Skip to main content
Log in

Relay selection for peer-to-peer cooperative OFDMA with channel distribution uncertainty

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Peer-to-peer relay technique provides the opportunity of cooperative communication between users to achieve the transmission diversity. In this paper, the problem of relay selection and subcarrier allocation in peer-to-peer cooperative OFDMA system with channel distribution uncertainty is studied. The quality of service (QoS) requirements are characterized with the probabilistic constraints. The Kullback-Leibler (KL) divergence is adopted to describe the uncertainty of the channel state information (CSI), which follows a distribution deviated within a certain distance from the reference distribution. Since the probabilistic constraint is intractable, we resort to a tractable upper bound instead. The problem is solved by the interior point cutting plane (IPCP) method, which proceeds in round whereby an iterative method is designed to combine both golden section method and interior point method to find the saddle point of the constraint. Simulation results show the effectiveness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.Y. Hsieh, R. Sivakumar (2004) On using peer-to-peer communication in cellular wireless data networks. IEEE Trans. Mob. Comput. 3(1):57

    Article  Google Scholar 

  2. N. Shah, D. Qian, R. Wang (2012) MANET adaptive structured P2P overlay. Peer-to-Peer Networking and Applications 5(2):143

    Article  Google Scholar 

  3. M. Zulhasnine, M. Huang, A. Srinivasan (2012) Towards an effective integration of cellular users to the structured Peer-to-Peer network. Peer-to-Peer Netw. Appl. 5(2):178

    Article  Google Scholar 

  4. L. Lei, Z. Zhong, C. Lin, X. Shen (2012) Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wirel. Commun. 19(3):96

    Article  Google Scholar 

  5. V. Sreng, H. Yanikomeroglu, D.D. Falconer (2003) Relayer selection strategies in cellular networks with peer-to-peer relaying in. IEEE Vehicular Technology Conference 3:1949–1953

    Google Scholar 

  6. D. Ponukumati, F. Gao, C. Xing (2013) Robust peer-to-peer relay beamforming: A probabilistic approach. IEEE Commun. Lett. 17(2):305

    Article  Google Scholar 

  7. D. Zheng, J. Liu, K.K. Wong, H. Chen, L. Chen (2012) Robust peer-to-peer collaborative-relay beamforming with ellipsoidal CSI uncertainties. IEEE Commun. Lett. 16(4):442

    Article  Google Scholar 

  8. W. Shim, Y. Han, S. Kim (2010) Fairness-aware resource allocation in a cooperative OFDMA uplink system. IEEE Trans. Veh. Technol. 59(2):932

    Article  Google Scholar 

  9. M. Alam, J. Mark, X. Shen (2013) Relay selection and resource allocation for multi-user cooperative OFDMA networks. IEEE Trans. Wirel. Commun. 12(5):2193

    Article  Google Scholar 

  10. D. Zhang, Y. Wang, J. Lu (2010) QoS aware relay selection and subcarrier allocation in cooperative OFDMA systems. IEEE Commun. Lett. 14(4):294

    Article  MathSciNet  Google Scholar 

  11. G.A.S. Sidhu, F. Gao, W. Chen, A. Nallanathan (2011) A joint resource allocation scheme for multiuser two-way relay networks. IEEE Trans. Commun. 59(11):2970

    Article  Google Scholar 

  12. D. Zhang, X. Tao, J. Lu, M. Wang (2011) Dynamic resource allocation for real-time services in cooperative OFDMA systems. IEEE Commun. Lett. 15(5):497

    Article  Google Scholar 

  13. D. Michalopoulos, N. Chatzidiamantis, R. Schober, G. Karagiannidis (2011) Relay selection with outdated channel estimates in Nakagami-m fading. in IEEE International Conference on Communications

  14. A. Ben-Tal, L. El Ghaoui (2009) A. Nemirovski. Robust optimization (Princeton University Press

  15. S. Uryasev (2000) Probabilistic constrained optimization: methodology and applications, vol. 49 (Springer

  16. T.Q. Quek, M.Z. Win, M. Chiani (2010) Robust power allocation algorithms for wireless relay networks. IEEE Trans. Commun. 58(7):1931

    Article  Google Scholar 

  17. S. Mallick, M. Rashid, V. Bhargava (2012) Joint relay selection and power allocation for decode-and-forward cellular relay network with channel uncertainty. IEEE Trans. Wirel. Commun. 11(10):3496

    Article  Google Scholar 

  18. W.L. Li, Y.J. Zhang, A.C. So, M.Z. Win (2010) Slow adaptive OFDMA systems through chance constrained programming. IEEE Transactions on Signal Processing 58(7):3858

    Article  MathSciNet  Google Scholar 

  19. N. Soltani, S. Kim, G. Giannakis (2013) Chance-Constrained Optimization of OFDMA Cognitive Radio Uplinks. IEEE Trans. Wirel. Commun. 12(3):1098

    Article  Google Scholar 

  20. I. Ioannou, C. Charalambous, S. Loyka (2012) Outage Probability Under Channel Distribution Uncertainty. IEEE Trans. Inf. Theory 58(11):6825

    Article  MathSciNet  Google Scholar 

  21. Shimin Gong, Ping Wang, Yongkang Liu, Weihua Zhuang (2013) Robust power control with distribution uncertainty in cognitive radio networks. IEEE Journal on Selected Areas in Communications 31(11):2397

    Article  Google Scholar 

  22. R.M Gray (2011) Entropy and information theory (Springer

  23. W. Rhee, J.M. Cioffi (2000) Increase in capacity of multiuser OFDM system using dynamic subchannel allocation in. IEEE Vehicular Technology Conference:1085–1089

  24. J.E. Mitchell (2003) Polynomial interior point cutting plane methods. Optimization Methods and Software 18(5):507

    Article  MathSciNet  MATH  Google Scholar 

  25. S.P. Boyd, L. Vandenberghe (2004) Convex optimization (Cambridge university press

  26. J.L. Goffin, Z.Q. Luo, Y. Ye (1996) Complexity analysis of an interior cutting plane method for convex feasibility problems. SIAM J. Optim. 6(3):638

    Article  MathSciNet  MATH  Google Scholar 

  27. M. do Rosário Grossinho, S.A. Tersian (2001) An introduction to minimax theorems and their applications to differential equations, vol, 52 (Springer

  28. D.S. Atkinson, P.M. Vaidya (1995) A cutting plane algorithm for convex programming that uses analytic centers. Math. Program. 69:1

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work was partially supported by National Basic Research Program of China under the grant no. 2010CB731803, by NSF of China under 61174127, 61001096, 61273181 and 60934003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunqing Hua.

Appendix

Appendix

1.1 Proof of Theorem 1

The case of k = 0 is obvious, we focus on the case of k > 0. The distribution functions of \(\gamma _{s, m0}^{n}\) and \(\gamma _{s, mk}^{n}\) are given as

$$\begin{aligned} f_{\gamma_{s, m0}^{n}}(\xi)=\frac{1}{\delta_{s, m0}^{n}}\exp\left(-\frac{\xi}{\delta_{s, m0}^{n}}\right), \\ f_{\gamma_{s, mk}^{n}}(\xi)=\frac{1}{\delta_{s, mk}^{n}}\exp\left(-\frac{\xi}{\delta_{s, mk}^{n}}\right), \end{aligned}$$
(34)

According to the theorem of total probability, the distribution function of \(\sigma _{s, mk}^{n}\gamma _{r, mk}^{n}\) could be derived as follows:

$$\begin{aligned} f_{\sigma_{s, mk}^{n}\gamma_{s, mk}^{n}}(\xi)&=P_{s, mk}^{n} f_{\gamma_{s, mk}^{n}}(\xi)+(1-P_{s, mk}^{n})Dirac(0)\\ &= \frac{P_{s, mk}^{n} }{\delta_{s, mk}^{n}}\exp\left(-\frac{\xi}{\delta_{s, mk}^{n}}\right)+(1-P_{s, mk}^{n})Dirac(0). \end{aligned}$$
(35)

where Dirac(⋅) denotes the dirac delta function.

Denote \(\lambda _{0}=\frac {1}{\delta _{s, m0}^{n}}\) and \(\lambda _{1}=\frac {1}{\delta _{r, mk}^{n}}\), we have

$$M_{\gamma_{m0}^{n}}(s)=\frac{\lambda_{0}}{s+\lambda_{0}}, \ \ M_{\sigma_{s, mk}^{n}\gamma_{r, mk}^{n}}(s)=1-P_{s, mk}^{n}+P_{s, mk}^{n}\frac{\lambda_{1}}{s+\lambda_{1}}.$$
(36)

According to the properties of the moment generation function (MGF), the MGF of \(\gamma _{mk}^{n}=\gamma _{m0}^{n}+\sigma _{s, mk}^{n}\gamma _{r, mk}^{n}\) can be expressed as

$$M_{\gamma_{mk}^{n}}(s)=\frac{\lambda_{0}}{s+\lambda_{0}}\left[(1-P_{s, mk}^{n})+P_{s, mk}^{n}\frac{\lambda_{1}}{s+\lambda_{1}}\right],$$
(37)

so the cumulative density function of \(\gamma _{mk}^{n}\) can be given as

$$F_{\gamma_{mk}^{n}}(\xi)=\mathcal{L}^{-1}\left(\frac{M(s)}{s}\right) =1-e^{-\lambda_{0} \xi}+\frac{P_{s, mk}^{n}\lambda_{0}}{\lambda_{0}-\lambda_{1}}(e^{-\lambda_{0} \xi}-e^{-\lambda_{1} \xi}),$$
(38)

where \(\mathcal {L}^{-1}(\cdot )\) denotes the inverse laplace transformation. Substituting λ 0 and λ 1 into the derivative of the cumulative density function, we can obtain the distribution function of \(\gamma _{mk}^{n}\) with k > 0

$$f_{\gamma_{mk}^{n}}(\xi) =\frac{e^{-\frac{\xi }{\delta_{s, m0}^{n}}}}{\delta_{s, m0}^{n}}+\frac{e^{-\frac{\gamma_{th}}{\delta_{s, mk}^{n}}}{\delta_{r, mk}^{n}}}{{\delta_{r, mk}^{n}}-\delta_{s, m0}^{n}}\left( \frac{e^{-\frac{\xi }{\delta_{r, mk}^{n}} }}{\delta_{r, mk}^{n}}-\frac{e^{-\frac{\xi}{\delta_{s, m0}^{n}} }}{\delta_{s, m0}^{n}}\right).$$
(39)

1.2 Proof of Proposition 1

$$\begin{aligned} &H_{m}\left(\theta, x_{mk}^{n}, f_{\gamma_{mk}^{n}}(\xi)\right)\\ =&\bar{C}_{m} +\theta \log \mathbb{E}\left[\exp\left(-\frac{ \sum_{k=0}^{K} \sum_{n=1}^{N} C_{mk}^{n} x_{mk}^{n}}{\theta}\right) \right]-\theta \log \epsilon\\ =&\theta \log \left\{\mathbb{E}\left[\exp{\left(\frac{\bar{C}_{m}-\sum_{k=0}^{K} \sum_{n=1}^{N} C_{mk}^{n} x_{mk}^{n}}{\theta}\right)}\right]\right\}-\theta \log \epsilon, \end{aligned}$$

Equation (9) can be transformed as

$$\max_{f_{\gamma_{mk}^{n}}(\xi)\in Z_{mk}^{n}} \min\limits_{\theta\geq0} \mathbb{E}\left[\exp{\left(\frac{\bar{C}_{m}-\sum_{k=0}^{K} \sum_{n=1}^{N} C_{mk}^{n} x_{mk}^{n}}{\theta}\right)}\right] \leq \epsilon.$$
(40)

Let us define function \(F\left ({\sum }_{k=0}^{K} {\sum }_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar {C}_{m}\right )\) as:

$$F\left(\sum\limits_{k=0}^{K} \sum\limits_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar{C}_{m}\right)= \begin{cases} 1, \sum_{k=0}^{K} \sum_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar{C}_{m} \leq 0, \\ 0, \sum_{k=0}^{K} \sum_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar{C}_{m} > 0. \end{cases}$$
(41)

then \(F\left ({\sum }_{k=0}^{K} {\sum }_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar {C}_{m}\right )\) can be bounded with an exponential function as

$$F\left(\sum\limits_{k=0}^{K} \sum\limits_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar{C}_{m}\right) \leq \exp{\left(-\frac{\sum_{k=0}^{K} \sum_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar{C}_{m}}{\theta}\right)}.$$
(42)

By taking the expectation on both sides and minimizing 𝜃, we have

$$\begin{aligned} &Pr\left(\sum\limits_{k=0}^{K} \sum\limits_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar{C}_{m}\right)\\ \leq &\min\limits_{\theta\geq 0}\mathbb{E}\left[\exp{\left(\frac{\bar{C}_{m}-\sum\limits_{k=0}^{K} \sum\limits_{n=1}^{N} C_{mk}^{n} x_{mk}^{n}}{\theta}\right)}\right]. \end{aligned}$$

By the maximization over \(f_{\gamma _{mk}^{n}}\) on both sides, the inequality also holds. Then we have

$$\begin{aligned} &\max_{f_{\gamma_{mk}^{n}}(\xi)\in Z_{mk}^{n}}Pr\left(\sum\limits_{k=0}^{K} \sum\limits_{n=1}^{N} C_{mk}^{n} x_{mk}^{n} - \bar{C}_{m}\right) \\ \leq &\max_{f_{\gamma_{mk}^{n}}(\xi)\in Z_{mk}^{n}}\min\limits_{\theta\geq 0}\mathbb{E}\left[\exp{\left(\frac{\bar{C}_{m}-\sum_{k=0}^{K} \sum_{n=1}^{N} C_{mk}^{n} x_{mk}^{n}}{\theta}\right)}\right]. \end{aligned}$$
(43)

Combine Eqs. (40) and (43), we have Eq. (14).

1.3 Proof of Theorem 2

It is obvious that the objection function, constraint (15a) and (15c) are all linear function of variable \(x_{mk}^{n}\), so they are convex. Then, we demonstrate the constraint (15b) is convex. In fact, we only need to prove that the cumulate generating function \({\Phi }\left (\theta , x_{mk}^{n}, f_{\gamma _{mk}^{n}}(\xi )\right )\) is convex. Let a, b ∈ [0, 1] denote two variables satisfying a + b = 1. With k > 0, we have

$$\begin{aligned} &{\Phi}\left(\theta, a x_{mk}^{n1}+ b x_{mk}^{n2}, f_{\gamma_{mk}^{n}}(\xi)\right)\\ =&\log\left[{\int}_{0}^{\infty}(1+\rho\xi)^{-\frac{W (a x_{mk}^{n1}+ b x_{mk}^{n2})}{2 \theta \log2}}f_{\gamma_{mk}^{n}}(\xi)d\xi\right]\\ =&\log\left\{\mathbb{E}\left[ e^{\frac{(a x_{mk}^{n1}+ b x_{mk}^{n2})W\log_{2}(1+\rho\xi)}{2\theta }}\right]\right\}\\ =&\log\left\{\mathbb{E}\left[ e^{\frac{a x_{mk}^{n1}W\log_{2}(1+\rho\xi)}{2\theta}}e^{\frac{b x_{mk}^{n2}W\log_{2}(1+\rho\xi)}{2\theta}} \right]\right\}, \\ \end{aligned}$$
(44)

According to the \(H\ddot {o}lder's\) inequality, we have:

$$\begin{aligned} &{\Phi}\left(\theta, a x_{mk}^{n1}+ b x_{mk}^{n2}, f_{\gamma_{mk}^{n}}(\xi)\right)\\ \leq & \log\left\{\left(\mathbb{E}\left[ e^{\frac{ x_{mk}^{n1}W\log_{2}(1+\rho\xi)}{2\theta }}\right]\right)^{a} \left(\mathbb{E}\left[ e^{\frac{x_{mk}^{n2}W\log_{2}(1+\rho\xi)}{2\theta }} \right]\right)^{b}\right\}\\ =&a{\Phi}\left(\theta, x_{mk}^{n1}, f_{\gamma_{mk}^{n}}(\xi)\right)+ b {\Phi}\left(\theta, x_{mk}^{n2}, f_{\gamma_{mk}^{n}}(\xi)\right). \end{aligned}$$
(45)

The case of k = 0 can be proved similarly. Therefore, the constraint (15b) is convex and the problem (15) is a convex optimization problem.

1.4 Proof of Theorem 3

To prove that the problem (21) is convex over 𝜃, we only need to prove that the cumulate generating function \({\Phi }\left (\theta , x_{mk}^{n}, f_{\gamma _{mk}^{n}}(\xi )\right )\) is convex over 𝜃. Assume there exists 𝜃 1 and 𝜃 2, \(a, b\in \left [0, 1\right ]\) which satisfying a + b = 1, when k > 0, we have

$$\begin{aligned} &{\Phi}\left(a\theta_{1}+b\theta_{2}, x_{mk}^{n}, f_{\gamma_{mk}^{n}}(\xi)\right)\\ =&\log\left[{\int}_{0}^{\infty}(1+\rho\xi)^{-\frac{W x_{mk}^{n}}{2(a\theta_{1}+b\theta_{2}) \log2}}f_{\gamma_{mk}^{n}}(\xi)d\xi\right]\\ =&\log\left\{\mathbb{E}\left[ e^{\frac{x_{mk}^{n}W\log_{2}(1+\rho\xi)}{2(a \theta_{1}+b\theta_{2})}}\right]\right\} \end{aligned}$$
(46)

Because

$$\begin{aligned} &\frac{1}{a\theta_{1}+b\theta_{2}}\\ =&\frac{a\theta_{2}+b\theta_{1}}{(a\theta_{2}+b\theta_{1})(a\theta_{1}+b\theta_{2})}\\ =&\frac{a\theta_{2}+b\theta_{1}}{(a^{2}+b^{2})\theta_{1}\theta_{2}+ab({\theta_{1}^{2}}+{\theta_{2}^{2}})}\\ \leq&\frac{a\theta_{2}+b\theta_{1}}{(a^{2}+b^{2})\theta_{1}\theta_{2}+2ab\theta_{1}\theta_{2}}\\ =&\frac{a\theta_{2}+b\theta_{1}}{\theta_{1}\theta_{2}}=\frac{a}{\theta1}+\frac{b}{\theta2}, \end{aligned}$$
(47)

we have

$$\begin{aligned} &{\Phi}\left(a\theta_{1}+b\theta_{2}, x_{mk}^{n}, f_{\gamma_{mk}^{n}}(\xi)\right)\\ \leq&\log\left\{\mathbb{E}\left[e^{x_{mk}^{n}\frac{W}{2}\log_{2}(1+\rho\xi)(\frac{a}{\theta_{1}}+\frac{b}{\theta_{2}})}\right]\right\}\\ =&\log\left\{\mathbb{E}\left[e^{\left(\frac{x_{mk}^{n}\frac{W}{2}\log_{2}(1+\rho\xi)}{\theta_{1}}\right)a}e^{\left(\frac{x_{mk}^{n}\frac{W}{2}\log_{2}(1+\rho\xi)}{\theta_{2}}\right)b}\right]\right\}. \end{aligned}$$
(48)

With \(H\ddot {o}lder's\) inequality, we have

$$\begin{aligned} &{\Phi}\left(a\theta_{1}+b\theta_{2}, x_{mk}^{n}, f_{\gamma_{mk}^{n}}(\xi)\right)\\ \leq&\log\left\{\left(\mathbb{E}\left[e^{\frac{x_{mk}^{n}\frac{W}{2}\log_{2}(1+\rho\xi)}{\theta_{1}}}\right]\right)^{a} \left(\mathbb{E}\left[e^{\frac{x_{mk}^{n}\frac{W}{2}\log_{2}(1+\rho\xi)}{\theta_{2}}}\right]\right)^{b}\right\}\\ =&a{\Phi}\left(\theta_{1}, x_{mk}^{n}, f_{\gamma_{mk}^{n}}(\xi)\right)+b{\Phi}\left(\theta_{2}, x_{mk}^{n}, f_{\gamma_{mk}^{n}}(\xi)\right). \end{aligned}$$
(49)

The proof is similar for the case k = 0, which is omitted. In conclusion, \({\Phi }\left (\theta , x_{mk}^{n}, f_{\gamma _{mk}^{n}}(\xi )\right )\) is convex over 𝜃, the problem (21) is convex over 𝜃.

In the following, we prove that \({\Phi }\left (\theta , x_{mk}^{n}, f_{\gamma _{mk}^{n}}(\xi )\right )\) is concave over \(f_{\gamma _{mk}^{n}}(\xi )\), when k > 0, for a, b ∈ [0, 1] satisfying a + b = 1, we have

$$\begin{aligned} &{\Phi}\left(\theta, x_{mk}^{n}, af_{\gamma_{mk}^{n}}^{1}(\xi)+bf_{\gamma_{mk}^{n}}^{2}(\xi)\right)\\ =&\log\left[{\int}_{0}^{\infty}(1+\rho\xi)^{-\frac{W x_{mk}^{n}}{2\theta \log2}}\left(af_{\gamma_{mk}^{n}}^{1}(\xi)+b f_{\gamma_{mk}^{n}}^{2}(\xi)\right)d\xi\right]\\ =&\log\left[a{\int}_{0}^{\infty}(1+\rho\xi)^{-\frac{W x_{mk}^{n}}{2\theta \log2}}f_{\gamma_{mk}^{n}}^{1}(\xi)d\xi+b\!\! {\int}_{0}^{\infty}\!(1+\rho\xi)^{-\frac{W x_{mk}^{n}}{2\theta \log2}}f_{\gamma_{mk}^{n}}^{2}(\xi)d\xi\right]\\ \geq&a\log\left[{\int}_{0}^{\infty}(1+\rho\xi)^{-\frac{W x_{mk}^{n}}{2\theta \log2}}f_{\gamma_{mk}^{n}}^{1}(\xi)d\xi\right]\\ &+b\log\left[ {\int}_{0}^{\infty}(1+\rho\xi)^{-\frac{W x_{mk}^{n}}{2\theta \log2}}f_{\gamma_{mk}^{n}}^{2}(\xi)d\xi\right]\\ =&a{\Phi}\left(\theta, x_{mk}^{n}, f_{\gamma_{mk}^{n}}^{1}(\xi)\right)+b{\Phi}\left(\theta, x_{mk}^{n}, f_{\gamma_{mk}^{n}}^{2}(\xi)\right). \end{aligned}$$
(50)

The proof of k = 0 can be obtained similarly. Thus, \({\Phi }\left (\theta , x_{mk}^{n}, f_{\gamma _{mk}^{n}}(\xi )\right )\) is concave over \(f_{\gamma _{mk}^{n}}(\xi )\).

1.5 Proof of Proposition 2

Since problem (22) is convex, so we can adopt the Lagrangian dual method to solve this problem, whereby the Lagrangian function is given as:

$$\begin{aligned} &L(f_{\gamma_{mk}^{n}}(\xi), \lambda_{mk}^{n}, \mu_{mk}^{n})\\ =&{\int}_{0}^{+\infty} l(\xi)f_{\gamma_{mk}^{n}}(\xi)d\xi-\lambda_{mk}^{n}\left({\int}_{0}^{+\infty}f_{\gamma_{mk}^{n}} (\xi) \log \frac{f_{\gamma_{mk}^{n}} (\xi)}{f_{\gamma_{mk}^{n}}^{0} (\xi)} d\xi - \chi_{mk}^{n} \right)\\ &- \mu_{mk}^{n} \left({\int}_{0}^{+\infty} f_{\gamma_{mk}^{n}} (\xi) d \xi -1 \right). \end{aligned}$$
(51)

The KKT conditions can be obtained as:

$$\begin{array}{*{20}l} l(\xi)-\lambda_{mk}^{n}\left(\log \frac{f_{\gamma_{mk}^{n}}(\xi)}{f_{\gamma_{mk}^{n}}^{0}(\xi)} + 1\right)-\mu_{mk}^{n}=0, \end{array}$$
(52)
$$\begin{array}{*{20}l} {\int}_{0}^{+\infty}f_{\gamma_{mk}^{n}}(\xi)d\xi - 1=0, \end{array}$$
(53)
$$\begin{array}{*{20}l} \lambda_{mk}^{n}\left({\int}_{0}^{+\infty}f_{\gamma_{mk}^{n}} (\xi) \log \frac{f_{\gamma_{mk}^{n}} (\xi)}{f_{\gamma_{mk}^{n}}^{0} (\xi)} d\xi - \chi_{mk}^{n} \right)=0, \end{array}$$
(54)
$$\begin{array}{*{20}l} \lambda_{mk}^{n}\geq0. \end{array}$$
(55)

With Eq. (52), we have

$$f_{\gamma_{mk}^{n}}^{*}(\xi)=f_{\gamma_{mk}^{n}}^{0}(\xi)e^{\frac{l(\xi)-\mu_{mk}^{n*}}{\lambda_{mk}^{n*}}-1}$$
(56)

where \(\lambda _{mk}^{n*}\) and \(\mu _{mk}^{n*}\) are the solutions given by Eqs. (5355). By substituting Eq. (56) into these equations, we can obtain the Eqs. in (25) .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Hu, B., Chen, C. et al. Relay selection for peer-to-peer cooperative OFDMA with channel distribution uncertainty. Peer-to-Peer Netw. Appl. 8, 925–937 (2015). https://doi.org/10.1007/s12083-014-0300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-014-0300-4

Keywords

Navigation