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Abstract

Several protocol efficiency metrics (e.g., scalability,
search success rate, routing reachability and stability) de-
pend on the capability of preserving structure even over
the churn caused by the ad-hoc nodes joining or leaving
the network. Preserving the structure becomes more pro-
hibitive due to the distributed and potentially uncoopera-
tive nature of such networks, as in the peer-to-peer (P2P)
networks. Thus, most practical solutions involve unstruc-
tured approaches while attempting to maintain the struc-
ture at various levels of protocol stack. The primary fo-
cus of this paper is to investigate construction and mainte-
nance of scale-free topologies in a distributed manner with-
out requiring global topology information at the time when
nodes join or leave. We consider theuncooperative behav-
ior of peers by limiting the number of neighbors to a pre-
defined hard cutoff value (i.e., no peer is a major hub), and
the ad-hoc behaviorof peers by rewiring the neighbors of
nodes leaving the network. We also investigate the effect of
these hard cutoffs and rewiring of ad-hoc nodes on the P2P
search efficiency.

1. Introduction

Stability and scalability of highly dynamic networks
mainly depends on the capability of preserving structure
even over the churn caused by the ad-hoc nodes joining
or leaving the network. Several protocol efficiency metrics
(e.g., search success rate, routing reachability rate) depend
on this capability. Preserving the structure becomes more
prohibitive due to the distributed and potentially uncooper-
ative nature of such networks, as in the peer-to-peer (P2P)
networks. Thus, most practical solutions involve unstruc-
tured approaches while attempting to maintain the structure
at various levels of protocol stack.

In decentralized P2P networks, the overlay topology (or
connectivity graph) among peers is a crucial component in
addition to the peer/data organization and search. Topolog-

ical characteristics have profound impact on the efficiency
of search on P2P networks as well as other networks. It has
been well-known that search on small-world topologies can
be as efficient asO(lnN) [30], and this phenomenon has re-
cently been studied on P2P networks [43, 35, 28, 29]. The
best search efficiency in realistic networks can be achieved
when the topology is scale-free (power-law), which offers
search efficiencies likeO(ln lnN). Key limitation of scale-
free topologies is the high load (i.e., high degree) on very
few number of hub nodes. In a typical unstructured P2P net-
work, peers are not willing to maintain high degrees/loads
as they may not want to store large number of entries for
construction of the overlay topology. So, to achieve fairness
and practicality among all peers,hard cutoffs on the num-
ber of entries are imposed by the individual peers, which
makes the overall network a “limited” one. Effect of such
hard cutoffs on search efficiency can be significant [27].

Due to the uncooperative nature of peers in a P2P net-
work, protocols cannot completely rely on methods work-
ing with full cooperation of peers. For example, peers may
not want to store large number of entries for construction of
the overlay topology, i.e., connectivity graph. Even though
characteristics of the overlay topology is crucial in deter-
mining the efficiency of the network, peers typically do
not want to take the burden of storing excessive amount
of control information for others in the network, thereby
imposinghard cutoffson the amount of control informa-
tion to be stored. Yet another key issue is the construction
of scale-free overlay topologies without global information.
There are several techniques to generate a scale-free topol-
ogy [8, 4], by usingglobal information about the current
network when a node joins or leaves. Such global methods
are not practical in P2P networks, andlocal heuristics in
generating such scale-free overlay topologies must be em-
ployed. In other words, there must be local and simple op-
erations when peers are joining or leaving the P2P overlay,
and also causing a minimal inefficiency to the search mech-
anisms to be run on the network.

The primary focus of this paper is to investigate con-
struction and maintenance of scale-free topologies in a dis-
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tributed manner without requiring global topology informa-
tion at the time when nodes join or leave. We consider the
uncooperative behaviorof peers by limiting the number of
neighbors to a pre-defined hard cutoff value, and thead-hoc
behaviorof peers by rewiring the neighbors of nodes leav-
ing the network. We also investigate the effect of these hard
cutoffs and the rewiring of ad-hoc nodes on the P2P search
efficiency.

The rest of the paper is organized as follows: First, we
provide motivation for this work, outline the key parame-
ters to be considered, and briefly state the major contribu-
tions and findings of the work. Then, we survey the previ-
ous work on P2P networks in Section 2. In Section 3, we
survey the previous work on scale-free topology generation
and briefly cover the importance ofcutoff in the scale-free
network andPreferential Attachment (PA) with Hard Cut-
offs. We introduce our topology generation techniques us-
ing local heuristics and briefly describe the algorithm show-
ing join and leave process of a node in the growing network,
in Section 4. In Section 5, we present our simulation re-
sults of degree distribution of the nodes. We also discuss
the efficiency of three search algorithms i.e Flooding (FL),
Normalized Flooding (NF) and Random Walk (RW) on the
topology generated by our simulations. We conclude by
summarizing our current work and outlining the directions
for the future work in Section 6.

1.1. Contributions and Major Results

Our work uncovers the relationship between the ad-hoc
behavior of peers (i.e., how frequent they join/leave) and the
efficiency of search over an overlay topology where each
peer can (or is willing to) store a maximum number of links
to other peers. In our model, we parameterize (i) the ad-hoc
behavior of nodes by the probability that a node leavesµ,
(ii) the amount of local information to be used at the time of
join by knowledge radius from the point the node attempts
to join, τj (i.e., the node knows about the local topology
coveringτj hops away from the point the node attempts to
join the network), and (iii) the amount of local information
to be used at the time ofleaveby knowledge radius from
the location of the leaving node,τl (i.e., each neighbor of
the leaving node knows about the local topology covering
τl hops away from itself). We also define the maximum
number of links to be stored by peers as thehard cutoff,
kc, for the degree of a peer in the network as compared to
natural cutoff which occurs due to finite-size effects. Our
contributions include:

• Guidelines for generating scale-free topologies over
ad-hoc nodes: We introduce a generic model that
can assign availability of different amount of local
topology information at the times when a node joins

or leaves. Our model provides a way of tuning ad-
hocness of the network and studying how to balance
state information for nodes joining or leaving.

• Search efficiency on ad-hoc limited scale-free topolo-
gies: Through extensive simulations, we studied effi-
ciency of Flooding (FL), Normalized Flooding (NF),
and Random Walk (RW) on the topologies generated
by our model with differentµ, τj , τl, andkc values.

• Rewiring methodologies for designing peer leave al-
gorithms for unstructured P2P networks:Our study
yielded several guidelines for peers leaving an unstruc-
tured P2P network, so that the search performance of
the overall overlay topology remains high.

Our study revealed several interesting issues. We found
that having more global information about the topology at
the time of leave is significantly more helpful than having
it at the time of join. We show that the degree distribution
can be kept scale-free and the search efficiency can be kept
very high by simply keepingτl at reasonably high values,
e.g., 2-3.

2. Related Work

Previous work on P2P network protocols can be classi-
fied intocentralizedanddecentralizedones. As centralized
P2P protocols (e.g. Napster [3]) proved to be unscalable,
the majority of the P2P research has focused on decentral-
ized schemes. The decentralized P2P schemes can be fur-
ther classified into sub-categories:structured, unstructured,
andhybrid.

In the structured P2P networks, data/file content of peers
is organized based on a keying mechanism that can work in
a distributed manner, e.g. Distributed Hash Tables (DHTs)
[38]. The keying mechanism typically maps the peers (or
their content) to a logical search space, which is then lever-
aged for performing efficient searches. In contrast to the
structured schemes, unstructured P2P networks do not in-
clude a strict organization of peers or their content. Since
there is no particular keying or organization of the content,
the search techniques are typically based on flooding. Thus,
the searches may take very long time for rare items, though
popular items can be found very fast due to possible lever-
aging of locality of reference [37] and caching/replication
[13].

The main focus of the research on unstructured P2P net-
works has been the tradeoff between state complexity of
peers (i.e., number of records needed to be stored at each
peer) and flooding-based search efficiency. The minimal
state each peer has to maintain is thelist of neighbor peers,
which construct the overlay topology. Optionally, peers can
maintainforwarding tables (also referred as routing tables



in the literature) for data items in addition to the list of
neighbor peers. Thus, we can classify unstructured P2P net-
works into two based on the type(s) of state peers maintain:
(i) per-dataunstructured P2P networks (i.e., peers maintain
both the list of neighbor peers and the per-data forward-
ing table), and (ii)non-per-dataunstructured P2P networks
(i.e., peers maintain only the list of neighbor peers).

Non-per-data schemes are mainly Gnutella-like schemes
[1], where search is performed by means of flooding query
packets. Search performance over such P2P networks has
been studied in various contexts, which includes pure ran-
dom walks [22], probabilistic flooding techniques [34, 23],
and systematic filtering techniques [41].

Per-data schemes (e.g. Freenet [2]) can achieve bet-
ter search performances than non-per-data schemes, though
they impose additional storage requirements to peers. By
making the peers maintain a number of<key,pointer> en-
tries peers direct the search queries to more appropriate
neighbors, where “key” is an identifier for the data item be-
ing searched and the “pointer” is the next-best neighbor to
reach that data item. This capability allows peers to leverage
associativity characteristics of search queries [12]. Stud-
ies ranged from grouping peers of similar interests (i.e.,
peer associativity) [29, 12] to exploiting locality in search
queries (i.e., query associativity) [11, 37]. Our work is ap-
plicable to both per-data and non-per-data unstructured P2P
networks, since we focus on the interactions between search
efficiency and topological characteristics.

Previous study on node isolation caused by churn in un-
structured P2P networks introduced a general model of re-
silience [42]. In this study, joining and rewiring processes
were based on age-biased neighbor selection, where a for-
mal analysis included two age-biased techniques of neigh-
bor selection. In maximal age-selection approach, the join-
ing node selects uniformly randomlym alive nodes from
the network and connects to the one with maximal age.
It follows the same process when a dead link is detected.
However, in age-biased random walk selection approach,
the probability of a node to be selected by another peer is
proportional to its current age. Another study introduced
self-organizing super peer network architecture [21], where
super peers maintain the cache with pointers to files that are
recently requested and on the other hand client peers dy-
namically select super peers offering best search results.

3. Scale-Free Network Topologies

Recent research shows that many natural and artificial
systems such as the Internet [20], World Wide Web [5], sci-
entific collaboration network [9], and e-mail network [19]
have power-law degree (connectivity) distributions. These
systems are commonly known as power-law or scale-free
networks since their degree distributions are free of scale

(i.e., not a function of the number of network nodesN ) and
follow power-law distributions over many orders of magni-
tude. This phenomenon has been represented by the proba-
bility of having nodes withk degrees asP (k)∼k−γ where
γ is usually between2 and3 [8]. Scale-free networks have
many interesting properties such as high tolerance to ran-
dom errors and attacks (yet low tolerance to attacks targeted
to hubs) [6], high synchronizability [25, 26, 31], and resis-
tance to congestion [39].

The origin of the scale-free behavior can be traced back
to two mechanisms that are present in many systems, and
have a strong impact on the final topology [8]. First, net-
works are developed by the addition of new nodes that are
connected to those already present in the system. This
mechanism signifies continuous expansion in real networks.
Second, there is a higher probability that a new node is
linked to a node that already has a large number of connec-
tions. These two features led to the formulation of a grow-
ing network model first proposed by Barabási and Albert
that generates a scale-free network for whichP (k) follows
a power law withγ=3. This model is known aspreferen-
tial attachment(PA or rich-gets-richer mechanism) and the
resulting network is calledBarabási-Albertnetwork [8, 4].

In this study, we use a simple version of the PA model
[8]. The model evolves by one node at a time and this new
node is connected tom (number of stubs) different exist-
ing nodes with probability proportional to their degrees, i.e.,
Pi=ki/

∑

j kj whereki is the degree of the nodei. The av-
erage degree per node in the resulting network is2m and
the minimum degree ism.

Scale-free networks are very robust against random fail-
ures and attacks since the probability to hit the hub nodes
(few nodes with very large degree) is very small and attack-
ing the low-degree satellite nodes does not harm the net-
work. On the other hand, deliberate attacks targeted to hubs
through which most of the traffic go can easily shatter the
network and severely damage the overall communication in
the network. For the same reason the Internet is called “ro-
bust yet fragile” [18] or “Achilles’ heel” [6, 7].

Scale-free networks also havesmall-world [40] proper-
ties. In small-world networks the diameter, or the mean
hop distance between the nodes scales with the system size
(or the number of network nodes)N logarithmically, i.e.,
d∼lnN . The scale-free networks with2<γ<3 have a much
smaller diameter and can be namedultra-small networks
[14], behaving asd∼ln lnN . Whenγ=3 andm≥2, d be-
haves asd∼lnN/ ln lnN . However, whenm=1 andγ=3
the Barabási-Albert model turns into a tree andd∼lnN is
obtained. Also whenγ>3, the diameter behaves logarithmi-
cally asd∼lnN . Since the speed/efficiency of search algo-
rithms strongly depend on the average shortest path, scale-
free networks have much better performance in search than
other random networks.



3.1. The Cutoff

One of the important characteristics of scale-free net-
works is the natural cutoff on the degree (or the maximum
degree) due to finite-size effects. Natural cutoff can be de-
fined as [16] the value of the degree above which one ex-
pects to find at most one vertex, i.e.,

N

∫

∞

knc

P (k)dk ∼ 1 . (1)

By using the degree distribution for the scale-free net-
work and the exact form of probability distribution (i.e.,
P (k)=(γ − 1)mγ−1/kγ), one obtains

knc(N) ∼ mN1/(γ−1), (2)

which is known as thenatural cutoff of the network. The
scaling of the natural cutoff can also be calculated by using
the extreme-value theory [10]. For the scale-free networks
generated by PA model (γ=3) the natural cutoff becomes

knc(N) ∼ m
√
N. (3)

3.2. Preferential Attachment with Hard Cutoffs

The natural cutoff may not be always attainable for most
of the scale-free networks due to technical reasons. One
main reason is that the network might have limitations on
the number of links the nodes can have. This is especially
important for P2P networks in which nodes can not possibly
connect many other nodes. This requires putting an artificial
or hard cutoff kc to the number of links one node might
have.

In order to implement the hard cutoff in PA, we simply
did not allow nodes to have links more than a fixed hard
cutoff value during the attachment process. This modified
method generates a scale-free network in which there are
many nodes with degree fixed to hard cutoff instead of a
few very high degree hubs and the degree distribution still
decays in a power law fashion. The degree distribution of
PA model with cutoff is slightly different than that of PA
without a cutoff in terms of exponent and an accumulation
of nodes with degree equal to hard cutoff. PA model, in
its original form, has a degree distribution exponentγ=3
for very large networks. However, when a hard cutoff is
imposed it is observed that the absolute value of degree dis-
tribution exponent decreases [27].

One can use the master-equation [32] approach to ana-
lyze the effects of the hard cutoff on the topological char-
acteristics. We grow the network by introducing new nodes
one by one for simplicity. Each new node links tom earlier
nodes in the network. The probability that the new node at-
taches to a previous node of degreek is defined to beAk/A,

Algorithm 1 Network growth using paramaterized join and
leave processes
//Global Variables and Functions
m - minimum degree
µ - probability of a node to leave the network
N - the maximum node ID of the existing network (the
minimum node ID is 0)
G - graph of the existing network ofM links andN nodes
PreferentialAttachment(G1, G2) - a function that per-
forms Preferential Attachment toG1 by using the nodes in
G2, returns the number of successful new links

// Join process of node i
void Join(i, τj)

1: N++
2: numoflinks← 0
3: while numoflinks < m do
4: Nrand ← Randomize(1,N ) {Pick a random node

from the existing network}
5: myG ← get subgraph(Nrand, τj) {Get the sub-

graph including neighbor nodes ofNrand up to τj
hops away}

6: numoflinks += PreferentialAttachment(G,myG)
7: end while

//Leave process of node i
void Leave(i, τl)

1: myG ← get subgraph(Nrand, τl) {Get the subgraph
including neighbor nodes ofNrand up toτl hops away}

2: remove(Nrand) {DeleteNrand from the existing net-
work}

3: N = N − 1
4: PreferentialAttachment(G,myG)

// Growth process of a network withNtarget nodes, param-
eterized withτj andτl
void Grow(Ntarget, τj , τl)

1: for i=m+1; i<Ntarget; i++ do
2: Join(N,τj)
3: num← Random(0,1)
4: if N == Ntarget then
5: break;
6: end if
7: if num < µ then
8: Ndel ← Randomize(1,N)
9: Leave(Ndel, τl)

10: end if
11: end for



whereAk is the rate of attachment to a previous node and
this rate depends only on the degree of the target node, while
A =

∑kc−1
k=m AkNk is the total rate for all events, andNk is

the number of nodes of degreek in the network. ThusAk/A
equals to the probability for the newly-introduced node to
attach to a node of degreek. The new feature that we study
is the effect of a hard cutoff on the degree of each node.
Once the degree of a node reacheskc, it is defined to be-
come inert so that no further attachment to this node can oc-
cur. Thus only nodes with degreesk = m,m+1, ..., kc− 1
are active. This restriction is the source of the cutoff in the
definition of the total attachment rate. We now study the
degree distribution,Nk(N), as a function of the cutoffkc
and the total number of nodes in the networkN .

The master equations for the degree distribution can be
written by using the fact thatNk is proportional toN , and
thusNk → Nnk as well asA→ νN as

nk =







−mnm

ν + 1 k = m
(k−1)nk−1−knk

ν k = m+ 1, ..., kc − 1
(kc−1)nkc−1

ν k = kc

. (4)

By the nature of these equations, it is evident thatnkc
is

of a different order thannk with k < kc. Starting with
the solutionnm = ν/(m + ν), we can findnk by sub-
sequent substitutions. This recursive approach gives us a
chance to writenk values as products [32] and by convert-
ing these products into Euler gamma functions we show that
nkc

scales ask−ν , while for k < kc, nk scales ask−(ν+1).
We can obtain the coefficientν in A = νN self consis-
tently from A =

∑kc−1
k=m Aknk ≡ νN , or equivalently,

ν =
∑kc−1

k=m Aknk. By rewriting the sum above as a dif-
ference between two sums with limits from the minimum
degree to∞ and from cutoff to∞ and by taking asymptotic
limits [24] of largeN andkc we get

ν → 2− 2m

kc
. (5)

This result shows thatnk ∼ k−(3−2m/kc) for k < kc and
nkc
∼ k

−(2−2m/kc)
c confirming the change in the degree

distribution exponent [27]. This implies that any finite hard
cutoff value decreases the degree distribution exponent, i.e.,
it makes the degree distribution flatter. A better search ef-
ficiency observed for a smaller cutoff can be explained by
the increase in the degree distribution exponent [27].

Ad-hoc scale-free networks have recently attracted con-
siderable attention in the literature mainly because of its
most-desired property of robustness to random attacks or
failures. For example it was shown that [6] the diameter of
the Internet at the autonomous system level, which is the
most famous example of scale-free networks, would not be
changed considerably if up to 2.5% of the routers were re-
moved randomly. This is an order of magnitude larger than
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Figure 1. Search strategies: (a) Flooding (b)
Normalized flooding (c) Random walk

the failure rate. It was also shown in [6] that for a scale-free
network of size 10,000 and a failure rate of 18%, the biggest
connected component holds 8,000 nodes, whereas under the
same conditions a random network can survive this failures
by the biggest connected component of size 100.

Many models for ad-hoc scale-free networks in which
the edges can appear and disappear [15, 33, 17] or some
nodes are removed [36] have been studied. In the first set
of studies as the nodes are joining to the network some
links among the pre-existing nodes are rewired or moved
randomly by some probability parameter. Depending on
the parameters such models exhibit either exponential or
power-law degree distributions. In [36], as the nodes are
joining by preferential attachment some randomly selected
nodes are deleted along with their links from the network.
If the nodes whose neighbors are deleted do not reconnect
themselves to other nodes, it is observed that the degree dis-
tribution is a power law with an exponent ranging from 3 to
infinity depending on the deletion probability. The authors
proposed a remedy for the deletion that the neighbors of the
deleted nodes select some other nodes in the network and
connect by again using preferential attachment rules. In this
case the degree distribution is still a power law but the ex-
ponent changes from 3 to 2 as the deletion probability goes
from 0 to 1.

The main disadvantage of the ad-hoc scale-free models
in the literature is that they lack localized algorithmic so-
lutions. All requires global information to be available to
nodes so that they can reconnect to randomly selected nodes
in the network. For this reason we grow scale-free networks
with local heuristics only to simulate the real-life situation
in unstructured peer-to-peer systems. To parameterize our
model we use two different time-to-live variables:τj and
τl to describe the number of nodes available to a new node
and to a neighbor of a deleted node, respectively. In the next
section we explain our model and its parameters in detail.
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Figure 2. Degree distributions when there is no ad-hocness ( i.e., µ=0): P (k) for various networks
generated by our framework for varying τj .

4. Growing Scale-Free Topologies with Local
Heuristics

In the PA model and its ad-hoc variants as outlined in the
previous section, the new node or the neighbor of a deleted
node has to make random attempts to connect to the existing
nodes with a probability depending on the degree of the ex-
isting nodes. To implement this in a P2P (or any distributed)
environment, the new node has to have information about
the global topology (e.g. the current number of degrees each
node has for the PA model), which might be very hard to
maintain in reality. Thus, in order for a topology construc-
tion mechanism to be practical in P2P networks, it must al-
low joining or rewiring of the nodes by just using locally
available information. Of course, the cost of using only
local information is expected to be loss of scale-freeness
(or any other desired characteristics) of the whole overlay
topology, which will result in loss of search efficiency in
return. In this section, we present a practical method using
local heuristics and no global information about the topol-
ogy. This model imitates the method for finding peers in
Gnutella-like unstructured P2P networks.

In our model, starting with somem+ 1 fully connected
nodes, at every time step a new node withm possible links
is added to the network and one randomly chosen node
is deleted with probabilityµ. Since the nodes are short-

sighted, i.e., they do not have global information about the
network, they can only choose from a subset of the network
(horizon) they construct instead of the whole network. The
parameterτj andτl are the TTL values used by the nodes
and denote the measure of locality in joining and leaving,
respectively. A newly added node, first, select a random
existing node and construct a set of nodes reachable inτj
hops or less from that node. Then, this new node randomly
selects a node from this set and connects itself with proba-
bility proportional to its degree. This probability is normal-
ized by the total degree of the nodes in the set. The new
node randomly selects other nodes in the set until its degree
reachesm. If no node is left in the set to connect but the
degree of the new node is less thanm, it selects another
random node from the network and continue this process.
In the deletion case, the neighbors of the deleted node se-
lects a node randomly from a set of nodes reachable inτl or
less steps from the deleted node and connect by using the
preferential attachment rule. Here, in both cases nodes can-
not connect to other nodes with degrees equal to the hard
cutoff.

There are special cases in this model: i) whenτj = 0,
the horizon of the new nodes contain only the randomly se-
lected nodes and the preferential attachment rule is invalid.
In this case the new node connect to this single node in the
horizon if its degree is less than the hard cutoff. ii) when



τl = 0 the neighbors of the deleted node do not have any
node in their horizons so no rewiring occurs. These nodes
just loses one of their links and they do nothing to com-
pensate it. The model typically becomes the preferential
attachment with global information whenτj value is large
andτl is zero and a BA network withγ = 3 is obtained.

5. Simulations

In the previous sections, we introduced a framework to
investigate the effects of join and leave processes in terms
of scale-freeness of the topology being constructed within
the context of ad-hoc unstructured P2P networks. Here, we
study a number of message-passing algorithms that can be
efficiently used to search items in P2P networks utilizing
the scale-free degree distribution in sample networks gener-
ated by our topology construction algorithms. These search
algorithms are completely decentralized and do not use any
kind of global knowledge about the network. We consider
three different search algorithms:flooding(FL), normalized
flooding(NF), andrandom walk(RW).

Goals of our simulation experiments include:

• Effect of ad-hocness on the search efficiency in an
uncooperative environment with hard cutoffs:Ad-
hocness of nodes joining or leaving the network affects
the search efficiency, i.e.,number of hits per unit time.
Further, applying hard cutoffs on such ad-hoc scale-
free topologies reduces the degree distribution expo-
nent. We are interested in observing the effect of this
ad-hocness and hard cutoffs on the search efficiency
for three search algorithms, i.e., FL, NF, and RW. This
extends our previous work in [27], which focussed on
the effect of hard cutoffsonly.

• Ad-hoc scale-free topology construction with global
vs. local information:Though we showed in the pre-
vious section that using local information when a peer
is joining yields a less scale-free topology, the effect of
this on search efficiency still needs to be shed light on.
Our simulations aim to investigate this too.

5.1. Search Algorithms

We use three search techniques to evaluate our ad-hoc
scale-free topologies:

Flooding (FL): FL is the most common search algorithm
in unstructured P2P networks. In search by FL, the source
nodes, sends a message to all its nearest neighbors. If
the neighbors do not have the requested item, they send on
to their nearest neighbors excluding the source node [see
Fig. 1(a)]. This process is repeated a certain number of
times, which is usually calledtime-to-live (TTL).

Table 1. Parameters of our topology con-
struction framework

Symbol Parameter Description Range
µ Ad-hocness of the nodes [0,1)
τj Available information at join ≥ 0
τl Available information at leave ≥ 0
kc Hard cutoff ≥ 1
m Minimum degree (# of stubs) ≥ 1

Normalized Flooding (NF): In NF, the minimum degreem
in the network is an important factor. NF search algorithm
proceeds as follows: When a node of degreem receives a
message, the node forwards the message to all of its neigh-
bors excluding the node forwarded the message in the previ-
ous step. When a node with larger degree receives the mes-
sage, it forwards the message only to randomly chosenm of
its neighbors except the one which forwarded the message.
The NF mechanism is illustrated in Fig. 1(b). In this simple
network withm = 2, the source node sends a message to
its randomly chosen two neighbors and these neighbors for-
ward the message to their randomly chosen two neighbors.
In the third step, the message reaches its destination.

Random Walk (RW): RW or multiple RWs have been used
as an alternative search algorithm to achieve even better
granularity than NF. In RW, the message from the source
node is sent to a randomly chosen neighbor. Then, this ran-
dom neighbor takes the message and sends it to randomly
selected one of its random neighbors excluding the node
from which it got the message. This continues until the des-
tination node is reached or the total number of hops is equal
to TTL. A schematic of RW can be seen in Fig. 1(c). RW
can also be seen as a special case of FL where only one
neighbor is forwarded the search query, providing the other
extreme situation of the tradeoff between delivery time and
messaging complexity.

5.2. Results

We simulated the three search algorithms FL, NF, and
RW on the topologies generated by our framework with
three different parameters: (i) ad-hocness,0 < µ < 1, (ii)
available information during join,τj ≥ 0, (iii) available in-
formation during leave,τl ≥ 0, (iv) hard cutoff,kc > 1,
and (v) minimum degree (number of stubs),m. These pa-
rameters are listed in Table 1 as well. By assigning different
values to each of these parameters, we generated topologies
with 10000 nodes. We used differentkc values from 10 to
100 (or just a few in this range), in addition to the natural
cutoff, i.e., no hard cutoff. We variedτj andτl from 0 to 3.
Minimum degree values (orm) in our topologies were 1, 2,
or 3. We studied smaller values ofµ from 0 to 0.3, reflect-
ing no churn to 30% churn, respectively. We performed 5
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Figure 3. Degree distributions over ad-hoc nodes (i.e., µ=0.3): P (k) for various networks generated
by our framework for varying τj and τl.
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topologies with m=3 and no ad-hocness.

realizations of our results.
We varied the TTL (i.e., time-to-live) values of search

queries in FL and NF to the point we reach the system size.
To compare search efficiencies of RW and NF fairly, we
equated TTL of RW searches to the number of messages
incurred by the NF searches in the same scenario. Thus,
for the search efficiency graphs of RW when TTL is equal
to a particular value such as 4, this means that the number
of hits corresponding to that TTL=4 value is obtained by
simulating a RW search with TTL equal to the number of
messages that were caused by an NF search using a TTL
value of 4. A similar normalization was done in [23].

5.2.1 Effects on Degree Distribution

Our simulation results show the effect of ad-hocness and
hard cutoff on the degree distribution of the topologies. Fig-
ure 2 shows the degree distribution of the topologies when
there is no ad-hocness, i.e.,µ=0. Similarly, Figure 3 shows
the degree distributions when the nodes are ad-hoc with
µ=0.3. It is known that using more global information (i.e.,

knowing more of the network topology) helps to generate
better scale-free topologies with lower power-law exponent.
This phenomenon is clearly shown in Figure 2, i.e., the de-
gree distribution shifts from an Exponential one to a power-
law one asτj increases from 0 to 2 (i.e., the joining node
uses the topology information at a larger horizon). This is
true for bothm=3 andm=1, though largermmakes the shift
a little less apparent. Further, the hard cutoff,kc, only af-
fects this process by simply bounding the very large hubs to
the cutoff without affecting the transition from Exponential
to power-law.

An interesting result being revealed in Figure 3 is that
τl has much more significant effect thanτj in shifting the
degree distribution from Exponential to power-law. This is
even more apparent for smaller values of the cutoff.

5.2.2 Effects on Search Efficiency

In flooding by far the most important parameter when there
is no deletion in the network is the cutoff which determines
the number of distinct nodes one can reach from a node,
see Figure 4. In this case,τj is also an important parameter
which changes the network from an exponential to a scale-
free one and give better efficiency in flooding.

Our simulations also show that this effect can be relieved
by increasing the minimum degree in the network as it can
be seen in Figure 5. More interestingly, ad-hocness plays an
important role in the efficiency of search algorithms. Nega-
tive effect of the high ad-hocness (highµ) can be eliminated
by increasing the available information in rewiring, i.e.,by
increasingτl in both flooding and normalized flooding, see
Figure 6. In some cases in normalized flooding higher ad-
hocness yields better efficiency for enough high values of
τl. Here, we do not present results for random walk search
algorithm since the qualitatively they are not different than
normalized flooding except that the random walk is more
vulnerable to isolated clusters in the network.
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Figure 5. Flooding (FL) performance over topologies genera ted with kc=10 and m=3.
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6. Summary and Discussions

In summary, we worked on an ad-hoc limited scale-free
network model for unstructured peer-to-peer networks. We
first developed localized joining and leaving schemes for
the peers and measure the efficiency of search algorithms
such as flooding and normalized flooding. By considering
the fact that the peers do want to store too many links in-
formation we also imposed a hard cutoff on the degree a
node can have and analyzed its effect on the search effi-
ciency. We parameterized the locality of the joining and
leaving schemes by two parameters:τj (for joining) and
τl (for leaving) which are the number of hops nodes will
use to construct sets of nodes from which they will ran-
domly choose other nodes and attempt to connect by using
the preferential attachment rules and by observing the hard
cutoff. Typically, high values of these parameters will make
the network a preferential attachment network with degree
distribution exponent3. We also modeled the random dele-
tion of the nodes by a probability parameterµ.

Our search simulations show that the negative effects of
the low cutoff and high probability of deletion can be eased
by increasing the minimum degree in the network. This also
helps one to avoid the pathological case ofm=1 for which
the network will likely to have isolated clusters hindering

the efficiency of the search algorithms. To remedy the neg-
ative effects of high values ofµ which destroys the scale-
freeness in the network we enlarged the locality of the leav-
ing scheme, i.e., increasingτl for a fixedτj and cutoff will
increase the efficiency of normalized flooding. Our findings
are directly applicable to current unstructured P2P networks
in which the peers leave the network unexpectedly and they
have an upper limit for degree.
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