Skip to main content
Log in

Image fusion practice to improve the ischemic-stroke-lesion detection for efficient clinical decision making

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

In humans, the abnormality in brain arises due to various reasons and the ischemic-stroke (IS) is one of the major brain syndromes to be diagnosed and treated with appropriate procedures. The brain-signals and brain-images are widely considered for the clinical level diagnosis of IS. The proposed research considered the brain-image (MRI) based assessment of IS, due to its accuracy and multi modality nature. The MRI slices with modalities, such as diffusion-weighted (DW), flair and T1 are considered for the assessment. This work implements the following procedures to extract the IS lesion (ISL); (i) pixel level image fusion based on principal-component-analysis (PCA), (ii) image thresholding using cuckoo-search (CS) and Tsallis entropy, (iii) watershed based ISL extraction, and (iv) comparison of segmented ISL with the ground-truth-image (GTI). To confirm the clinical significance of the proposed work, the test images are collected from the benchmark ISLES2015 database. The results of this research confirms that, the fused brain MRI slices with DW and flair (DW + flair) modality facilitate to attain improved mean values of Jaccard-Index (83.17 ± 7.32%), Dice (88.51 ± 4.76%) and segmentation accuracy (97.34 ± 1.62%) compared to other images. This research confirms that, pixel level fusion will help to achieve better result during the clinical level disease diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. STROKE: http://www.world-stroke.org/

  2. Thanaraj P, Parvathavarthini B (2017) Multichannel interictal spike activity detection using time–frequency entropy measure. Australas Phys Eng Sci Med 40(2):413–425

    Article  Google Scholar 

  3. Rajinikanth V, Satapathy SC (2018) Segmentation of Ischemic Stroke Lesion in brain MRI based on social group optimization and fuzzy-Tsallis entropy. Arab J Sci Eng 43:4365–4378

    Article  Google Scholar 

  4. Rajinikanth V, Palani TK, Satapathy SC, Fernandes SL, Dey N (2019) Shannon’s entropy and watershed algorithm based technique to inspect ischemic stroke wound. Smart Innov Syst Technol 105:23–31

    Article  Google Scholar 

  5. Kanchana R, Menaka R (2015) Computer reinforced analysis for ischemic stroke recognition: a review. Indian J Sci Technol 8(35):81006

    Article  Google Scholar 

  6. Rajinikanth V, Satapathy SC, Dey N, Lin H (2018) Evaluation of Ischemic Stroke region from CT/MR Images using hybrid image processing techniques. Intell Multidimens Data Image Process 7:194–219. https://doi.org/10.4018/978-1-5225-5246-8.ch007

    Article  Google Scholar 

  7. Maier O, Wilms M, Von der Gablentz J, Krämer UM, Münte TF, Handels H (2015) Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 240:89–100

    Article  Google Scholar 

  8. Maier O, Schröder C, Forkert ND, Martinetz T, Handels H (2015) Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS ONE 10(12):e0145118

    Article  Google Scholar 

  9. Maier O et al (2017) ISLES 2015—a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 35:250–269

    Article  Google Scholar 

  10. Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, Connelly A, Campbell B, Palmer S, Sharma G, Christensen S, Carey L (2014) Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage 98:324–335

    Article  Google Scholar 

  11. Jahmunah V et al (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698. https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  12. Sharma M, Patel S, Acharya UR (2020) Automated detection of abnormal EEG signals using localized wavelet filter banks. Pattern Recognit Lett 133:188–194

    Article  Google Scholar 

  13. Acharya UR et al (2019) Automatic detection of ischemic stroke using higher order spectra features in brain MRI images. Cogn Syst Res 58:134–142

    Article  Google Scholar 

  14. Rajinikanth V, Raj ANJ, Thanaraj KP, Naik GR (2020) A Customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection. Appl Sci 10(10):3429

    Article  Google Scholar 

  15. Dey N et al (2019) Social-group-optimization based tumor evaluation tool for clinical brain MRI of flair/diffusion-weighted modality. Biocybern Biomed Eng 39(3):843–856

    Article  Google Scholar 

  16. ISLES 2015. http://www.isles-challenge.org

  17. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

  18. ITK-SNAP. http://www.itksnap.org/pmwiki/pmwiki.php

  19. Rajinikanth V, Satapathy SC, Dey N, Vijayarajan R (2018) DWT-PCA image fusion technique to improve segmentation accuracy in brain tumor analysis. Lect Notes Electr Eng 471:453–462

    Article  Google Scholar 

  20. Bhateja V, Moin A, Srivastava A, le Bao N, Lay-Ekuakille A, Le DN (2016) Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer’s disease. Rev Sci Instrum 87(7):074303

    Article  Google Scholar 

  21. Vijayarajan R, Muttan RS (2014) Local principal component averaging image fusion. Int J Imaging Robotics 13(2):94–103

    Google Scholar 

  22. Vijayarajan R, Muttan RS (2014) Iterative block level principal component averaging medical image fusion. Optik Int J Light Electron Opt 125(17):4751–4757

    Article  Google Scholar 

  23. Vijayarajan R, Muttan RS (2014) Fuzzy C-means clustering based principal component averaging fusion. Int J Fuzzy Syst 16(2):153–159

    Google Scholar 

  24. Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: World congress on nature & biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214

  25. Yang X-S, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1(4):330–343

    MATH  Google Scholar 

  26. Yang X-S, Deb S (2012) Cuckoo search for inverse problems and topology optimization. In: Proceedings of international conference on advances in computing. Springer, Berlin, pp 291–295

  27. Yang X-S, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624

    Article  MathSciNet  Google Scholar 

  28. Lakshmi VS, Tebby SG, Shriranjani D, Rajinikanth V (2016) Chaotic cuckoo search and Kapur/Tsallis approach in segmentation of T cruzi from blood smear images. Int J Comput Sci Infor Sec (IJCSIS) 14:51–56

    Google Scholar 

  29. Varsha S et al (2018) Gray scale image multi-thresholding with chaotic cuckoo search. In: Proceedings of IEEE international conference on system, computation, automation and networking (ICSCA), pp 1–5. https://doi.org/10.1109/ICSCAN.2018.8541262

  30. Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52(1):479–487

    Article  MathSciNet  Google Scholar 

  31. Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2016) Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recognit Lett 94:87–94

    Article  Google Scholar 

  32. Rajinikanth V, Fernandes SL, Bhushan B, Sunder NR (2018) Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Lect Notes Electr Eng 434:313–321

    Article  Google Scholar 

  33. Roerdink JBTM, Meijster A (2001) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inf 41:187–228

    MathSciNet  MATH  Google Scholar 

  34. Kaleem M, Sanaullah M, Hussain MA, Jaffar MA, Choi T-S (2012) Segmentation of brain tumor tissue using marker controlled watershed transform method. Commun Comput Inf Sci 281:222–227

    Google Scholar 

  35. Deng G, Li Z (2012) An improved marker-controlled watershed crown segmentation algorithm based on high spatial resolution remote sensing imagery. Lect Note Electr Eng 128:567–572

    Article  Google Scholar 

  36. Ward MO (2008) Multivariate data glyphs: principles and practice. Handbook of data visualization, pp 179–198. https://doi.org/10.1007/978-3-540-33037-0_8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arunmozhi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemanth, D.J., Rajinikanth, V., Rao, V.S. et al. Image fusion practice to improve the ischemic-stroke-lesion detection for efficient clinical decision making. Evol. Intel. 14, 1089–1099 (2021). https://doi.org/10.1007/s12065-020-00551-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00551-0

Keywords

Navigation