Skip to main content
Log in

On the collaborations of multiple selfish overlays using multi-path resources

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Overlay networks provide the possibility of taking advantage of multiple available paths to realize the bandwidth aggregating through multipath transfer. We present a game-theoretic study of the selfish strategic collaboration of multiple overlays when they are allowed to use multipath transfer, which is referred as the multipath selection game. Then we consider the equilibrium in this multipath selection game model where selfish players distribute their overlay traffic. Maximization of the utility functions for each overlay is the criterion of optimality. We adopt the objective of throughput maximization to capture the most typical overlay behaviors, and use the usual TCP as the basis of our analysis. We show analytically the existence and uniqueness of Nash equilibria in these games. Furthermore, we find that the loss of efficiency of Nash equilibria can be arbitrarily large if overlays do not have resource limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akella A., Seshan S. Karp R., Shenker S. (2002). Selfish behavior and stability of the internet: A game-theoretic analysis of TCP. Proc. of ACM SIGCOMM, 117-130. doi: 10.1145/633025.633037

  2. Altman E, Boulogne T, El-Azouzi R, Jiménez T, Wynter L (2006) A survey on networking games in telecommunications. Computers & Operations Research 33(2):286–311. doi:10.1016/j.cor.2004.06.005

    Article  MATH  MathSciNet  Google Scholar 

  3. Amer P., Becke M., Dreibholz T., Ekiz N., Iyengar J., Natarajan P., Stewart R., and Tuexen M. (2013). Load Sharing for the Stream Control Transmission Protocol (SCTP). IETF, work in progress. Retrieved June 2013, from http://tools.ietf.org/html/draft-tuexen-tsvwg-sctp-multipath-06.txt.

  4. Basar T, Olsder GJ (1998) Dynamic Noncooperative Game Theory, 2nd Edition. Academic Press, New York. doi:10.1137/1.9781611971132

    Google Scholar 

  5. Becke M, Dreibholz T, Adhari H, Rathgeb E (2012) On the Fairness of Transport Protocols in a Multi-Path Environment. Proc. IEEE ICC, Ottawa/Canada, pp 2666–2672. doi:10.1109/ICC.2012.6363695

    Google Scholar 

  6. Braden B., Clark D. D., Crowcroft J., Davie B., Deering S. E., Estrin D., Floyd S., Jacobson V., Minshall G., Partridge C., Peterson L., Ramakrishnan K. K., Shenker S., Wroclawski J., and Zhang L. (1998). Recommendations on Queue Management and Congestion Avoidance in the Internet. IETF, Informational RFC 2309. Retrieved June 2013, from http://tools.ietf.org/html/rfc2309.txt.

  7. Briscoe B (2007) Flow Rate Fairness: Dismantling a Religion. ACM SIGCOMM Computer Communication Review 37(2):63–74. doi:10.1145/1232919.1232926

    Article  Google Scholar 

  8. Cetinkaya C., Knightly E. (2004). Opportunistic traffic scheduling over multiple network paths, Proc. of IEEE INFOCOM, HK, 1928–1937. Retrieved June 2013, from http://www.ieee-infocom.org/2004/Papers/40_1.PDF.

  9. Cui Y, Xue Y, Nahrstedt K (2006) Optimal Resource Allocation in Overlay Multicast. IEEE Transactions on Parallel and Distributed Systems 17(8):808–823. doi:10.1109/TPDS.2006.108

    Article  Google Scholar 

  10. DiPalantino D, Johari R (2009) Traffic Engineering vs. Content Distribution: A Game Theoretic Perspective. Proc. of IEEE INFOCOM, Orlando, FL. doi:10.1109/INFCOM.2009.5061960

    Google Scholar 

  11. Ford A., Raiciu C., Handley M., Barre S., and Iyengar J. (2011). Architectural Guidelines for Multipath TCP Development. IETF, RFC 6182. Retrieved June 2013, from http://tools.ietf.org/html/rfc6182.txt.

  12. Floyd S., Henderson T., Gurtov A. (2004). The NewReno Modification to TCP’s Fast Recovery Algorithm. IETF, RFC 3782. Retrieved June 2013, from http://tools.ietf.org/html/rfc3782.txt.

  13. Floyd S., Handley M., Padhye J., Widmer J. (2008). TCP Friendly Rate Control (TFRC): Protocol Specification. IETF, RFC 5348. Retrieved June 2013, from http://tools.ietf.org/html/rfc5348.txt.

  14. Garg R, Kamra A, Khurana V (2002) A game-theoretic approach towards congestion control in communication networks. ACM SIGCOMM Computer Communication Review 32(3):47–61. doi:10.1145/571697.571723

    Article  Google Scholar 

  15. Iyengar J, Amer P, Stewart R (2006) Concurrent Multipath Transfer using SCTP Multihoming over Independent End-to-End Paths. IEEE/ACM Transactions Networking 14(5):951–964. doi:10.1145/1217711

    Article  Google Scholar 

  16. Jiang W, Chiu D, Lui CS (2005) On the Interaction of Multiple Overlay Routing. Perform Eval 62(1–4):229–246. doi:10.1016/j.peva.2005.07.005

    Article  Google Scholar 

  17. Keralapura R, Chuah C (2008) Race Conditions in Coexisting Overlay Networks. IEEE/ACM Trans Networking 16(1):1–14. doi:10.1145/1373452.1373453

    Article  Google Scholar 

  18. Koutsoupias E, Papadimitriou CH (2009) Worst-case equilibria. Computer Science Review 3(2):65–69. doi:10.1016/j.cosrev.2009.04.003

    Article  MATH  Google Scholar 

  19. Liao J, Wang J, Zhu X (2008) A Multi-Path Mechanism for Reliable VOIP Transmission over Wireless Networks. Comput Netw 52(13):2450–2460. doi:10.1016/j.comnet.2008.04.008

    Article  Google Scholar 

  20. Liao J, Wang J, Li T, Zhu X (2011) Introducing Multipath Selection for Concurrent Multipath Transfer in the Future Internet. Comput Netw 55(4):1024–1035. doi:10.1016/j.comnet.2010.12.010

    Article  Google Scholar 

  21. Liao J, Wang J, Wu B, Wu W (2012) Toward a Multi-plane Framework of NGSON: a Required Guideline to Achieve Pervasive Services and Efficient Resource Utilization. IEEE Commun Mag 50(1):90–97. doi:10.1109/MCOM.2012.6122537

    Article  MathSciNet  Google Scholar 

  22. Nash J (1950) Equilibrium points in n-person games. Proc Natl Acad Sci U S A 36(1):48–49. doi:10.2307/88031

    Article  MATH  MathSciNet  Google Scholar 

  23. Padhye J., Firoiu V., Towsley D., Kurose J. (1998). Modelling TCP throughput: A simple model and its empirical validation. Proc. ACM SIGCOMM, 303-314. doi: 10.1145/285243.285291

  24. Han H, Shakkottai S, Hollot CV, Srikant R, Towsley D (2006) Overlay TCP for Multi-Path Routing and Congestion Control. IEEE/ACM Trans Networking 16(6):1260–1271, Retrieved June 2013, from http://www.ifp.illinois.edu/~sshakkot/multipath_v3.pdf

    Article  Google Scholar 

  25. Wang B, Wei W, Kurose J, Towsley D (2007) Application-layer multipath data transfer via tcp: Schemes and performance tradeoffs. Perform Eval 64(9–12):965–977. doi:10.1016/j.peva.2007.06.013

    Article  Google Scholar 

  26. Wang B, Wei W, Guo Z, Towsley D (2009) Multipath Live Streaming via TCP: Scheme, Performance and Benefits. ACM Transactions on Multimedia Computing Communications and Applications (TOMCCAP) 5(3):1–23. doi:10.1145/1556134.1556142

    Article  Google Scholar 

  27. Wang C, Wang N, Howarth M, Pavlou G (2010) On the Interactions between Non-Cooperative P2P Overlay and Traffic Engineering Behaviours. Proc. of IEEE GLOBECOM, Miami, USA, pp 1–6. doi:10.1109/GLOCOM.2010.5683137

    Google Scholar 

  28. Wu C, Li B, Li Z (2008) Dynamic Bandwidth Auctions in Multioverlay P2P Streaming with Network Coding. IEEE Transactions on Parallel and Distributed Systems 19(6):806–820. doi:10.1109/TPDS.2008.30

    Article  Google Scholar 

  29. Zhang H, Neglia G, Towsley D, Presti GL (2008) Stability and Efficiency of Unstructured File Sharing Networks. IEEE Journal of Selected Areas in Communications 26(7):1284–1294. doi:10.1109/JSAC.2008.080925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Liao.

Additional information

This work was jointly supported by: (1) the National Basic Research Program of China (No. 2013CB329102); (2) National Natural Science Foundation of China (No.61372120, 61271019, 61101119, 61121001, 61072057, 60902051); (3) PCSIRT (No. IRT1049); (4) Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0473); (5) MICINN (No. TIN2010-19077); (6) CAM (No. S2009TIC-1692).

Appendix A

Appendix A

The appendix provides the proof of Theorem 2. Each player i tries to solve for its optimal strategy n * i , as a response to the strategies of all other players. Thus, if there is an interior point NE n ne  = (n *1 , …,n * m ), then it must be true that \( \forall i,\partial {U}_i/\partial {n_i}^{*}=0,{{\mathrm{and}\ \mathrm{n}}_{\mathrm{i}}}^{*}= \arg { \max}_{n_i\in {S}_i}{U}_i\left({n}_1^{*},{n}_2^{*},\dots, {n}_i^{*},\dots, {n}_m^{*}\right) \).

In the following, we first introduce Theorem 3 indicating that the stationary point satisfying ∂U i /∂n i  = 0 is actually the maximum point if it is in [1, ∞). Then we show that there is a unique n ne satisfying ∂U i /∂n i * = 0, ∀ i.

First, we need to seek all vectors n ne satisfying a set of m equations

$$ \partial {U}_i/\partial {n}_i=0,\forall i\in \left[1,2,3\dots, m\right]. $$
(15)

We first prove that if n ne exists, n i * = n j *, ∀ i, j. Then, we show that such n ne is actually unique by proving that there is only one p ne for which n i * = n j *, ∀ i, j.

For an arbitrary player i, we have

$$ \frac{\partial {U}_i}{\partial {n}_i}=\frac{C{n}_{-i}}{{\left({n}_i+{n}_{-i}\right)}^2}-\frac{\beta }{\phi }-\frac{\beta {n}_i C\varphi}{{\left({n}_i+{n}_{-i}\right)}^2\left[\left(p-1\right)\varphi -\phi \right]} $$
(16)

where

$$ \phi =1/B=\mu R\sqrt{p}+{T}_0\nu \left({p}^{3/2}+32{p}^{7/2}\right) $$
(17)
$$ \varphi =\frac{\mu R}{2\sqrt{p}}+{T}_0\nu \left(\frac{3}{2}\sqrt{p}+112{p}^{5/2}\right) $$
(18)

and n−i = ∑  m k = 1,k ≠ i n k and φ = dϕ/dp.

Theorem 3

Best response of a player is unique and it is the stationary point if the stationary point is in [1, ∞).

First we need to show that for any given n −i , there is only one unique maximal point for U i . In fact, player i need to solve the following equations to get a candidate for a maximal point n m i :

$$ \beta {n}_i-{n}_{-i}\left(1-p-\beta \right)\left[\varphi \left(1-p\right)/\phi +1\right]=0 $$
(19)
$$ C-\left({n}_i+{n}_{-i}\right)\left(1-\mathrm{p}\right)=0 $$
(20)

where (19) is a simplification of ∂Ui/∂ni = 0. We can think of n m i and p are implicit functions of n -i . We note that for any given n -i , there is a unique pair of (n m i ,p) as the solution to (19) and (20). We can check that the unique stationary point n i m obtained from this implicit function is indeed a maximal point. We can enlarge the domain of Ui to be (0, ∞), and notice that ni m is also a unique stationary point for this enlarged domain. Since Ui (0, n−i) = 0 and limni→∞Ui = −∞, they are not larger than Ui(n m i ,n− i) given that ni is indeed an interior point. Then we can conclude nm is indeed a maximal point in domain (0, ∞). If it is still a stationary interior point in [1, ∞), then it also must be a maximal point. We can show that n m i  = f i (n − i ) and p = fp(n −i ) are continuous functions on domain n -i ∈[1,∞). In addition, from implicit function theorem, we know that they are continuously differentiable.

Now, we go on to prove the existence and uniqueness of NE. Consider two arbitrary players i and j, and let δ i n i  = ∑  m k = 1,k ≠ i n k ; δ j n j  = ∑  m k = 1,k ≠ j n k . When ∂U i /∂n i  = ∂U j /∂n j =0, we get

$$ \left(1-\mathrm{p}\right)\left[{\updelta}_{\mathrm{i}}+\upbeta \upvarphi /\left(\left(1-\mathrm{p}\right)\upvarphi +\phi \right)\right]/\left(1+{\updelta}_{\mathrm{i}}\right)-\upbeta =0 $$
(21)
$$ \left(1-\mathrm{p}\right)\left[{\updelta}_{\mathrm{j}}+\upbeta \upvarphi /\left(\left(1-\mathrm{p}\right)\upvarphi +\phi \right)\right]/\left(1+{\updelta}_{\mathrm{j}}\right)-\upbeta =0 $$
(22)

Let Δ = βφ/((1 − p) φ + ϕ), then combining (21) and (22) leads to

$$ \left({\updelta}_{\mathrm{i}}/\left(1+{\updelta}_{\mathrm{i}}\right)-{\updelta}_{\mathrm{j}}/\left(1+{\updelta}_{\mathrm{j}}\right)\right)+\varDelta \left(1/\left(1+{\updelta}_{\mathrm{i}}\right)-1/\left(1+{\updelta}_{\mathrm{j}}\right)\right)=0 $$
(23)

For (23) to be true, we need either ∆ = 1 or δi = δj . We can show that ∆ = 1 cannot be true. We prove this by contradiction. Assume that it is true, then we can substitute it into (21), and get β = 1 − p. Substituting β = 1 − p into ∆ = 1, we get φ = 0. We know that φ = 0 is impossible given that p∈(0, 1), thus ∆ ≠ 1. Thus, the only possible solution is δ i = δ j = 2β/(1 − p − β), ∀ i, j. This implies that n * i  = n * j at NE n ne if it exists.

In the following, we will prove that, when n * i  = n * j , there exists a unique solution p ne for (15). Then we can conclude that there is one unique n ne .

Since at NE all players have the same number of paths, from (16), we obtain

$$ \left(\mathrm{m}-1\right)/\upbeta -\mathrm{m}/\left(1-\mathrm{p}\right)+\upvarphi /\left(\left(1-\mathrm{p}\right)\upvarphi +\phi \right)=0 $$
(24)

Let F (p) denotes the right-hand-side of (24). Ideally, solving Eq. (24) with p as unknown, we can get loss rate at NE p*. Then, substituting p* back into (9), we can get n* as the number of paths of all overlays at NE. However, (24) contains several powers of p such as 7/2 and 5/2, which makes it impossible to get an algebraic solution of p. Thus, in the following, we examine several properties of F (p), and based on these properties make an inference about the behavior of NE. For an exact value of p* and n* when given a network setting, we can use Matlab to numerically solve for them.

First, we will prove that (24) has only one solution for p in (0, 1). We note that F (p) is a continuous function, and the domain of F (p) is p∈(0, 1), and limp→0 F (p) > 0 and limp→1 F (p) < 0. We claim that F (p) is a strictly monotonic decreasing function. If this claim is true, then there must be a single solution p* for F (p) = 0. In the following, we prove this claim.

Consider the derivative

$$ \frac{\partial F}{\partial p}=\frac{-m}{{\left(1-p\right)}^2}+\frac{\varphi \prime \phi }{{\left[\left(1-p\right)\varphi +\phi \right]}^2}<\frac{-1}{{\left(1-p\right)}^2}+\frac{\varphi \prime \phi }{{\left[\left(1-p\right)\varphi +\phi \right]}^2}=\frac{-{\phi}^2-2\left(1-p\right)\varphi \phi -{\left(1-p\right)}^2\left({\varphi}^2-\varphi \hbox{'}\phi \right)}{{\left(1-p\right)}^2{\left[\left(1-p\right)\varphi +\phi \right]}^2} $$
(25)

Thus, to prove that ∂F/∂p < 0, we only need to prove that φ 2 > φ ′ ϕ. This can be easily proved.

Then, substituting p ne back into (9), we can get n ne as the number of paths of all overlays at NE. Therefore, we conclude that there is only one NE for this game and it is symmetric. That is, \( {\mathrm{n}}_i^{*}= \arg { \max}_{n_i\in {S}_i}{U}_i\left({n}_1^{*},{n}_2^{*},\dots, {n}_i^{*},\dots, {n}_m^{*}\right) \) and n * i  = n ne , ∀ i.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Liao, J., Li, T. et al. On the collaborations of multiple selfish overlays using multi-path resources. Peer-to-Peer Netw. Appl. 8, 203–215 (2015). https://doi.org/10.1007/s12083-013-0245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-013-0245-z

Keywords

Navigation