Skip to main content
Log in

Optimizing bandwidth allocation for heterogeneous traffic in IoT

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In Internet of Things (IoT), there generally exist two typical types of heterogeneous flows with different requirements: inelastic media flow (e.g., the monitoring flow) and elastic data flow (e.g., the environment info from measurement). These heterogeneous flows often coexist for sharing the limited bandwidth. Despite substantial works, a simple yet efficient approach to economically allocate bandwidth for these two types of flows is still not available. In this paper, we propose two methods to optimize the bandwidth allocation of these flows: the network-utility-maximization-based (NUM) method and the asymptotic analysis method. The NUM method provides a general solution to the optimization problem, but requires a certain computational complexity. The asymptotic analysis method delves into the inherent property of the network and explicitly expresses the solution in terms of protocol parameters and traffic requirements. Extensive simulations verify that the two methods are very accurate and can well achieve the desired objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): A vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660

    Article  Google Scholar 

  2. Viani F, Robol F, Polo A, Rocca P, Oliveri G, Massa A (2013) Wireless architectures for heterogeneous sensing in smart home applications: Concepts and real implementation. Proc IEEE 101(11):2381–2396

    Article  Google Scholar 

  3. Jiang L, Liu D, BYB (2004) Smart home research. In: Proceedings of 2004 international conference on machine learning and cybernetics, vol 2, pp 659–663

  4. IEEE 802.11ah Task Group, 11/1137r14 Specification Framework for TGah. [Online]. Available: http://www.ieee802.org/11/

  5. Khorov E, Lyakhov A, Krotov A, Guschin A (2015) A survey on IEEE 802.11ah: An enabling networking technology for smart cities. Comput Commun 58:53–69

    Article  Google Scholar 

  6. Lee J.-W., Chiang M, Calderbank AR (2007) Utility-optimal random-access control. IEEE Trans Wirel Commun 6(7):2741–2751

    Article  Google Scholar 

  7. Cheung MH, Mohsenian-Rad H, Wong VW, Schober R (2012) Utility-optimal random access for wireless multimedia networks. IEEE Wireless Commun Lett 1(4):340–343

    Article  Google Scholar 

  8. Yoon D, Lee S, Hong J, Chung K (2013) Weighted bandwidth sharing scheme to guarantee the video quality in home networks. International Conference on Information Networking (ICOIN):423–427

  9. Nassiri M, Heusse M, Duda A (2008) A novel access method for supporting absolute and proportional priorities in 802.11 WLANs. Proceedings of IEEE INFOCOM:709–717

  10. Ma Z, Zhao Q, Luan TH Providing utility-optimal throughput guarantees in wireless LANs, IEEE Transactions on Vehicular Technology, Accepted for publication

  11. Banchs A, Perez X, Qiao D (2003) Providing Throughput Guarantees in IEEE 802.11e Wireless LANs, Proceedings 18th International Teletraffic Cong., pp. 1001–1010

  12. Le Y, Ma L, Cheng W, Cheng X, Chen B (2012) Maximizing throughput when achieving time fairness in multi-rate wireless LANs, 2012 Proceedings IEEE INFOCOM, pp. 2911–2915

  13. Zhong W, Fang Y, Jin S, Wong K, Zhong S, Qian Z (2015) Joint resource allocation for device-to-device communications underlaying uplink MIMO cellular networks. IEEE J Sel Areas Commun 33(1):41–54

    Article  Google Scholar 

  14. Zhong W, Chen G, Jin S, Wong K (2014) Relay selection and discrete power control for cognitive relay networks via potential game. IEEE Trans Signal Process 62(20):5411–5424

    Article  MathSciNet  Google Scholar 

  15. Li W, Wang S, Cui Y, Cheng X, Xin R, Al-Rodhaan M, Al-Dhelaan A, et al. (2014) AP association for proportional fairness in multirate WLANs. IEEE/ACM Trans Netw 22(1):191–202

    Article  Google Scholar 

  16. Zhao Q, Tsang D, Sakurai T (2011) A simple critical-load-based CAC scheme for IEEE 802.11 DCF networks. IEEE/ACK Trans Netw 19(5):1485–1498

    Article  Google Scholar 

  17. He S, Chen J, Li X, Shen X, Sun Y (2014) Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans Mob Comput 13(6):1268–1282

    Article  Google Scholar 

  18. Chen J, Xu W, He S, Sun Y, Thulasiraman P, Shen X (2010) Utility-based asynchronous flow control algorithm for wireless sensor networks. IEEE J Select Areas Commun 28(7):1116–1126

    Article  Google Scholar 

  19. Zhang Y, He S, Chen J (2016) Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. ACM/IEEE Trans Netw 24(3):1632–1646

    Article  Google Scholar 

  20. Zhang H, Cheng P, Shi L, Chen J (2016) Optimal DoS attack scheduling in wireless networked control system. IEEE Trans Control Syst Technol 24(3):843–852

    Article  Google Scholar 

  21. Zhao Q, Tsang D, Sakurai T (2010) A novel CAC scheme for homogeneous 802.11 networks. IEEE/ACM Trans Wirel Commun 9(3):1168–1174

    Article  Google Scholar 

  22. Heusse M, Rousseau F, Guillier R, Duda A (2005) Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs. ACM SIGCOMM Comput Commun Rev 35(4):121–132

    Article  Google Scholar 

  23. Park CW, Hwang D, Lee T (2014) Enhancement of IEEE 802.11ah MAC for M2M communications. IEEE Commun Lett 18(7):1151–1154

    Article  Google Scholar 

  24. Kumar S, Lim H, Kim H (2015) Hierarchical MAC protocol with multi-channel allocation for enhancing IEEE 802.11ah relay networks, International Wireless Communications and Mobile Computing Conference, pp. 1458–1463

  25. Argyriou A (2015) Power-efficient estimation in IEEE 802.11ah wireless sensor networks with a cooperative relay, IEEE International Conference on Communications, pp. 6755–6760

  26. Amin SM, Wollenberg BF (2005) Toward a smart grid: Power delivery for the 21 st century. IEEE Power Energ Mag 3(3): 34–41

    Article  Google Scholar 

  27. ANSI/IEEE Std 802.11, Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, 1999 Edition (R2007)

  28. Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Select Areas Commun 18(3):535–547

    Article  MathSciNet  Google Scholar 

  29. Malone D, Duffy K, Leith D (2007) Modeling the 802.11 distributed coordination function in non-saturated heterogeneous conditions. IEEE/ACM Trans Netw 15(1):159–172

    Article  Google Scholar 

  30. Kelly FP, Maulloo AK, Tan DKH (1998) Rate control for commmunication networks: Shadow prices, proportional fairness and stability. J Oper Res Soc 49:237–252

    Article  MATH  Google Scholar 

  31. Corlessa RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359

    Article  MathSciNet  MATH  Google Scholar 

  32. Wiethoelter S, Emmelmann M, Hoene C, Wolisz A (2006) TKN EDCA Model for NS2, Technische Universitat Berlin, Technical Report. TKN-06-003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Zhao.

Additional information

This work is supported by the Macao Science and Technology Development Fund under Grants 104/2014/A3 and 005/2016/A1.

Appendix

Appendix

In this appendix, we prove Theorem 1.

Proof of Theorem 1

Let \(\varphi ^{o}\triangleq \beta _{2}{\sum }_{j=1}^{m}r_{j}\) represent the total attempt rate of the stations with elastic flows. We prove Theorem 1 in two steps below.

  1. Step 1:

    Express β i+1 in terms of β 2. From Eqs. 47, and 8, since β i ≪1, we have

    $$ r_{i}=\frac{{\Gamma}_{n+i}}{{\Gamma}_{n+1}}=\frac{L_{n+i}\beta_{n+i}(1-\beta _{n+1})}{L_{n+1}\beta_{n+1}(1-\beta_{n+i})}\approx\frac{L_{n+i}\beta_{n+i}} {L_{n+1}\beta_{n+1}}. $$
    (20)

    When n = 1, we can express β i+1 as follows

    $$ \beta_{i+1}=\frac{r_{i}L_{2}\beta_{2}}{L_{i+1}}=\frac{r_{i}\varphi}{L_{i+1} {\textstyle\sum\nolimits_{j=1}^{m}} \frac{r_{j}}{L_{j+1}}},1\leq i\leq m. $$
    (21)
  1. Step 2:

    Express β i in Eq. 16. We first express Γ1 = a 1 as Eq. 22. After substituting (21) into Eq. 22, then we can obtain an explicit relationship between β 1 and β 2, as shown in Eq. 23, where we apply the approximations: β i ≪1 and (1−x)ye xy for xy. Combining (21) and (23), we obtain (16).

    $$ a_{1}=\frac{L_{i}\beta_{i}{\Pi}_{j\neq i}^{N}(1-\beta_{j})}{(\sigma-T_{c} ){\Pi}_{i=1}^{N}(1-\beta_{i})+\sum\nolimits_{i=1}^{N}({T_{s}^{i}}-T_{c})\beta_{i}{\Pi}_{j\neq i}^{N}(1-\beta_{j})+T_{c}}. $$
    (22)
    $$ \beta_{1}=\frac{\sigma-T_{c}+ {\textstyle\sum\nolimits_{i=1}^{m}} (T_{s}^{i+1}-T_{c})\beta_{i+1}+ \frac{T_{c}}{{\Pi}_{i=1}^{m}(1-\beta_{i+1})} }{\frac{L_{1}}{a_{1}}+\sigma-{T_{s}^{1}}} $$
    (23)
    $$ \approx\frac{\sigma-T_{c}+\frac{\varphi}{{\textstyle\sum\nolimits_{j=1} ^{m}}\frac{r_{j}}{L_{j+1}}}{\textstyle\sum\nolimits_{i=1}^{m}}(T_{s} ^{i+1}-T_{c})\frac{r_{i}}{L_{i+1}}+T_{c}e^{\varphi}}{\frac{L_{1}}{a_{1} }+\sigma-{T_{s}^{1}}}. $$
    (24)
  1. Step 3:

    Compute the optimal φ o, φ. First, we express \({\Sigma }_{i=1}^{N}{\Gamma }_{i}\) as in Eqs. 25 and 26 by applying (21). Second, setting the first-order derivative of \({\Sigma }_{i=1}^{N}{\Gamma }_{i}\) in terms of φ to 0, we obtain the equation of φ, B + T c (e φφe φ)=0, and hence \((\varphi -1)e^{\varphi -1}=\frac {B}{T_{c}e}\). Then \(\varphi -1=W_{0}(\frac {B}{T_{c}e})\) or \(W_{-1}(\frac {B}{T_{c}e})\). We have \(\varphi =W_{0}(\frac {B}{T_{c}e})+1\), because \(W_{0}(\frac {B}{T_{c}e})>-1\) and \(W_{-1}(\frac {B}{T_{c}e})<-1\) for \(\frac {B}{T_{c}e}\in (\frac {-1}{e},0)\).

$$ {\Sigma}_{i=1}^{N}{\Gamma}_{i} =a_{1}+\frac{\beta_{2}}{\beta_{1}} a_{1}{\textstyle\sum\nolimits_{i=1}^{m}}r_{i} $$
(25)
$$ =a_{1}+\frac{(\frac{L_{1}}{a_{1}}+\sigma-{T_{s}^{1}})\frac{\varphi} {{\textstyle\sum\nolimits_{j=1}^{m}}\frac{r_{j}}{L_{j+1}}}a_{1} {\textstyle\sum\nolimits_{i=1}^{m}}r_{i}}{\sigma-T_{c}+\frac{\varphi} {{\textstyle\sum\nolimits_{j=1}^{m}}\frac{r_{j}}{L_{j+1}}}{\textstyle\sum \nolimits_{i=1}^{m}}(T_{s}^{i+1}-T_{c})\frac{r_{i}}{L_{i+1}}+T_{c}e^{\varphi}} $$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Zhao, Q. & Huang, J. Optimizing bandwidth allocation for heterogeneous traffic in IoT. Peer-to-Peer Netw. Appl. 10, 610–621 (2017). https://doi.org/10.1007/s12083-016-0535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-016-0535-3

Keywords

Navigation