Skip to main content

Advertisement

Log in

Massive MIMO perspective: improved sea lion for optimal antenna selection

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

The massive MIMO is an advanced technology in the wideband wireless communication system’s future, which provokes extensive attention in both academia and telecommunication industry. Pilot contamination is considered as a fundamental issue in the system of massive MIMO. The designing of wireless systems has the main concern over the system throughput. Though, the environmental protection and energy-saving have concerned as inevitable trends and global demands. Hence, on considering all these consequences, this paper intends to introduce a new improved sea lion optimization algorithm to select the optimal transmit antennas selection by accounting the multi-objective issue that maximizes both the relative energy efficiency and capacity. In fact, the proposed algorithm is the enhanced version of traditional sea lion optimization algorithm, which optimally tunes the count of transmit antennas and determines which antenna to be selected. Finally, the performance of proposed work is compared and proved over other conventional models regarding capacity analysis, relative efficiency analysis, and optimal antenna selection analysis as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SMV:

Square maximum-volume

LSAS:

Large-scale antenna systems

MIMO:

Muliple input–multiple output

BS:

Base station

RF:

Radio frequency

BAB:

Branch and bound

AS:

Antenna selection

CBF:

Correlation-based best first

EE:

Energy efficiency

SE:

Spectral efficiency

MOO:

Multi-objective optimization

PSO:

Partcle swarm optimization

WS-PSO:

Weighted sum-PSO

NBI-PSO:

Normal-boundary-intersection PSO

RAS:

Received antenna selection

NOMA:

Non-orthogonal multiple access

MU-MIMO:

Multiuser MIMO

RFC:

Radio frequency chain

RMV:

Rectangular maximum-volume

SMV:

Square maximum-volume

TAS:

Transmit antennas selection

MMU-MIMO:

Massive multiuser MIMO

BF:

Beamforming

MRT:

Maximum ratio transmission

MMSE:

Minimum mean square error

CM:

Capacity maximization

PM:

Probability minimization

CSI:

Channel state information

SLnO:

Sea lion optimization

ZF:

Zero forcing

References

  1. Sivalingam R, Chinnamuthu S, Dash SS (2017) A modified whale optimization algorithm based adaptive fuzzy logic PID controller for load frequency control of autonomous power generation systems. Automatika 58(4):410–421

    Article  Google Scholar 

  2. Sivalingam R, Chinnamuthu S, Dash SS (2017) A hybrid stochastic fractal search and local unimodal sampling based multistage PDF plus (1 + PI) controller for automatic generation control of power systems. J Frankl Inst 354(12):4762–4783

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao X, Edfors O, Rusek F, Tufvesson F (2015) Massive MIMO performance evaluation based on measured propagation data. IEEE Trans Wireless Commun 14(7):3899–3911

    Article  Google Scholar 

  4. Wang B, Chang Y, Yang D (2014) On the SINR in massive MIMO networks with MMSE receivers. IEEE Commun Lett 18(11):1979–1982

    Article  Google Scholar 

  5. Long Y, Chen Z, Fang J (2016) Minimum number of antennas required to satisfy outage probability in massive MIMO systems. IEEE Wireless Commun Lett 5(4):348–351

    Article  Google Scholar 

  6. Mandloi M, Bhatia V (2017) Error recovery based low-complexity detection for uplink massive MIMO systems. IEEE Wireless Commun Lett 6(3):302–305

    Article  Google Scholar 

  7. Demir ÖT, Tuncer TE (2019) Improved ADMM-based algorithms for multi-group multicasting in large-scale antenna systems with extension to hybrid beamforming. Digit Signal Process 93:43–57

    Article  Google Scholar 

  8. Ramakrishnan S, Kar S, Selvamuthu D (2019) Analysis of energy efficiency in cloud based heterogeneous RAN with large-scale antenna systems. Comput Netw 149:265–276

    Article  Google Scholar 

  9. Ji Y, Fan W, Pedersen GF (2018) Channel characterization for wideband large-scale antenna systems based on a low-complexity maximum likelihood estimator. IEEE Trans Wireless Commun 17(9):6018–6028

    Article  Google Scholar 

  10. Khan I (2019) Channel modeling and analysis of OWC-massive MIMO systems. Opt Commun 434:209–217

    Article  Google Scholar 

  11. Lanzetta P, Polito A, Veritti D (2008) Subthreshold laser. Ophthalmology 115(1):216–216

    Article  Google Scholar 

  12. Veritti D, Lanzetta P, Perissin L, Bandello F (2009) Posterior juxtascleral infusion of modified triamcinolone acetonide formulation for refractory diabetic macular edema: one-year follow-up. Invest Ophthalmol Vis Sci 50(5):2391–2397

    Article  Google Scholar 

  13. Sarao V, Bertoli F, Veritti D, Lanzetta P (2014) Pharmacotherapy for treatment of retinal vein occlusion. Expert Opin Pharmacother 15(16):2373–2384

    Article  Google Scholar 

  14. Sarao V, Veritti D, Furino C, Giancipoli E, Alessio G, Boscia F, Lanzetta P (2017) Dexamethasone implant with fixed or individualized regimen in the treatment of diabetic macular oedema: six-month outcomes of the UDBASA study. Acta Ophthalmol 95(4):e255–e260

    Article  Google Scholar 

  15. Pierfrancesco Fusco MD, Vincenza Cofini MD, Emiliano Petrucci MD, Paolo Scimia MD, Tullio Pozone MD, Giuseppe Paladini MD, Gaspare Carta MD, Stefano Necozione MD (2016) Transversus abdominis plane block in the management of acute postoperative pain syndrome after caesarean section: a randomized controlled clinical trial. Pain Phys 19:583–591

    Google Scholar 

  16. Ganesan T, Vasant P, Sanghvi P, Thomas J, Litvinchev I (2020) Random matrix generators for optimizing a fuzzy biofuel supply chain system. J Adv Eng Comput 4(1):33–50

    Article  Google Scholar 

  17. Masouros C, Matthaiou M (2015) Space-constrained massive MIMO: hitting the wall of favorable propagation. IEEE Commun Lett 19(5):771–774

    Article  Google Scholar 

  18. Mahyiddin WAWM, Martin PA, Smith PJ (2015) Massive MIMO systems in time-selective channels. IEEE Commun Lett 19(11):1973–1976

    Article  Google Scholar 

  19. Liu W, Gu Z, Jin M (2016) Penalty function based detector for generalized space shift keying massive MIMO systems. IEEE Commun Lett 20(4):664–667

    Article  Google Scholar 

  20. Yue D, Zhang Y, Jia Y (2015) Beamforming based on specular component for massive MIMO systems in Ricean fading. IEEE Wireless Commun Lett 4(2):197–200

    Article  Google Scholar 

  21. Gao Z, Shen D, Liao X (2019) Secrecy enhancement in MIMO-OFDM-IM systems with limited RF chains. Phys Commun 35:100706

    Article  Google Scholar 

  22. Tandur D, Moonen M (2010) MIMO OFDM systems with digital RF impairment compensation. Signal Proces 90(11):2965–2980

    Article  MATH  Google Scholar 

  23. Li Y-z, Zhou M-y, Zhang P (2007) RF power and I/Q imbalance calibration in B3G/4G MIMO-OFDM systems. J China Univ Posts Telecommun 14(2):89–124

    Article  Google Scholar 

  24. Basha TSG, Aloysius G, Rajakumar BR, Giri Prasad MN, Sridevi PV (2012) A constructive smart antenna beam-forming technique with spatial diversity. IET Microw Antennas Propag 6(7):773–780. https://doi.org/10.1049/iet-map.2011.0356

    Article  Google Scholar 

  25. Eskandari M, Hoseini AMD, Fazel MS (2019) An energy-efficient joint antenna selection and power allocation for MIMO systems under limited feedback. Signal Process 163:66–74

    Article  Google Scholar 

  26. Yang P, Zhu J, Xiao Y, Chen Z (2019) Antenna selection for MIMO system based on pattern recognition. Digit Commun Netw 5(1):34–39

    Article  Google Scholar 

  27. Hu B-b, Liu Y-a, Xie G, Gao J-c, Yang Y-l (2014) Energy efficiency of massive MIMO wireless communication systems with antenna selection. J China Univ Posts Telecommun 21(6):1–8

    Article  Google Scholar 

  28. Vasant P, Zelinka I, Weber G-W (2019) Intelligent computing and optimization, vol 866. Springer, Berlin, p XII, 575

    Book  Google Scholar 

  29. Vasant P, Zelinka I, Weber G-W (2020) Intelligent computing and optimization, vol 1072. Springer, Berlin, p XV, 693

    Book  MATH  Google Scholar 

  30. Konar A, Sidiropoulos ND (2018) A simple and effective approach for transmit antenna selection in multiuser massive MIMO leveraging submodularity. IEEE Trans Signal Process 66(18):4869–4883

    Article  MathSciNet  MATH  Google Scholar 

  31. Hanif M, Yang H, Boudreau G, Sich E, Seyedmehdi H (2018) Antenna subset selection for massive MIMO systems: a trace-based sequential approach for sum rate maximization. J Commun Netw 20(2):144–155

    Article  Google Scholar 

  32. Liu Z, Du W, Sun D (2017) Energy and spectral efficiency trade off for massive MIMO systems with transmit antenna selection. IEEE Trans Veh Technol 66(5):4453–4457

    Google Scholar 

  33. Al-Hussaibi WA, Ali FH (2019) Efficient user clustering, receive antenna selection, and power allocation algorithms for massive MIMO-NOMA systems. IEEE Access 7:31865–31882

    Article  Google Scholar 

  34. Tang H, Nie Z (2018) RMV antenna selection algorithm for massive MIMO. IEEE Signal Process Lett 25(2):239–242

    Article  Google Scholar 

  35. El-Khamy SE, Moussa KH, El-Sherif AA (2017) Performance of enhanced massive multiuser MIMO systems using transmit beamforming and transmit antenna selection techniques. Wireless Pers Commun 94(3):1825–1838

    Article  Google Scholar 

  36. Gao Y, Vinck H, Kaiser T (2018) Massive MIMO antenna selection: switching architectures, capacity bounds, and optimal antenna selection algorithms. IEEE Trans Signal Process 66(5):1346–1360

    Article  MathSciNet  MATH  Google Scholar 

  37. Jin G, Zhao C, Fan Z, Jin J (2019) Antenna selection in TDD massive MIMO systems. Mob Netw Appl. https://doi.org/10.1007/s11036-019-01297-5

    Article  Google Scholar 

  38. Masadeh R, Mahafzah B, Sharieh A (2019) Sea lion optimization algorithm. Int J Adv Comput Sci Appl 10:388–395

    Google Scholar 

  39. Vrionis TD, Koutiva XI, Vovos NA (2014) A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators. IEEE Trans Power Syst 29(3):1325–1334

    Article  Google Scholar 

  40. Gao KZ, Suganthan PN, Pan QK, Tasgetiren MF, Sadollah A (2016) Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion. Knowl Syst 109:1–16

    Article  Google Scholar 

  41. Zhang J, Xia P (2017) An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models. J Sound Vib 389:153–167

    Article  Google Scholar 

  42. Wang H, Wang W, Zhou X, Sun H, Cui Z (2017) Firefly algorithm with neighborhood attraction. Inf Sci 382–383:374–387

    Article  Google Scholar 

  43. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  44. Rao IV, Rao VM (2019) Optimal transmit antenna selection using improved GSA in massive MIMO technology. Wireless Pers Commun 109:1217–1235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inumula Veeraraghava Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, I.V., Rao, V.M. Massive MIMO perspective: improved sea lion for optimal antenna selection. Evol. Intel. 14, 1831–1845 (2021). https://doi.org/10.1007/s12065-020-00457-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00457-x

Keywords

Navigation