by about 20% independent of 
test function and hard node count limit. Whereas the distri-
butions of as-evolved tree sizes clustered near to the hard 
node count limit, after pruning the variability of the tree 
sizes increased noticeably. It should also be noted that some 
(large) trees were pruned down to quite small sizes.

The results from the Salustowicz function stand alone 
across a number of comparisons. We have noted above the 
probable challenge of reliably learning a function with such 
a large number of extrema from just 20 data; Vladislavleva 
et al. [28] have previously remarked that this function is 
challenging for GP. Some of the trees attempting to approxi-
mate the Salustowicz function have been pruned down to 
single nodes implying that GP could find no better approxi-
mation than a constant, presumably close to the mean value 
of the function. Clearly, the results from the Salustowicz 
function underline that the the interplay between pruning 
and the adequacy of training warrants further research.

As regards the composition of the subtrees being pruned, 
around half are 3-node, binary-rooted trees having the forms: 
constant ⊛ constant, x − x or x × 1 , where ‘ ⊛ ’ is an arbitrary 
binary operation. These are clearly being pruned from the 
peripheries of trees. Within the context of the statistically-
founded method presented here, a permutation test p value of 
identically zero implies (though, of course, does not prove) 
that a pruned subtree removal represents an algebraic simpli-
fication as opposed to an approximate simplification. (That 
said, it is difficult to think of another plausible explanation 
for zero probability values.) The inference overall is that the 
overwhelming majority ( ≳95%) of accepted prunings are 

algebraic simplifications. Clearly a corollary is that only few 
percent of prunings are approximate simplifications. This 
was an unexpected finding since it was originally anticipated 
that a far higher percentage of approximate prunings would 
be observed.

The implications for the change in generalization error 
caused by pruning are interesting. A majority ( ≳58%) but 
by no means all prunings produced no change in generaliza-
tion performance for individual trees. If ≳95% of all prun-
ings are algebraic simplifications—which, by definition, 
cannot change the approximating function and therefore 
the generalization—then those changes in generalization 
that do occur must be caused by a relatively small number 
of pruning events. Although we have shown that pruning 
either leaves generalization unchanged or reduces it on aver-
age, assuming the tree is sufficiently well trained, instances 
where test error is reduced are obviously counterbalanced 
by instances where the test error increases. In this situa-
tion, approximate prunings might be viewed as risky due 
to their potentially adverse effects, and so a more conserva-
tive approach would be to only accept prunings with zero p 
values, that is, prunings that can be inferred to be algebraic 
simplifications. (Notwithstanding, the original motivation of 
the work to explore approximate simplifications has allowed 
us to quantify this effect.)

Although pruning mostly leaves test error unchanged and 
occasionally degrades it, there are clearly many occasions 
when pruning actually improves the test error. A similar 
phenomenon has been observed in the induction of conven-
tional decision trees (DTs) where, typically, a DT is trained 
to the point of overfitting and then heuristically pruned to 
improve generalization [22]; this phenomenon can be easily 
interpreted in terms of advantageously shifting the balance 
between goodness-of-fit and model complexity [8]. Pruning 
obviously reducing the latter quantity.

One aspect of this work does require justification, and 
was indeed raised by one of the anonymous reviewers of 
this paper: the absence of a direct comparison with previous 
approaches to approximate simplification, such as [13]. To 
be of any value, any comparison has to a be a fair compari-
son. Since, as pointed out in the introduction, a fundamental 
shortcoming of previous work is its reliance on user-defined 
thresholds for which there are no principled selection meth-
ods, the question arises as to how to select a ‘fair’ threshold 
for comparison? Selecting such an arbitrary value is open 
to all sorts of potential abuses with investigator bias—for 
example, it would be possible to adopt some value that 
purports to show the spectacular superiority of the present 
method, but such a comparison would be barely worthy of 
the name. Making comparison across a range of threshold 
values is similarly unsatisfactory in that progressively lower-
ing the decision threshold will increase the degree of prun-
ing but will also degrade the test error as increasing numbers 
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of increasingly inappropriate prunings were accepted. How 
to judge which is the ‘correct’ degree of tree simplification? 
In the light of these difficulties, we have taken the deliberate 
decision to omit controversy-laden attempts at comparison 
with previous work.

Although this paper reports the development of a princi-
pled, statistically-founded method based on repeated sam-
pling, incorporation of the necessary multiple comparison 
procedures has meant we need to explore all potential prun-
ings. The computational complexity for a tree of depth d 
can be upper-bounded by considering a tree comprised only 
binary nodes. At each level i in the tree we have 2i subtrees 
so the total number of pruning proposals that need to be 
considered is:

It would, however, be misleading to to infer that this is a 
computationally intractable algorithm. Tree depth d is 
typically small ( ≤ 8 − 10 ), and it is well-known that many 
NP-hard problems are eminently solvable for small prob-
lem sizes. Pruning the single, best-trained individual from 
the evolved population increased the CPU time by around 
25% in the present work, a fairly modest increase although 
this could be reduced by employing the ‘early jump out’ 
approach in [5]. Extending this approach directly to prun-
ing trees during evolution will clearly result in a significant 
increase in runtime. It would, nonetheless, be interesting 
to see how approximate tree simplification affects the evo-
lutionary dynamics as a one-off experiment both for the 
single-objective GP formulation considered here as well as 
multi-objective GP that incorporates syntactic bloat control 
in a different way. It is moot, however, whether the inevitably 
large increase in computing time would impact workaday GP 
practice. We return to this theme in the following paragraph.

Overall, the scope for reducing tree size appears to stem 
almost exclusively from algebraic simplification; scope for 
approximate simplification appears comparatively rare and 
carries the risk of degrading the model generalization but 
also the possible benefit of improving it. This paper has 
quantified the scope for approximate simplification of GP 
trees using a principled, statistically-founded method that 
avoids the need for arbitrary, user-tuned decision thresholds. 
The rather surprising conclusion is that ≥95% of the possible 
tree simplifications are purely algebraic, the practical impli-
cations of which are profound. This suggests that almost all 
the benefits of tree size reduction can be achieved by alge-
braic simplification while avoiding the risks of degrading 
the generalization performance that approximate simplifi-
cations bring. However, rather than suggesting the use of 
rule-based simplifications of tree syntax [30, 31] that need 
to be handcrafted to the function set, and, like all complex 

d∑

i=0

2i = 2d+1 − 1

rule sets, are challenging to construct, a simpler, semantic-
based approach based on the present work suggests itself. 
Algebraic simplification for a tree of arbitrary complex-
ity can be inferred by comparing the elements of the two 
cached arrays of tree responses Du and Dp (see Sect. 1). If 
Du[i] ≊ Dp[i] ∀i ∈ [1…N] where N is the size of the data 
set and “ ≊ ” denotes equality within floating-point rounding 
error, we can infer algebraic equivalence and prune the can-
didate subtree without changing the tree’s semantics. Such as 
scheme retains the benefits of the permutation test but with-
out the need for repeated sampling leading to a large saving 
in computing time. Applying this non-sampling approach to 
tree simplification both during evolution and on members of 
the final evolved population is an area of future work.

Although ‘bloat’ has long been recognized as an issue 
in genetic programming, its handling has in the past been 
rather informal [27]. The present work offers a possible 
route to a more rigorous definition in that it identifies sub-
trees that make no significant contribution to the program’s 
output, serving only to increase the size of the tree. We 
have presented a method of judging (to within some sta-
tistical bound) whether or not a tree fragment is redundant. 
Although we have been concerned here exclusively with post 
hoc tree pruning, it is clearly an area of future work to focus 
explicitly on bloat.

Although we have considered only unary and binary 
nodes here, extension to ternary (if-then-else) nodes [21] is 
straightforward. Typically, the first subtree is used to evalu-
ate the conditional predicate; if this predicate evaluates to 
‘true’, then the value of the second subtree is returned, oth-
erwise the value of the third subtree is returned to the node’s 
parent. It is straightforward to extend the above pruning 
strategies to evaluate the hypotheses that the ternary node 
could be replaced by either the second (‘true’) subtree or the 
third (‘false’) subtree implying that the conditional predicate 
is (effectively) a constant value and that the branching struc-
ture is redundant.

Clearly future work needs to examine more complex 
regression functions, such as those suggested in [17]; these 
more ‘complex’ mappings should produce more complex 
trees that may change the nature of pruning. Although the 
work reported in this paper is restricted to regression prob-
lems, extension to classification and indeed time series 
is straightforward, and will be addressed in forthcoming 
research.

Finally, and in terms of future work on simplification, 
consider the expression comprising two binary nodes: 
z = (x + y) − y , which, of course, algebraically simplifies 
trivially to z = x . This expression cannot, in general, be 
simplified by setting any of the variables to a constant. 
(The reader is invited to draw this expression as a tree and 
consider the two outcomes—pruned and unpruned—if the 
subtree rooted at the ‘−’ node is replaced by the average 
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over, say, two data records (x1, y1) and (x2, y2) .) Reductions 
of subtrees such as this are likely to remain a challeng-
ing task, especially if x, y are not terminal quantities but 
are themselves computed by (possibly large) subtrees and 
where y is computed by two subtrees of markedly different 
morphologies. Even constructing simplification rules for 
this case remains challenging; to account for the ‘cance-
ling’ factor—here y—lying lower and lower in the left 
hand subtree requires an exponentially increasing number 
of rules. There thus seems a large amount of work remain-
ing to simplify GP trees to their truly minimal form.

6 � Conclusions

In this paper, we have presented a novel approach based on 
statistical permutation tests for pruning redundant subtrees 
from genetic programming (GP) trees. This has the advan-
tage of being simple to implement while not requiring the 
setting of arbitrary, user-defined thresholds.

We have observed that over a range of ten regression 
problems, median tree sizes are reduced by around 20%, 
largely independent of regression function and the hard 
node count limit used to restrict tree bloat. Although some 
large subtrees (over a hundred nodes) are removed, the 
median pruned subtree comprises three nodes and over-
whelmingly takes the form of an exact algebraic simplifi-
cation. That is, either a binary operation on two constants, 
a subtraction operation on two variable nodes, a multipli-
cation of a variable by unity, or two consecutive unary 
minus operators and a terminal node.

The basis of our statistically-based pruning technique 
is that a given subtree can be replaced with a constant 
if this substitution results in no statistical change to the 
behavior of the parent tree. This has allowed us to examine 
approximate redundancies where replacing a subtree with 
a constant produces some change, but that that change 
is not statistically significant. In the eventuality, we infer 
that ≳95% of the pruned subtrees are the result of alge-
braic simplifications since this fraction of hypothesis tests 
yielded precisely zero p values. These observations sug-
gest the scope for reducing the complexity of GP trees 
is overwhelmingly limited to algebraic simplification and 
that instances of removing approximate equivalences are 
comparatively rare.

The further implication of the rarity of approximate 
simplification prunings is that most pruning events do not 
change the generalization error of the parent tree. The small 
number of approximate prunings that do occur, however, can 
have effects—both positive and negative—on generalization.
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