Skip to main content
Log in

Adaptive congestion control scheme in mobile ad-hoc networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In the past, several authors have expressed their concerns over the poor congestion control in mobile wireless ad-hoc networks using traditional reference layer model. Many solutions were proposed to handle growing traffic and congestion in the network, using link layer information. Existing solutions have shown difficulties in dealing with congestion with varying packets drop. Moreover, ensuring the superior performance of congestion control schemes with traditional referenced layer model is a challenging issue, due to quick topology changes, dynamic wireless channel characteristics, link-layer contentions, etc. In this paper, we propose an effective cross-layer adaptive transmission method to handle the congestion in mobile wireless ad-hoc networks adequately. Simulation results exemplify the usefulness of the proposed method in handling congestion, and yields better results compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Aliu OG, Imran A, Imran MA, Evans B (2013) A survey of self organisation in future cellular networks. IEEE Commun Surv Tutorials 15:336–361

    Article  Google Scholar 

  2. Pogkas N, Karastergios GE, Antonopoulos CP, Koubias S, Papadopoulos G (2007) Architecture design and implementation of an ad-hoc network for disaster relief operations. IEEE Trans Ind Inf 3:63–72

  3. Kliazovich D, Granelli F (2006) Cross-layer congestion control in ad hoc wireless networks. Ad-Hoc Networks 4:687–708

    Article  Google Scholar 

  4. Molnar S, Moczar Z, Sonkoly B (2016) Living with congestion: digital fountain based communication protocol. Comput Commun 80:82–100

    Article  Google Scholar 

  5. Chang HP, Kan HW, Ho MH,(2012) Adaptive TCP Congestion control and routing schemes using cross-layer information for mobile ad-hoc networks. Comput Commun 35:454–474

  6. Lochert C, Scheuermann B, Mauve M (2007) A Survey on congestion control for mobile ad-hoc networks. Wiley Wirel Commun Mob Comput 7:655–676

  7. Fu Z, Meng X, Lu S (2003) A Transport protocol for supporting multimedia streaming in mobile ad-hoc networks. IEEE J Sel Areas Commun 21:1615–1626

  8. Holland G, Vaidya N (2002) Analysis of TCP performance over mobile ad hoc networks. Wirel Netw 8:275–288

    Article  MATH  Google Scholar 

  9. Chandran K, Raghunathan S, Venkatesan S, Prakash R (1998) A Feedback- based scheme for improving TCP performance in ad hoc wireless networks. In: international conference of distributed. Comput Syst:472–479

  10. Fu Z, Meng X, Lu S (2002) How bad TCP can perform in mobile ad-hoc networks. In: international symposium on computers and. Communications:298–303

  11. Liu J, Singh S (2001) ATCP: TCP for mobile ad-hoc networks. IEEE J Sel Areas Commun 19:1300–1315

  12. Fu Z, Greenstein B, Meng X, Lu S (2002) Design and implementation of a TCP-friendly transport protocol for ad-hoc wireless networks. Proceedings of ICNP:216–225

  13. Fu Z, Luo H, Zerfos P, Lu S, Zhang L, Gerla M (2005) The impact of multihop wireless channel on TCP performance. IEEE Trans Mob Comput 4:209–221

    Article  Google Scholar 

  14. Fu Z, Zerfos P, Luo H, Lu S, Zhang L, Gerla M (2003) The impact of multihop wireless channel on TCP throughput and loss. INFOCOM:1744–1753

  15. Floyd S (1994) TCP and explicit congestion notification. ACM Comput Commun Rev 24:8–23

    Article  Google Scholar 

  16. Conti M, Maselli G, Turi G, Giordano S (2004) Cross-layering in a mobile ad-hoc network design. IEEE Comput Society, Commercial Implementation 37:48–51

    Article  Google Scholar 

  17. Raisinghani VT, Iyer S (2004) Cross-layer design optimizations in wireless protocol stacks. Comput Commun 27:720–724

    Article  Google Scholar 

  18. Zhao H-T, Dong Y-N, Zhang H, Li Y (2010) A Cross-layer routing scheme using adaptive retransmission strategy for wireless mesh networks. Wirel Pers Commun 63:345–361

  19. Anuradha M, Anandha Mala GS (2016) Cross-layer based congestion detection and routing protocol using fuzzy logic for MANET. Wirel Netw:1–13

  20. Chen W, Guan Q, Jiang S, Guan Q, Huang T. (2016) Joint QoS provisioning and congestion control for multi-hop wireless networks. EURASIP J Wirel Commun Netw

  21. Hamadani E, Rakocevic V (2007) TCP contention control: a cross layer approach to improve TCP performance in multihop ad-hoc networks. Wired/wireless internet. Communications:1–16

  22. Zhang X, Li N, Zhu W, Sung D (2009) TCP Transmission rate control mechanism based on channel utilization and contention ratio in ad-hoc networks. IEEE Commun Lett 13:280–282

  23. Hu Y–C, Johnson DB (2004) Exploiting congestion information in network and higher layer protocols in multi-hop wireless networks. In: Proc. of ICDCS. 301–310.

  24. Pham Q-V, To H-L, Hwang W-J (2015) A multi-timescale cross-layer approach for wireless ad hoc networks. Comput Netw 91:471–482

    Article  Google Scholar 

  25. Xia F, Liaqat HB, Ahmed AM, Liu L, Ma J, Huang R, Tolba A (2016) User popularity-based packet scheduling for congestion control in ad-hoc social networks. J Comput Syst Sci 82:93–112

    Article  MathSciNet  Google Scholar 

  26. Antonopoulos C, Koubias S (2010) Congestion control framework for ad-hoc wireless networks. Wirel Pers Commun 52:753–775

    Article  Google Scholar 

  27. Altman E, Avrachenkov KE, Prabhu BJ. (2005) Fairness in MIMD congestion control algorithms. In: IEEE INFOCOM 1350–1360.

  28. Rappaport TS (1996) Wireless Communications. Principles and Practice, Prentice Hall

    Google Scholar 

  29. Chen Q, Jiang D, Taliwal V, Delgrossi L. (2006) IEEE 802.11 based vehicular communication simulation design for NS-2. In: Proceedings of the International Workshop on Vehicular Ad Hoc Networks (VANET). 50–56

  30. Sutton GJ, Liu RP, Collings IB (2013) Modeling IEEE 802.11 DCF heterogeneous networks with rayleigh fading and capture. IEEE Trans Commun 61:3336–3348

    Article  Google Scholar 

  31. Kim JH, Lee JK (1999) Capture effects of wireless CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Trans Veh Technol 48:1277–1286

    Article  Google Scholar 

  32. Chen Q, Schmidt-Eisenlohr F, Jiang D, Torrent- Moreno M, Delgrossi L, Hartenstein H. (2007) Overhaul of IEEE 802.11 modeling and simulation in NS-2. In: Proceeding of MSWiM. 159–168

  33. Home Page NS-2 Simulator Tool. http://www.isi.edu/nsnam/ns/. Accessed 3 Apr 2016

  34. Perkins CE, Royer EM, Das SR (2003) Ad hoc on-demand distance vector (AODV) routing. Internet Draft, MANET Working Group, draft-ietf-manet-aodv-04.txt. https://datatracker.ietf.org/doc/rfc3561/?include_text=1. Accessed 6 Apr 2013

  35. IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications, ISO/IEC 802–11: 1999(E), August, 1999

  36. Das SR, Perkins CE, Royer EM, Marina MK (2000) Performance comparison of two on-demand routing protocols for ad-hoc networks. IEEE INFOCOM:3–12

  37. Meng W, Wang X, Liu S (2016) Distributed load sharing of an inverter-based microgrid with reduced communication. IEEE Transactions on Smart Grid. doi:10.1109/TSG.2016.2587685

    Google Scholar 

  38. Yang Z, Shi X, Chen J (2014) Optimal coordination of mobile sensors for target tracking under additive and multiplicative noises. IEEE Trans Ind Electron 61:3459–3468

    Article  Google Scholar 

  39. Zhang H, Cheng P, Shi L, Chen J (2016) Optimal DoS attack scheduling in wireless networked control system. IEEE Trans Control Syst Technol 24:843–852

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V.K., Kumar, M. Adaptive congestion control scheme in mobile ad-hoc networks. Peer-to-Peer Netw. Appl. 10, 633–657 (2017). https://doi.org/10.1007/s12083-016-0507-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-016-0507-7

Keywords

Navigation