Skip to main content
Log in

Optimizing cluster formation in super-peer networks via local incentive design

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

A super-peer based overlay network architecture for peer-to-peer (P2P) systems allows for some nodes, known as the super-peers, that are more resource-endowed than others, to assume a higher share of workload. Ordinary peers are connected to the super-peers and rely on them for their transactional needs. Many criteria for a peer to choose its super-peer have been explored, some of them based on physical proximity, semantic proximity, or by purely random choice. In this paper, we propose an incentive-based criterion that uses semantic similarities between the content interests of the peers and, at the same time, encourages even load distribution across the super-peers. The incentive is achieved via a game theoretic framework that considers each peer as a rational player, allowing stable Nash equilibria to exist and hence guarantees a fixed point in the strategy space of the peers. This guarantees convergence (assuming static network parameters) to a locally optimal assignment of peers to super-peers with respect to a global cost that approximates the average query resolution time. We also show empirically that the local cost framework that we employ performs closely to (and in some cases better than) a similar scheme based on the formulation of a centralized cost function that requires the peers to know an additional global parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Note that apart from the load of processing queries generated by the peers that belong to the super-peer, and maintaining their caches, the super-peer also has to bear the cost of processing queries that arrive at it from other super-peers. The latter depends on the “centrality” of the super-peer in the overlay network graph. For our study, we assume this cost is uniform across all the super-peers and hence it is not considered in the local cost function.

References

  1. Freenet. http://freenet.sourceforge.net. Accessed 09 Apr 2013

  2. Gnutella. http://www.gnutella.com. Accessed 09 Apr 2013

  3. Kazaa. http://www.kazaa.com. Accessed 09 Apr 2013

  4. Skype. http://www.skype.com. Accessed 09 Apr 2013

  5. Beverly Yang B, Garcia-Molina H (2003) Designing a super-peer network. In: Proceeding 19th IEEE international conference on data engineering, pp 49–60

  6. Busnel Y, Kermarrec A (2007) Proxsem: Interest-based proximity measure to improve search efficiency in p2p systems. In: Proceeding fourth IEEE European conference on universal multiservice networks, ECUMN’07, pp 62–74

  7. Cramton P, Shoham Y, Steinberg R (2006) Combinatorial auctions. MIT Press, Cambridge

    MATH  Google Scholar 

  8. Crespo A, Garcia-Molina H (2005) Semantic overlay networks for p2p systems. In: Agents and peer-to-peer computing. Springer, Berlin Heidelberg, pp 1–13

    Chapter  Google Scholar 

  9. Doulkeridis C, Vlachou A, Nørvåg K, Kotidis Y, Vazirgiannis M (2010) Efficient search based on content similarity over self-organizing p2p networks. Peer-to-peer Netw Appl 3(1):67–79

    Article  Google Scholar 

  10. Doulkeridis C, Vlachou A, Nørvåg K, Vazirgiannis M (2010) Distributed semantic overlay networks. In: Handbook of peer-to-peer networking. Springer, New York, pp 463–494

    Chapter  Google Scholar 

  11. Feldman M, Lai K, Stoica I, Chuang J (2004) Robust incentive techniques for peer-to-peer networks. In: Proceedings of the 5th ACM conference on electronic commerce. ACM, New York, pp 102–111

    Chapter  Google Scholar 

  12. Garbacki P, Epema D, van Steen M (2008) Broker-placement in latency-aware peer-to-peer networks. Comput Netw 52(8):1617–1633

    Article  MATH  Google Scholar 

  13. Garbacki P, Epema D, Van Steen M (2010) The design and evaluation of a self-organizing superpeer network. IEEE Trans Comput 59(3):317–331

    Article  MathSciNet  Google Scholar 

  14. Garey M, Johnson D (1979) Computers and intractability. Freeman, San Francisco

    MATH  Google Scholar 

  15. Goldschlag D, Reed M, Syverson P (1999) Onion routing. Commun ACM 42(2):39–41

    Article  Google Scholar 

  16. Karger D, Ruhl M (2004) Simple efficient load balancing algorithms for peer-to-peer systems. In: Proceeding 16th annual ACM symposium on parallelism in algorithms and architectures, pp 36–43

  17. Karypis G, Kumar V (1996) Parallel multilevel k-way partitioning scheme for irregular graphs. In: Proceeding 1996 ACM/IEEE conference on supercomputing

  18. Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359

    Article  MATH  MathSciNet  Google Scholar 

  19. Kernighan B, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(2):291–307

    Article  MATH  Google Scholar 

  20. Kurve A, Kotobi K, Kesidis G (2013) An agent-based framework for performance modeling of an optimistic parallel discrete event simulator. newblock Complex Adaptive Systems Modeling (accepted)

  21. Lv Q, Ratnasamy S, Shenker S (2002) Can heterogeneity make gnutella scalable? In: peer-to-peer networks. Springer, Berlin Heidelberg, pp 94–103

    Google Scholar 

  22. Maymounkov P, Mazieres D (2002) Kademlia: A peer-to-peer information system based on the xor metric. In: peer-to-peer networks. Springer, Berlin Heidelberg, pp 53–65

    Google Scholar 

  23. Monderer D, Shapley L (1996) Potential games. Games Econ Behav 14:124–143

    Article  MATH  MathSciNet  Google Scholar 

  24. Nejdl W,Wolf B, Qu C, Decker S, Sintek M, Naeve A, Nilsson M, Palmér M, Risch T (2002) Edutella: A p2p networking infrastructure based on rdf. In: Proceeding of the 11th ACM international conference on world wide web. ACM, New York, pp 604–615

    Google Scholar 

  25. Nejdl W, Wolpers M, Siberski W, Schmitz C, Schlosser M, Brunkhorst I, Löser A (2003) Super-peer-based routing and clustering strategies for rdf-based peer-to-peer networks. In: Proceeding 12th ACM international conference on world wide web, pp 536–543

  26. Pothen A (1997) Graph partitioning algorithms with applications to scientific computing. ICASE LaRC Interdiscip Ser Sci Eng 4:323–368

    Article  MathSciNet  Google Scholar 

  27. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A scalable content-addressable network. ACM SIGCOMM Comput Commun Rev 31(4):161–172

    Article  Google Scholar 

  28. Saroiu S, Gummadi P, Gribble S (2002) A measurement study of peer-to-peer file sharing systems. In: Proceeding multimedia computing and networking, vol 2002, p 152

  29. Schlosser M, Condie T, Kamvar S (2003) Simulating a file-sharing p2p network. In: Proceeding 1st workshop on semantics in grid and P2P networks

  30. Sripanidkulchai K, Maggs B, Zhang H (2003) Efficient content location using interest-based locality in peer-to-peer systems. In: Proceeding IEEE INFOCOM , vol 3, pp 2166–2176

  31. Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan H (2001) Chord: A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Comput Commun Rev 31(4):149–160

    Article  Google Scholar 

  32. Tirado J, Higuero D, Isaila F, Carretero J, Iamnitchi A (2010) Affinity p2p: A self-organizing content-based locality-aware collaborative peer-to-peer network. Comput Netw 54(12):2056–2070

    Article  MATH  Google Scholar 

  33. Tisue S, Wilensky U (2004) Netlogo: A simple environment for modeling complexity. In: Proceeding international conference on complex systems, pp 16–21

  34. Van Den Bout D, Thomas Miller T III (1990) Graph partitioning using annealed neural networks. IEEE Trans Neural Netw 1(2):192–203

    Article  Google Scholar 

  35. Voulgaris S, Kermarrec A, Massoulié L (2004) Exploiting semantic proximity in peer-to-peer content searching. In: Proceeding 10th IEEE international workshop on future trends of distributed computing systems, FTDCS, pp 238–243

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Kurve.

Additional information

This research was supported in part by NSF CNS grants 0916179 and 1152320. The game formulation part of the work was presented at the International Workshop on Modeling Analysis and Control of Complex Network (CNET) 2011 at San Fransisco.

Appendix

Appendix

Proof of Theorem 1

We can express \(C_{0}(\mathbf {r})\) as the aggregation of four partial sums: i) cost of peer l itself; ii)sum of costs of peers that belong to super-peer \(k_{1} \) except l; iii) sum of costs of peers that belong to super-peer \(k_{2} \) except l; and iv) sum of costs of those peers that belong neither to super-peer \(k_{1} \) nor to super-peer \(k_{2} \). In the three steps given below, we show that i), ii) and iii) decrease as peer l changes its assignment to minimize its cost (peer-level) while iv) is left unchanged. Thus, \(C_{0}(\textbf {r})\) decreases, contradicting our assumption that \(\hat {\mathbf {r}}\) is the global optimum (minimum) solution of \(C_{0} \). We can divide the objective function as follows:

$$ \begin{array}{rll} C_{0}(\textbf{r})&= &\left(\frac{b_{l} }{w_{r_{l} }}\sum\limits_{\substack{j:r_{j} =r_{l} \\j\neq l}}b_{j} + \frac{\mu}{2}\sum\limits_{j:r_{j} \neq r_{l} } c_{lj}\right) \\&& +\sum\limits_{\substack{i:i\neq l\\r_{i} =k_{1} }} \left(\frac{b_{i} }{w_{r_{i} }}\sum\limits_{\substack{j:r_{j} =r_{i} \\j\neq i}}b_{j} + \frac{\mu}{2}\sum\limits_{j:r_{j} \neq r_{i} } c_{ij}\right) \\ &&+\sum\limits_{\substack{i:i\neq l\\r_{i} =k_{2} }} \left(\frac{b_{i} }{w_{r_{i} }}\sum\limits_{\substack{j:r_{j} =r_{i} \\j\neq i}}b_{j} + \frac{\mu}{2}\sum\limits_{j:r_{j} \neq r_{i} } c_{ij} \right) \\ &&+\sum\limits_{\substack{i:i\neq l,r_{i} \neq k_{1} \\r_{i} \neq k_{2} }} \left(\frac{b_{i} }{w_{r_{i} }}\sum\limits_{\substack{j:r_{j} =r_{i} \\j\neq i}}b_{j} + \frac{\mu}{2}\sum\limits_{j:r_{j} \neq r_{i} } c_{ij}\right)\end{array} $$

Thus,

$$ \begin{array}{rll} C_{0}(\textbf{r}) &= &C_{l} (\textbf{r}) + \sum\limits_{\substack{i:i\neq l\\r_{i} =k_{1} }} C_{i} (\textbf{r}) \qquad+ \sum\limits_{\substack{i:i\neq l\\r_{i} =k_{2} }} C_{i} (\textbf{r}) \\ &&+ \sum\limits_{\substack{i:i\neq l,r_{i} \neq k_{1} \\r_{i} \neq k_{2} }} C_{i} (\textbf{r}).\end{array} $$

The first term is the cost of peer l, the second term is sum of the costs of the peers that are assigned to the former super-peer of peer l (except peer l), the third term is the sum of the costs of the peers that belong to the prospective super-peer of peer l (except peer l) and the fourth term is the sum of the costs of the peers that belong neither to the current super-peer \(k_{1} \) of peer l nor to the prospective super-peer \(k_{2} \) of peer l.

Let the new assignment vector be \(\textbf {r}^*=(r_{1} ^*,r_{2} ^*,...,r_{N} ^*)\), where \(r_{i} ^*=\hat {r}_{i} \) \(\forall ~i \neq l\).

$$\begin{array}{rll} C_{0}(\mathbf{\textbf{r}}^*) - C_{0}(\hat{\mathbf{r}}) &=& \Bigl( C_{l}(\mathbf{\textbf{r}}^*)- \notag C_{l}(\hat{\mathbf{r}})\Bigr) \\&&+ \left(\sum\limits_{\substack{i:i\neq l\\r^*_{i} = \hat{r}_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} = \hat{r}_{l} }} C_{i} (\hat{\mathbf{r}}) \right)\\ &&+ \left( \sum\limits_{\substack{i:i\neq l\\ r^*_{i} = r^*_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\ \hat{r}_{i} = r^*_{l} }} C_{i} (\hat{\mathbf{r}}) \right) \\&&+ \left(\sum\limits_{\substack{i:i\neq l,r^*_{i} \neq \hat{r}_{l} \\r^*_{i} \neq r^*_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l,\hat{r}_{i} = \hat{r}_{l} \\\hat{r}_{i} \neq r^*_{l} }}\hspace*{-6pt}C_{i} (\hat{\mathbf{r}})\hspace*{-3pt}\right).\end{array}$$

STEP 1:

By assumption, we know that \(C_{l} (\textbf {r}^*)-C_{l} (\hat {\textbf {r}})<0\).

STEP 2:

We can also deduce that

$$\sum\limits_{\substack{i:i\neq l,r^*_{i} \neq \hat{r}_{l} \\r^*_{i} \neq r^*_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l,\hat{r}_{i} = \hat{r}_{l} \\\hat{r}_{i} \neq r^*_{l} }} C_{i} (\hat{\mathbf{r}})=0,</p><p class="noindent">$$

because this term represents the sum of the change in the cost values of peers which belong to neither of the two super-peers involved in the transfer of peer l.

STEP 3:

Next we show that

$$\begin{array}{rll} \left( \sum\limits_{\substack{i:i\neq l\\r^*_{i} = \hat{r}_{l} }}{\kern-2pt}C_{i} (\mathbf{\textbf{r}}^*){\kern-2pt}-{\kern-2pt}\sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} = \hat{r}_{l} }}{\kern-2pt}C_{i} (\hat{\mathbf{r}}){\kern-2pt}\right)&+&\left(\sum\limits_{\substack{i:i\neq l\\ r^*_{i} = r^*_{l} }}{\kern-2pt}C_{i} (\mathbf{\textbf{r}}^*) -{\kern-4pt}\right.\left.\sum\limits_{\substack{i:i\neq l\\ \hat{r}_{i} = r^*_{l} }}{\kern-2pt}C_{i} (\hat{\mathbf{r}}){\kern-2pt}\right) \\&<& 0.\end{array}$$

First,

$$ \begin{array}{lll}&&\sum\limits_{\substack{i:i\neq l\\r^*_{i} = \hat{r}_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} = \hat{r}_{l} }} C_{i} (\hat{\mathbf{r}})\\ &&\qquad =\sum\limits_{\substack{i:i\neq l\\r_{i} ^*=\hat{r}_{l} }} \left(\frac{b_{i} }{w_{r^*_{i} }}\sum\limits_{\substack{j:r^*_{j} =r_{i} ^*\\j\neq i}}b_{j} + \frac{\mu}{2}\sum\limits_{j:r^*_{j} \neq r^*_{i} } c_{ij}\right) \\ &&\qquad\quad- \sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} =\hat{r}_{l} }} \left(\frac{b_{i} }{w_{\hat{r}_{i} }}\sum\limits_{\substack{j:\hat{r}_{j} =\hat{r}_{i} \\j\neq i}}b_{j} + \frac{\mu}{2}\sum\limits_{j:\hat{r}_{j} \neq \hat{r}_{i} } c_{ij}\right) \\ &&\qquad= \sum\limits_{\substack{i:i\neq l\\r_{i} ^*=\hat{r}_{l} }} \left(\frac{b_{i} }{w_{\hat{r}_{l} }}\sum\limits_{\substack{j:r^*_{j} =\hat{r}_{l} \\j\neq i}}b_{j} + \frac{\mu}{2}\sum\limits_{j:r^*_{j} \neq \hat{r}_{l} } c_{ij}\right) \\ &&\qquad\quad-\sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} =\hat{r}_{l} }} \left(\frac{b_{i} }{w_{\hat{r}_{l} }}\sum\limits_{\substack{j:\hat{r}_{j} =\hat{r}_{l} \\j\neq i}}b_{j} + \frac{\mu}{2}\sum\limits_{j:\hat{r}_{j} \neq \hat{r}_{l} } c_{ij}\right). \end{array} $$

Note that the two sets \(\{i:i\neq l,\hat {r}_{i} =\hat {r}_{l} \}\) and \(\{i:i\neq l,r_{i} ^*=\hat {r}_{l} \}\) are equal because all other assignments except \(r_{l} \) are the same in the new assignment vector \(\textbf {r}^*\). Thus,

$$\begin{array}{lll}&&\sum\limits_{\substack{i:i\neq l\\r^*_{i} = \hat{r}_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} = \hat{r}_{l} }} C_{i} (\hat{\mathbf{r}}) \\ &&\qquad=\sum\limits_{\substack{i:i\neq l\\r_{i} ^*=\hat{r}_{l} }} \Biggl( \frac{b_{i} }{w_{\hat{r}_{l} }}\sum\limits_{\substack{j:r^*_{j} =\hat{r}_{l} \\j\neq i}}b_{j} -\frac{b_{i} }{w_{\hat{r}_{l} }}\sum\limits_{\substack{j:\hat{r}_{j} =\hat{r}_{l} \\j\neq i}}b_{j} \\ &&\qquad\quad\Biggl.+ \frac{\mu}{2}\sum\limits_{j:r^*_{j} \neq \hat{r}_{l} } c_{ij} - \frac{\mu}{2}\sum\limits_{j:\hat{r}_{j} \neq \hat{r}_{l} } c_{ij} \Biggr)\\ &&\qquad=\sum\limits_{\substack{i:i\neq l\\r_{i} ^*=\hat{r}_{l} }} \Biggl( \frac{b_{i} }{w_{\hat{r}_{l} }} \Biggl(\sum\limits_{\substack{j:r^*_{j} =\hat{r}_{l} \\j\neq i}}b_{j} - \sum\limits_{\substack{j:\hat{r}_{j} =\hat{r}_{l} \\j\neq i}}b_{j} \Biggr) \\ &&\qquad\quad + \Biggl.\frac{\mu}{2} \Biggl( \sum\limits_{j:r^*_{j} \neq \hat{r}_{l} } c_{ij} - \sum\limits_{j:\hat{r}_{j} \neq \hat{r}_{l} } c_{ij} \Biggr) \Biggr).\end{array}$$

For \(i \neq l\), \(\{j:r_{j} ^*=\hat {r}_{l} ,j\neq i\}\) represents the set of peers except the lth and ith peer which are currently assigned to \(\hat {r}_{l} {}\)th super-peer and \(\{j:\hat {r}_{j} =\hat {r}_{l} ,j\neq i\}\) represents the set of peers except the lth and ith peer whose new assignment is the \(\hat {r}_{l} {}\)th super-peer. So, for \(i \neq l\), \(\{j:r_{j} ^*=\hat {r}_{l} ,j\neq i\} \setminus \{j:\hat {r}_{j} =\hat {r}_{l} ,j\neq i\} = l \). This implies

$$ \sum\limits_{\substack{j:r^*_{j} =\hat{r}_{l} \\j\neq i}}b_{j} - \sum\limits_{\substack{j:\hat{r}_{j} =\hat{r}_{l} \\j\neq i}}b_{j} = -b_{l} . $$

Also, \(\{j:r^*_{j} \neq \hat {r}_{l} \} \setminus \{j:\hat {r}_{j} \neq \hat {r}_{l} \} = l\). Thus, we can write

$$ \sum\limits_{j:r^*_{j} \neq \hat{r}_{l} } c_{ij} - \sum\limits_{j:\hat{r}_{j} \neq \hat{r}_{l} } c_{ij} = c_{il}, $$

which implies,

$$ \sum\limits_{\substack{i:i\neq l\\r^*_{i} = \hat{r}_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} = \hat{r}_{l} }} C_{i} (\hat{\mathbf{r}}) = \sum\limits_{\substack{i:i\neq l\\r_{i} ^*=\hat{r}_{l} }} \Biggl( -b_{l} \left(\frac{b_{i} }{w_{\hat{r}_{l} }}\right) + \frac{\mu}{2} c_{il} \Biggr). $$

Using a similar approach, we can show:

$$\sum\limits_{\substack{i:i\neq l\\ r^*_{i} = r^*_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\ \hat{r}_{i} = r^*_{l} }} C_{i} (\hat{\mathbf{r}}) = \sum\limits_{\substack{i:i\neq l\\r_{i} ^*=r_{l} ^*}} \Biggl( b_{l} \left(\frac{b_{i} }{w_{r_{l} ^*}}\right) - \frac{\mu}{2} c_{il} \Biggr). $$

So,

$$ \begin{array}{lll}&&\Biggl( \sum\limits_{\substack{i:i\neq l\\r^*_{i} = \hat{r}_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} = \hat{r}_{l} }} C_{i} (\hat{\mathbf{r}}) \Biggr) \\ && \quad\;\;\;+ \Biggl( \sum\limits_{\substack{i:i\neq l\\ r^*_{i} = r^*_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\ \hat{r}_{i} = r^*_{l} }} C_{i} (\hat{\mathbf{r}}) \Biggr) \\ &&\qquad\quad = \sum\limits_{\substack{i:i\neq l\\r_{i} ^*=\hat{r}_{l} }} \Biggr( -b_{l} \left(\frac{b_{i} }{w_{\hat{r}_{l} }}\right) + \frac{\mu}{2} c_{il} \Biggr)\\ && \qquad\qquad\quad+ \sum\limits_{\substack{i:i\neq l\\r_{i} ^*=r_{l} ^*}} \Biggl( b_{l} \left(\frac{b_{i} }{w_{r_{l} ^*}}\right) - \frac{\mu}{2} c_{il} \Biggr).\end{array} $$
(13)

Now consider

$$ \begin{array}{rll} C_{l} (\textbf{r}^*)-C_{l} (\hat{\textbf{r}}) &=& b_{l} \sum\limits_{\substack{i:r^*_{i} =r^*_{l} \\i\neq l}}\frac{b_{i} }{w_{r^*_{l} }}+\frac{\mu}{2}\sum\limits_{\substack{i:r^*_{i} \neq r^*_{l} \\i\neq l}}c_{il} \\&&- b_{l} \sum\limits_{\substack{i:\hat{r}_{i} =\hat{r}_{l} \\i\neq l}}\frac{b_{i} }{w_{\hat{r}_{l} }}-\frac{\mu}{2}\sum\limits_{\substack{i:\hat{r}_{i} \neq \hat{r}_{l} \\i\neq l}}c_{il}.\end{array}$$

We know that,

$$ \begin{array}{lll} &&\sum\limits_{\substack{i:r^*_{i} \neq r^*_{l} \\i\neq l}}c_{il} - \sum\limits_{\substack{i:\hat{r}_{i} \neq \hat{r}_{l} \\i\neq l}}c_{il}= \sum\limits_{\substack{r^*_{i} = \hat{r}_{l} \\i\neq l}}c_{il} + \sum\limits_{\substack{i:r^*_{i} \neq r^*_{l} \\\substack{r^*_{i} \neq \hat{r}_{l} \\i\neq l}}}c_{il} - \\ &&\qquad\qquad\qquad\qquad\;\sum\limits_{\substack{\hat{r}_{i} = r^*_{l} \\i\neq l}}c_{il} - \sum\limits_{\substack{i:\hat{r}_{i} \neq \hat{r}_{l} \\ \substack{\hat{r}_{i} \neq r^*_{l} \\i\neq l}}}c_{il}.\end{array}$$
(14)

However,

$$ \sum\limits_{\substack{i:r^*_{i} \neq r^*_{l} \\\substack{r^*_{i} \neq \hat{r}_{l} \\i\neq l}}}c_{il} = \sum\limits_{\substack{i:\hat{r}_{i} \neq \hat{r}_{l} \\ \substack{\hat{r}_{i} \neq r^*_{l} \\i\neq l}}}c_{il}. $$

Thus we see:

$$ \begin{array}{lll} &&\sum\limits_{\substack{i:r^*_{i} \neq r^*_{l} \\i\neq l}}c_{il} - \sum\limits_{\substack{i:\hat{r}_{i} \neq \hat{r}_{l} \\i\neq l}}c_{il}= \sum\limits_{\substack{r^*_{i} = \hat{r}_{l} \\i\neq l}}c_{il} - \sum\limits_{\substack{\hat{r}_{i} = r^*_{l} \\i\neq l}}c_{il}\\&&\Rightarrow C_{l} (\textbf{r}^*)-C_{l} (\hat{\textbf{r}})= -b_{l} \sum\limits_{\substack{i:\hat{r}_{i} =\hat{r}_{l} \\i\neq l}}\frac{b_{i} }{w_{\hat{r}_{l} }}+\frac{\mu}{2}\sum\limits_{\substack{r^*_{i} = \hat{r}_{l} \\i\neq l}}c_{il} \\ &&\qquad +b_{l} \sum\limits_{\substack{i:r^*_{i} =r^*_{l} \\i\neq l}}\frac{b_{i} }{w_{r^*_{l} }}-\frac{\mu}{2}\sum\limits_{\substack{\hat{r}_{i} = r^*_{l} \\i\neq l}}c_{il}.\end{array} $$

But we also know that \(\{i:\hat {r}_{i} =\hat {r}_{l} ,i\neq l\} = \{i:r^*_{i} =\hat {r}_{l} ,i\neq l\}\) and \(\{\hat {r}_{i} = r^*_{l} ,i\neq l\}=\{r^*_{i} = r^*_{l} ,i\neq l\}\). So,

$$ \begin{array}{lll} &&C_{l} (\textbf{r}^*)-C_{l} (\hat{\textbf{r}}) =-b_{l} \sum\limits_{\substack{i:r^*_{i} =\hat{r}_{l} \\i\neq l}}\frac{b_{i} }{w_{\hat{r}_{l} }}+\frac{\mu}{2}\sum\limits_{\substack{r^*_{i} = \hat{r}_{l} \\i\neq l}}c_{il} \\&&\qquad +b_{l} \sum\limits_{\substack{i:r^*_{i} =r^*_{l} \\i\neq l}}\frac{b_{i} }{w_{r^*_{l} }}-\frac{\mu}{2}\sum\limits_{\substack{r^*_{i} = r^*_{l} \\i\neq l}}c_{il}\\&&=\sum\limits_{\substack{i:i\neq l\\r_{i} ^*=\hat{r}_{l} }} \Biggl( -b_{l} \left(\frac{b_{i} }{w_{\hat{r}_{l} }}\right) + \frac{\mu}{2} c_{il} \Biggr)+\sum\limits_{\substack{i:i\neq l\\r_{i} ^*=r_{l} ^*}} \Biggl( b_{l} \left(\frac{b_{i} }{w_{r_{l} ^*}}\right) - \frac{\mu}{2} c_{il} \Biggr)\\ &&=\Biggl( \sum\limits_{\substack{i:i\neq l\\r^*_{i} = \hat{r}_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} = \hat{r}_{l} }} C_{i} (\hat{\mathbf{r}}) \Biggr) \\&&\qquad + \Biggl( \sum\limits_{\substack{i:i\neq l\\ r^*_{i} = r^*_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\ \hat{r}_{i} = r^*_{l} }} C_{i} (\hat{\mathbf{r}}) \Biggr).\end{array} $$
(15)

The last step follows from Eq. 13. Thus we have shown:

$$\begin{array}{lll} &&\Bigl( \sum\limits_{\substack{i:i\neq l\\r^*_{i} = \hat{r}_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\\hat{r}_{i} = \hat{r}_{l} }} C_{i} (\hat{\mathbf{r}}) \Bigr)+ \Bigl( \sum\limits_{\substack{i:i\neq l\\ r^*_{i} = r^*_{l} }} C_{i} (\mathbf{\textbf{r}}^*) - \sum\limits_{\substack{i:i\neq l\\ \hat{r}_{i} = r^*_{l} }} C_{i} (\hat{\mathbf{r}}) \Bigr) \\ &&\qquad = C_{l} (\textbf{r}^*)-C_{l} (\hat{\textbf{r}}) < 0\end{array} $$
(16)

This completes the proof for STEP 3.

Hence using Steps \(1, 2\) and 3, \(C_{0}(\textbf {r}^*)-C_{0}(\hat {\textbf {r}})= 2\bigl (C_{l} (\textbf {r}^*)-C_{l} (\hat {\textbf {r}})\bigr )< 0\). This contradicts our assumption that \(\hat {\textbf {r}}\) is a globally optimal solution of \(C_{0} \). Hence \(\hat {\textbf {r}}\) is also a Nash equilibrium in pure strategies. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurve, A., Griffin, C., Miller, D.J. et al. Optimizing cluster formation in super-peer networks via local incentive design. Peer-to-Peer Netw. Appl. 8, 1–21 (2015). https://doi.org/10.1007/s12083-013-0206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-013-0206-6

Keywords

Navigation